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Abstract

We explore ways of covertly delivering interventions into the
adversary decision cycles so as to effectively shape adversary
decision-making and performance without inducing much
suspicion. Recognizing that completely covert interventions,
while most effective, are difficult to implement, we focus on a
more general mode of covertness. Based on insights from
human abductive reasoning, we propose a delivery scheme
that contains interventions that may be noticeable but whose
true meanings are hidden or distorted (e.g., the human
operators do not easily attribute the interventions to malicious
attacks). We evaluate, both theoretically and empirically, the
effectiveness and robustness of this scheme in escaping
detection and disrupting performance.
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A cyber attack is more damaging and harmful if it is stealthy
and escaping detection. One critical challenge in cyberspace
security is therefore to find ways to effectively detect hidden
or covert attacks. One approach to meeting the challenge is
to look at the other side of the coin and study how and why
some attacks can be delivered covertly that induce no or
minimal suspicion from the human operator. The results
from this approach can then be used to design better
countermeasures and improve security.

Here we focus on the concept of “covertness” in cyber
attacks and intend to discover the theoretical essence and
practical guidelines of implementing ‘“covertness”.
Presumably, a covert attack would be one that is completely
hidden and not noticed by the targeted operator at all. In this
sense, covertness can be implemented as slip of attention.
Examples include attention blink, change blindness, and
inhibition of return, to name a few. While a large body of
evidence has confirmed that attention is a fragile cognitive
function that can be manipulated and exploited for the
purpose of implementing covertness, it has also been
suggested that the attention-based approach is quite limited
and difficult to apply in the real world situations.

There is at least another mode of covertness. In this mode,
signs of the intervention are noticed by the human operator
(therefore, the intervention is not completely hidden and
escaping attention), however, the true meaning/significance
of the intervention is disguised or distorted or hidden in
such a way that they do not easily result in suspicion of

outside influence. This mode of covertness suggests new
ways of implementing covertness.

Consider the following scenario: It is 12am and that John,
an analyst, is working on a sensitive document on his
computer and you have delivered a virus to his computer in
order to take a peek. Ideally, you would like your operation
is completely invisible to John, but unfortunately, one
inevitable side effect of your virus is that John’s computer
becomes slow, which John eventually notices and starts to
become suspicious. Then John receives an alerting pop-out
message informing him that the antivirus software on his
computer has started scanning as scheduled and that so far
no virus has been found. John now understands why his
computer becomes slow, is relieved, and continues to work
on his document, without realizing your peeking eyes.

Though hypothetical, this example highlights an
important aspect of covertness, which has to do with an
understanding of how a human operator reasons and
explains unexpected observations and if and when the
operator becomes suspicious given data. In the example,
John becomes suspicious when he notices that his computer
slows down, an often-inevitable indicator of attacks. But his
suspicion fades away after the pop-out message, which is
also delivered by the attacker with the goal to provide a
better explanation for the slow-down so as to reduce John’s
suspicion.

Instead of directly exploiting the low-level attentional
function, this mode of covertness depends upon exploiting a
higher-level human inference system called abduction. We
argue that this mode of covertness is more general, more
realistic and potentially more powerful.

Abduction-based Covertness

Abduction was introduced by American philosopher Charles
S. Peirce (1839-1914) as a form of human inference that is
different from deduction and induction. According to Peirce,
in abduction one infers causes from effects or explanations
from observations (See Fann, 1970 for a general
introduction to Peirce's theory of abduction). The general
form of abduction is shown below,

A fact C is observed,

H can explain C;

Hence, H may be true.

Here is a specific example of abductive inference, in the

context of the hypothetical scenario above,
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The computer suddenly slows down,
A malicious attack explains the slowdown;
Hence, a malicious attack may be occurring.

And here is another example,

The computer suddenly slows down,
Antivirus scanning explains the slowdown;
Hence, nothing is wrong and just be patient.

Charniak and McDermott (1985) characterize abduction
as modus ponens turned backward (see also Brachman &
Levesque, 2004). It is clear in abduction the conclusion does
not necessarily follow the premises — in the above examples
two different explanations are inferred to explain a same
observation. However, according to Peirce, abduction is
important in that it "is the only logical operation which
introduces any new ideas; for induction does nothing but
determine a value [to classify], and deduction merely
evolves the necessary consequences of a pure hypothesis"
(Peirce, 1931, v. 5, p. 171). Though inconclusive, the
explanation inferred by abduction "is adopted for some
reason, good or bad, and that reason, in being regarded as
such, is regarded as lending the hypothesis some
plausibility" (Peirce, 1931, v. 2, p. 511).

