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Abstract 

We explore ways of covertly delivering interventions into the 
adversary decision cycles so as to effectively shape adversary 
decision-making and performance without inducing much 
suspicion. Recognizing that completely covert interventions, 
while most effective, are difficult to implement, we focus on a 
more general mode of covertness. Based on insights from 
human abductive reasoning, we propose a delivery scheme 
that contains interventions that may be noticeable but whose 
true meanings are hidden or distorted (e.g., the human 
operators do not easily attribute the interventions to malicious 
attacks). We evaluate, both theoretically and empirically, the 
effectiveness and robustness of this scheme in escaping 
detection and disrupting performance. 

Keywords: Abduction, decision making, cybersecurity, 
intervention. 

General Formatting Instructions 
A cyber attack is more damaging and harmful if it is stealthy 
and escaping detection. One critical challenge in cyberspace 
security is therefore to find ways to effectively detect hidden 
or covert attacks. One approach to meeting the challenge is 
to look at the other side of the coin and study how and why 
some attacks can be delivered covertly that induce no or 
minimal suspicion from the human operator. The results 
from this approach can then be used to design better 
countermeasures and improve security.  

Here we focus on the concept of “covertness” in cyber 
attacks and intend to discover the theoretical essence and 
practical guidelines of implementing “covertness”. 
Presumably, a covert attack would be one that is completely 
hidden and not noticed by the targeted operator at all. In this 
sense, covertness can be implemented as slip of attention. 
Examples include attention blink, change blindness, and 
inhibition of return, to name a few. While a large body of 
evidence has confirmed that attention is a fragile cognitive 
function that can be manipulated and exploited for the 
purpose of implementing covertness, it has also been 
suggested that the attention-based approach is quite limited 
and difficult to apply in the real world situations.  

There is at least another mode of covertness. In this mode, 
signs of the intervention are noticed by the human operator 
(therefore, the intervention is not completely hidden and 
escaping attention), however, the true meaning/significance 
of the intervention is disguised or distorted or hidden in 
such a way that they do not easily result in suspicion of 

outside influence. This mode of covertness suggests new 
ways of implementing covertness. 

Consider the following scenario: It is 12am and that John, 
an analyst, is working on a sensitive document on his 
computer and you have delivered a virus to his computer in 
order to take a peek. Ideally, you would like your operation 
is completely invisible to John, but unfortunately, one 
inevitable side effect of your virus is that John’s computer 
becomes slow, which John eventually notices and starts to 
become suspicious. Then John receives an alerting pop-out 
message informing him that the antivirus software on his 
computer has started scanning as scheduled and that so far 
no virus has been found. John now understands why his 
computer becomes slow, is relieved, and continues to work 
on his document, without realizing your peeking eyes. 

Though hypothetical, this example highlights an 
important aspect of covertness, which has to do with an 
understanding of how a human operator reasons and 
explains unexpected observations and if and when the 
operator becomes suspicious given data. In the example, 
John becomes suspicious when he notices that his computer 
slows down, an often-inevitable indicator of attacks. But his 
suspicion fades away after the pop-out message, which is 
also delivered by the attacker with the goal to provide a 
better explanation for the slow-down so as to reduce John’s 
suspicion. 

Instead of directly exploiting the low-level attentional 
function, this mode of covertness depends upon exploiting a 
higher-level human inference system called abduction. We 
argue that this mode of covertness is more general, more 
realistic and potentially more powerful.  

Abduction-based Covertness 
Abduction was introduced by American philosopher Charles 
S. Peirce (1839-1914) as a form of human inference that is 
different from deduction and induction. According to Peirce, 
in abduction one infers causes from effects or explanations 
from observations (See Fann, 1970 for a general 
introduction to Peirce's theory of abduction). The general 
form of abduction is shown below,  

A fact C is observed, 
H can explain C; 
Hence, H may be true.  

Here is a specific example of abductive inference, in the 
context of the hypothetical scenario above, 
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The computer suddenly slows down, 
A malicious attack explains the slowdown; 
Hence, a malicious attack may be occurring. 

And here is another example, 
The computer suddenly slows down, 
Antivirus scanning explains the slowdown; 
Hence, nothing is wrong and just be patient. 

Charniak and McDermott (1985) characterize abduction 
as modus ponens turned backward (see also Brachman & 
Levesque, 2004). It is clear in abduction the conclusion does 
not necessarily follow the premises – in the above examples 
two different explanations are inferred to explain a same 
observation. However, according to Peirce, abduction is 
important in that it "is the only logical operation which 
introduces any new ideas; for induction does nothing but 
determine a value [to classify], and deduction merely 
evolves the necessary consequences of a pure hypothesis" 
(Peirce, 1931, v. 5, p. 171). Though inconclusive, the 
explanation inferred by abduction "is adopted for some 
reason, good or bad, and that reason, in being regarded as 
such, is regarded as lending the hypothesis some 
plausibility" (Peirce, 1931, v. 2, p. 511).  

Modern researchers often regard abduction as a complex 
process of finding a best explanation for a set of 
observations (Josephson & Josephson, 1994; Paul, 1993; 
Thagard, 1992). Since "explaining" is such an inevitable 
aspect of human everyday activities, abductive reasoning is 
almost ubiquitous, ranging from hearing the thunder ("It's 
going to rain?"), seeing a falling maple leaf ("Autumn has 
come?"), to medical diagnosis (from symptoms to diseases) 
and scientific discovery (from data to knowledge and 
theories). In battlefields, commanders have to infer the 
enemy's motivations based on observations and intelligence 
and then take proper actions. In cyberspace security, 
operators have to infer if an attack has occurred given 
observations. 

How do people do abduction? The Theory of Explanatory 
Coherence (TEC) is an influential theory of human 
abduction (Thagard, 1989, 1992). According to TEC, 
abduction is a parallel constraint satisfaction process in that 
all propositions, including explanations, evidence, and 
explanatory relations, form a network that constantly seeks 
harmony. An explanation should be accepted if it is 
coherent with all other propositions in the network, rejected 
if it is incoherent, and the best explanation for available 
observations is the one that enjoys the most explanatory 
coherence in the network. TEC proposes seven principles 
that establish explanatory relations among propositions and 
regulate the global coherence of an explanatory system: (1) 
symmetry: If P and Q cohere, then Q and P cohere; If P and 
Q incohere, then Q and P incohere. (2) explanation: If 
P1…Pm explain Q, then P1…Pm cohere with each other and 
with Q cohere, and the degree of coherence is inversely 
proportional to the number of propositions P1…Pm. (3) 
Analogy: If P1 explains Q1, P2 explains Q2, P1 is analogous 
to P2, and Q1 is analogous to Q2, then P1 and P2 cohere, and 
Q1 and Q2 cohere. (4) data priority: Observations have a 

degree of acceptability of their own. (5) Contradiction: If P 
contradicts Q, then P and Q incohere. (6) competition: If P 
and Q both explain a proposition, and if P and Q are not 
explanatorily connected, then P and Q incohere. (7) 
acceptability: The acceptability of a proposition P depends 
on its coherence with all the propositions in the system. 

TEC has been computationally implemented in a 
connectionist system called Echo (Thagard, 1992). In Echo, 
propositions (both data and hypotheses) are represented by 
nodes. Coherence relations are represented by excitatory 
links and incoherence relations are represented by inhibitory 
links. Node activation represents the node’s degree of 
coherence with all propositions in the network. The system 
updates itself based on parallel constraint satisfaction 
(Thagard, 1992). During this process, propositions that are 
incoherent die out and propositions that are coherent are 
strengthened. In the end, the most activated propositions 
represent the most plausible and coherent explanations. 
Echo has been extended to UEcho to incorporate more 
sophisticated handling of uncertainty (Wang, Johnson, & 
Zhang, 1998; Wang, Johnson, & Zhang, 2006). 

TEC and UEcho capture several critical constraints in 
abduction, including explanatory breadth (the model prefers 
a hypothesis that explains more); simplicity (the model 
prefers a simpler hypothesis); being explained (the model 
prefers a hypothesis which itself is explained); data 
reliability (the credibility of an observation also depends on 
its coherence in the system); and analogy (analogous 
hypotheses are coherent). More important, however, they 
shed interesting new insights on human suspicion and 
implementing covertness. In this context, suspicion can be 
viewed as the degree of acceptance of an explanation such 
as “a malicious attack is occurring”, and implementing 
covertness is not much more than to make the degree of 
acceptance of this explanation as low as possible.  

Based on this reasoning, we hypothesize that effective 
covert interventions can be delivered in such a way that 
suspicion-bearing explanations (e.g., “a malicious attack is 
occurring”) cannot become the best (winning) explanation 
given data. TEC has already offered several straightforward 
ways to do just this. For example, one way is to “explain 
away”, which says that when delivering an intervention, 
deliver an explanation for that intervention as well so that 
the true meaning of observations can be shielded. This is 
exactly what happens in our previous hypothetical example. 
an attack is delivered, which caused John’s computer to be 
slower. In anticipating this, a secondary message is 
delivered to John to “explain” to him that why his computer 
became slower. This new explanation “explained away” the 
John’s observation and therefore reduced his suspicion – 
that is, the acceptance of “an attack is occurring” became 
low. Another example of abduction-based covertness 
derives directly from the data reliability principle – we can 
discredit those “suspicion-inducing” observations by 
introducing conflicting data (“unreliable data”). “Are you 
sure that your computer becomes slower?” By inducing new 

1121



data to promote John to cast his doubt, the suspicion level of 
“an attack is occurring” is reduced.  