Modern researchers often regard abduction as a complex
process of finding a best explanation for a set of
observations (Josephson & Josephson, 1994; Paul, 1993;
Thagard, 1992). Since "explaining" is such an inevitable
aspect of human everyday activities, abductive reasoning is
almost ubiquitous, ranging from hearing the thunder ("It's
going to rain?"), seeing a falling maple leaf ("Autumn has
come?"), to medical diagnosis (from symptoms to diseases)
and scientific discovery (from data to knowledge and
theories). In battlefields, commanders have to infer the
enemy's motivations based on observations and intelligence
and then take proper actions. In cyberspace security,
operators have to infer if an attack has occurred given
observations.

How do people do abduction? The Theory of Explanatory
Coherence (TEC) is an influential theory of human
abduction (Thagard, 1989, 1992). According to TEC,
abduction is a parallel constraint satisfaction process in that
all propositions, including explanations, evidence, and
explanatory relations, form a network that constantly seeks
harmony. An explanation should be accepted if it is
coherent with all other propositions in the network, rejected
if it is incoherent, and the best explanation for available
observations is the one that enjoys the most explanatory
coherence in the network. TEC proposes seven principles
that establish explanatory relations among propositions and
regulate the global coherence of an explanatory system: (1)
symmetry: If P and Q cohere, then Q and P cohere; If P and
QO incohere, then Q and P incohere. (2) explanation: 1f
P,...P, explain Q, then P;...P,, cohere with each other and
with O cohere, and the degree of coherence is inversely
proportional to the number of propositions P;...P,. (3)
Analogy: If P, explains Q,, P, explains O, P, is analogous
to P,, and Q; is analogous to 0,, then P; and P, cohere, and
0O, and Q, cohere. (4) data priority: Observations have a

degree of acceptability of their own. (5) Contradiction: If P
contradicts Q, then P and Q incohere. (6) competition: 1If P
and Q both explain a proposition, and if P and Q are not
explanatorily connected, then P and Q incohere. (7)
acceptability: The acceptability of a proposition P depends
on its coherence with all the propositions in the system.

TEC has been computationally implemented in a
connectionist system called Echo (Thagard, 1992). In Echo,
propositions (both data and hypotheses) are represented by
nodes. Coherence relations are represented by excitatory
links and incoherence relations are represented by inhibitory
links. Node activation represents the node’s degree of
coherence with all propositions in the network. The system
updates itself based on parallel constraint satisfaction
(Thagard, 1992). During this process, propositions that are
incoherent die out and propositions that are coherent are
strengthened. In the end, the most activated propositions
represent the most plausible and coherent explanations.
Echo has been extended to UEcho to incorporate more
sophisticated handling of uncertainty (Wang, Johnson, &
Zhang, 1998; Wang, Johnson, & Zhang, 2006).

TEC and UEcho capture several critical constraints in
abduction, including explanatory breadth (the model prefers
a hypothesis that explains more); simplicity (the model
prefers a simpler hypothesis); being explained (the model
prefers a hypothesis which itself is explained); data
reliability (the credibility of an observation also depends on
its coherence in the system); and analogy (analogous
hypotheses are coherent). More important, however, they
shed interesting new insights on human suspicion and
implementing covertness. In this context, suspicion can be
viewed as the degree of acceptance of an explanation such
as “a malicious attack is occurring”, and implementing
covertness is not much more than to make the degree of
acceptance of this explanation as low as possible.

Based on this reasoning, we hypothesize that effective
covert interventions can be delivered in such a way that
suspicion-bearing explanations (e.g., “a malicious attack is
occurring”) cannot become the best (winning) explanation
given data. TEC has already offered several straightforward
ways to do just this. For example, one way is to “explain
away”, which says that when delivering an intervention,
deliver an explanation for that intervention as well so that
the true meaning of observations can be shielded. This is
exactly what happens in our previous hypothetical example.
an attack is delivered, which caused John’s computer to be
slower. In anticipating this, a secondary message is
delivered to John to “explain” to him that why his computer
became slower. This new explanation “explained away” the
John’s observation and therefore reduced his suspicion —
that is, the acceptance of “an attack is occurring” became
low. Another example of abduction-based covertness
derives directly from the data reliability principle — we can
discredit those “suspicion-inducing” observations by
introducing conflicting data (“unreliable data”). “Are you
sure that your computer becomes slower?” By inducing new
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data to promote John to cast his doubt, the suspicion level of
“an attack is occurring” is reduced.

To a certain extent the attention-based covertness (i.e.,
delivering interventions that are invisible to the human
attention) is a special case of this new abduction-based
covertness. Since abduction starts with observations (that is,
the data to be explained, e.g., “the fact C is observed”),
completely invisible interventions suggest that suspicion-
generating abduction will not even be starting in the first
place. However, abduction-based covertness is more general
in the sense that in case some suspicion-inducing
observations become available, covertness can still be
achieved if proper measures are taken so that the suspicion-
bearing explanation will not become the most plausible one.

Stealth and Disruption with IMPs

As a preliminary step toward evaluating the effectiveness of
abduction-based covertness, we conducted a study to
examine how a human operator digests unexpected
interventions and adjusts his level of suspicion. The study
utilized a so-called Interface Manipulation Protocol (IMP).
The toolbox of IMP contained dozens of possible
intervention types that could be delivered to the adversary
computers to cause disruption with, for example, keyboard
and mouse operations. We were interested in finding out the
optimal chain of IMP delivery scheme (e.g., when to deliver
what IMP for how long?) that causes maximal disruption
with minimal suspicion.

Method

Participants

Nine college students and graduate students in the Houston
medical center area were paid to participate in the
experiment.

Procedure

The experiment was programmed in E-Prime and
conducted on a computer with a 20 inch LCD monitor.
Subjects were instructed to type in sequences of random
numbers as prompted (Figure 1). Table 1 shows three
independent variables manipulated in the study, including
the type of IMPs and the type of delivery themes.

Target

Sequence: EEEB nﬂ
Responses: EEB

Figure 1. Subjects were required to reproduce the
target sequence. Errors were prompted in red color
and need to be corrected with extra keystrokes. Errors
could include “IMP errors” (produced deliberately by
IMPs) and “genuine errors” (subjects’ own typos). In
this example, the subject had mistyped the target
character number “9” with number “7”, and
subsequently typed number “8” before realizing the
error.

At the beginning of each trial, subjects were first
prompted with a sequence of 20 characters of random
numbers, shown at the top of the computer screen. Then,
they were to copy the entire sequence in exactly the same
order, and their responses were shown one by one for each
keystroke, in a separate line below the target sequence. If an
error occurred, either by subjects’ own error (“genuine
errors”) or by deliberate IMP interventions, the mismatched
character would be shown in red. Subjects were instructed
to immediately erase the error by using the backspace key.
If subjects have skipped the error for several keystrokes,
they had to erase all subsequently typed characters
(including the correct ones). That is, correcting an error had
to be done in a backward sequential order (similar to the
situation of typing documents without the ability of
adjusting the cursor position by mouse).

Table 1. Independent variables manipulated

3 types of IMPs

* Non-responsive key (IMP1): when a key is pressed,
nothing shows up, so the subject has to retype to
correct;

* repetitive key (IMP2): when a key is pressed, the
same character will show up twice. For example,
typing “3” would result in “33” shown on the screen,
so that the subject has to erase the extra character;

¢ altered key (IMP3): when a key is pressed, a
randomly selected different character is shown (e.g.,
typing “3” and “4” shows up), so the subject has to
erase the wrong character and retype.

4 types of delivery themes
* Pure: only one type of IMPs is delivered.
* Mixed: multiple types of IMPs are delivered.
* Clumped: IMPs are delivered consecutively.
* Dispersed: IMPs are delivered sparsely.

4 experimental conditions (combination of themes)
* PC: Pure-Clumped.
* PD: Pure-Dispersed.
* MC: Mixed-Clumped
* MD: Mixed-Dispersed

4 levels of IMP delivery rates
10%, 20%, 30%, 40% of the target characters are
affected by IMPs).

Three types of IMP interventions were silently delivered
by hijacking the subject’s keyboard (see Table 1 and Figure
2). Each delivery of IMP intervention was designed to affect
only one keystroke. For instance, by IMP1 (non-responsive
key, Figure 2A), when the subjects typed any key on the
keyboard (not necessarily matching the target character), the
program would silently remove the keystroke such that no
response character would be shown below the target
character. Then, the IMP intervention would be temporarily
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“disarmed” for this particular target character. Only when
subjects pressed the same key for second time, the character
would show up in the response line.

Four delivery themes were designed based on the mixture
of IMP types and the temporal intervals between each IMP
intervention (Table 1). In the “Pure” theme, only one IMP
type was implemented for the target sequence. In the
“Mixed” theme, all three types of IMPs were implemented.
In the “Clumped” theme, IMPs were clustered together such
that one IMP intervention could be immediately followed by
another. In the “Dispersed” theme, IMPs were evenly
distributed among the 20 target characters.

The delivery themes were grouped into 4 experimental
conditions with each condition containing one particular
combination of the mixture and temporal distribution (Table
1). For example, in the “PC” condition, only one type of
IMP was delivered but in a clustered fashion. We also
implemented 4 levels of IMP delivery rates, which were
evenly distributed in each of the delivery themes.

‘/ImpMode — 17\ 1 extra keystroke
Nothing shows n increased by 1
- - i increased by 0
v
i-1 i i i+1
n—1 n n+1 n+2
— | |
A
. ImpMode = 2 1 extra keystroke
Fired at i, shown at (i + 1)
/ n increased by 2
i increased by 1
BackSpace
\d v
i-1 i i+1 i+1 i+1
n—1 n n n+1 n+2
ror” at (i + 1)
— | |
B
ImpMode = 3 2 extra keystrokes
Altered Key n increased by 2
- T i increased by 0
BackSpace
v
i-1 i i i
n-—1 n n+1 n+2
— | |

Figure 2. How types of IMPs (A: IMP1; B: IMP2; C:
IMP3) affect dependent measures. i = position in the
target sequence; n = number of keystrokes.

After practice trials, each subject completed 4 blocks of
trials, with each block corresponding to one of the
experimental conditions. The order of the conditions was
randomized between subjects. Each block consisted of 20
trials, and each trial consisted of 2 target sequences. At the

end of each block, subjects were asked to evaluate the
“reliability” of the input device on an 1-to-7 scale with “1”
for the most “unreliable” and “7” for the most “reliable”.
Subjects took a brief break before moving to the next block
of trials.

There were two major dependent measures. Stealth
(covertness) was measured by the subjective evaluations of
the reliability of the input device. Higher evaluation scores
indicated higher tolerance of IMPs and therefore less
suspicion. Disruption was measured by the number of extra
keystrokes (“ExtraKS”) required to complete the sequence
(excluding the extra keystrokes directly caused by IMPs).
Higher scores of ExtraKS indicated more severe disruptions
to the performance. The relation between IMPs and
dependent measures is depicted in Figure 2.

Results

One main result of the study is shown in Figure 3, which
depicts the effect of delivery themes on stealth and
disruption. Statistics show that in terms of stealth the mixed-
clumped delivery (IMPs with mixed types are delivered
continuously) is the best (mean evaluation scores = 4.36,
3.94, 3.76, 4.01, with standard errors = 0.22, 0.31, 0.19,
0.25, for MC, MD, PC and PD, respectively). And in terms
of disruption the pure-dispersed delivery (IMPs with the
same type are delivered sparsely) is the best (mean
disruption scores = 2.06, 3.08, 2.62, 3.50, with standard
errors = 0.59, 0.58, 0.47, 0.73, for MC, MD, PC and PD,
respectively). Further analysis shows that if we combine the
two dependent measures, the pure-dispersed delivery has the
highest effectiveness score, as shown in Figure 4 (mean
effectiveness scores = 0.43, 0.51, 0.49, 0.56, with standard
errors = 0.03, 0.02, 0.03, 0.02, for MC, MD, PC and PD,
respectively). Overall, it seems that the pure-dispersed
delivery is the most effective IMP delivery theme if the
tradeoff between stealth and disruption is considered.

Stealth Disruption
— .
6 45
4
35
£ ¢
] ® 25
E 3 5 2
2 15
;
! 0s ﬁ
0 0 T
Base MC MD PC PD Base MC MD PC PD
Theme Theme

Figure 3. The effect of delivery themes (Base: no IMP
was delivered; MC: IMPs were delivered in mixed-
clumped fashion; MD: mixed-dispersed; PC: pure-
clumped; PD: pure-dispersed).
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M M PC PD
Theme

Figure 4. Effectiveness by themes. The effectiveness
index is computed by adding the normalized stealth and
disruption measures.

The effect of IMP types is shown in Figure 5. In terms of
stealth, statistics show that IMP1>IMP2 (mean evaluation
scores = 4.34, 3.70, with standard errors = 0.21, 0.23, for
IMP1 and IMP2, respectively, p<0.05) and IMP1>IMP3
(mean evaluation scores = 4.34, 3.62, with standard errors =
0.21, 0.31, for IMP1 and IMP3, respectively, p<0.05). In
terms of disruption, no significant difference is found (mean
disruption scores = 2.63, 3.21, 3.34, with standard errors =
0.44, 0.68, 0.71, for IMP1, IMP2 and IMP3, respectively).

Stealth Disruption
48 45 1
46 . 41
4.4 351
4.2 3
<
S 9,
g 4 X 25
3 &
T)u 38 m 21
w
36 151
34 11
32 051
3 0
MP1 IMP2 IMP3 MP1 IMP2 IMP3
IMP Type IMP Type

Figure 5. Effect of IMP types on stealth and disruption.

The effect of IMP delivery rate is shown in Figure 6. It is
clear that with the rate increase the evaluation scores
decrease (mean evaluation scores = 6.64, 5.12, 4.28, 3.58,
3.10, with standard errors = 0.17, 0.15, 0.23, 0.25, 0.28, for
0, 10%, 20%, 30% and 40%, respectively) and the
disruption scores increases (mean disruption scores = 0.87,
1.77, 2.75, 2.97, 3.76, with standard errors = 0.25, 0.37,
0.50, 0.81, 0.59, for 0, 10%, 20%, 30% and 40%,
respectively). A nonlinear regression supports the notion
that rate increases led to more disruption and less stealth.

Stealth Disruption

Gos oo

Evaluation
w  »
Extraks

o

(R

~

F
1 .
05

0 10% 20% 30% 40% 0 10% 20% 30% 40%
Rate Rate

Figure 6. Effect of IMP delivery rates on stealth and
disruption, with polynomial fitting curves.

Summary and Discussion

In this article we explore ways of covertly delivering
interventions into the adversary decision cycles so as to
effectively shape adversary decision-making and
performance without inducing much suspicion. The focus
here is not on the delivery technology, which we assume can
be achieved, but on the covertness. That is, how can we
deliver interventions that do not induce significant suspicion
and effectively shape operators’ behavior?

Attention is often the first cognitive faculty explored in
the attempt to understand covert interventions. On the one
hand, there are hardly better ways to implement covertness
than designing interventions that are invisible even to the
adversary operator’s attentional system. In this case, the
interventions are completely hidden and therefore can
potentially cause most and long-term damage. On the other
hand, a large body of evidence in the field of psychology
has shown that attention is a fragile function that is subject
to exploitation and manipulation. A recent theoretical
breakthrough of attention research is the notion that there
exist different types of attention, each of which is subserved
by different brain regions and is sensitive to different
variables (Fan, McCandliss, Sommer, Raz, & Posner, 2002;
Posner, 2004). Equipped with the taxonomy, it has been
suggested that each type of attention could be subject to
different exploitations for the purpose of covertness. Studies
have been conducted to systematically examine the effect of
parameter changes on inducing covertness and affecting
performance (Sun, Wang, Zhang, & Smith, 2008; Wang &
Fan, 2007; Wang, Liu, & Fan, 2012).

Recognizing the limitation of attention-based covertness
in real world situations, in this article we propose to a more
general approach to covertness. That is, instead of
delivering completely hidden interventions, it is possible to
deliver interventions that may be noticeable but whose true
meanings are hidden or distorted. Consequentially the
similar effect of covertness can be achieved. This approach,
based on insights from human abductive reasoning rather
than straightforward attentional manipulations, is easier to
implement and potentially more powerful. However, the
success of the approach would require a better
understanding of adversary decision processes and more
sophisticated delivery strategies. The study reported in this
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article is a step towards developing and evaluating
guidelines and schemes for such deliveries.

In the experiment we manipulated the type of
interventions and the delivery themes. In particular, we
distinguished pure vs mixed and clumped vs dispersed
deliveries. We evaluated the effect of these manipulations
on suspicion and performance. Our results support the
general notion of abduction-based covertness. We show that
covertness can be achieved even when interventions are
detected as long as they are not properly explained. Our
results demonstrate that different intervention types have
different effectiveness. And more important, we show that
pure-dispersed delivery scheme is more effective than the
other delivery schemes, suggesting that when delivering
interventions, to achieve effective stealth and disruption, try
to keep the interventions dispersed and do not mix different
types of interventions.

In sum, we demonstrate that abduction is a sound and
insightful framework for understanding human reasoning in
general and human suspicion in particular. Techniques such
as “explaining away” and “data reliability” are powerful in
manipulating suspicion and implementing covertness.
Additional work is clearly needed for a deeper theoretical
understanding of the underlying cognitive process and more
comprehensive guidelines for covert intervention delivery in
real-world situations.
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