To a certain extent the attention-based covertness (i.e., 
delivering interventions that are invisible to the human 
attention) is a special case of this new abduction-based 
covertness. Since abduction starts with observations (that is, 
the data to be explained, e.g., “the fact C is observed”), 
completely invisible interventions suggest that suspicion-
generating abduction will not even be starting in the first 
place. However, abduction-based covertness is more general 
in the sense that in case some suspicion-inducing 
observations become available, covertness can still be 
achieved if proper measures are taken so that the suspicion-
bearing explanation will not become the most plausible one. 

Stealth and Disruption with IMPs 
As a preliminary step toward evaluating the effectiveness of 
abduction-based covertness, we conducted a study to 
examine how a human operator digests unexpected 
interventions and adjusts his level of suspicion. The study 
utilized a so-called Interface Manipulation Protocol (IMP). 
The toolbox of IMP contained dozens of possible 
intervention types that could be delivered to the adversary 
computers to cause disruption with, for example, keyboard 
and mouse operations. We were interested in finding out the 
optimal chain of IMP delivery scheme (e.g., when to deliver 
what IMP for how long?) that causes maximal disruption 
with minimal suspicion. 

Method 

Participants 
Nine college students and graduate students in the Houston 
medical center area were paid to participate in the 
experiment. 

Procedure 
The experiment was programmed in E-Prime and 

conducted on a computer with a 20 inch LCD monitor. 
Subjects were instructed to type in sequences of random 
numbers as prompted (Figure 1). Table 1 shows three 
independent variables manipulated in the study, including 
the type of IMPs and the type of delivery themes. 

 

 
Figure 1. Subjects were required to reproduce the 
target sequence. Errors were prompted in red color 
and need to be corrected with extra keystrokes. Errors 
could include “IMP errors” (produced deliberately by 
IMPs) and “genuine errors” (subjects’ own typos). In 
this example, the subject had mistyped the target 
character number “9” with number “7”, and 
subsequently typed number “8” before realizing the 
error. 

 
 
At the beginning of each trial, subjects were first 

prompted with a sequence of 20 characters of random 
numbers, shown at the top of the computer screen. Then, 
they were to copy the entire sequence in exactly the same 
order, and their responses were shown one by one for each 
keystroke, in a separate line below the target sequence. If an 
error occurred, either by subjects’ own error (“genuine 
errors”) or by deliberate IMP interventions, the mismatched 
character would be shown in red. Subjects were instructed 
to immediately erase the error by using the backspace key. 
If subjects have skipped the error for several keystrokes, 
they had to erase all subsequently typed characters 
(including the correct ones). That is, correcting an error had 
to be done in a backward sequential order (similar to the 
situation of typing documents without the ability of 
adjusting the cursor position by mouse). 

 
Table 1. Independent variables manipulated 

3 types of IMPs  
• Non-responsive key (IMP1): when a key is pressed, 

nothing shows up, so the subject has to retype to 
correct;  

• repetitive key (IMP2):  when a key is pressed, the 
same character will show up twice. For example, 
typing “3” would result in “33” shown on the screen, 
so that the subject has to erase the extra character; 

• altered key (IMP3): when a key is  pressed, a 
randomly selected different character is shown (e.g., 
typing “3” and “4” shows up), so the subject has to 
erase the wrong character and retype. 

4 types of delivery themes 
• Pure: only one type of IMPs is delivered. 
• Mixed: multiple types of IMPs are delivered. 
• Clumped: IMPs are delivered consecutively. 
• Dispersed: IMPs are delivered sparsely. 

4 experimental conditions (combination of themes) 
• PC: Pure-Clumped. 
• PD: Pure-Dispersed. 
• MC: Mixed-Clumped 
• MD: Mixed-Dispersed 

4 levels of IMP delivery rates  
10%, 20%, 30%, 40% of the target characters are 
affected by IMPs). 

 
Three types of IMP interventions were silently delivered 

by hijacking the subject’s keyboard (see Table 1 and Figure 
2). Each delivery of IMP intervention was designed to affect 
only one keystroke. For instance, by IMP1 (non-responsive 
key, Figure 2A), when the subjects typed any key on the 
keyboard (not necessarily matching the target character), the 
program would silently remove the keystroke such that no 
response character would be shown below the target 
character. Then, the IMP intervention would be temporarily 
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“disarmed” for this particular target character. Only when 
subjects pressed the same key for second time, the character 
would show up in the response line. 

Four delivery themes were designed based on the mixture 
of IMP types and the temporal intervals between each IMP 
intervention (Table 1). In the “Pure” theme, only one IMP 
type was implemented for the target sequence. In the 
“Mixed” theme, all three types of IMPs were implemented. 
In the “Clumped” theme, IMPs were clustered together such 
that one IMP intervention could be immediately followed by 
another. In the “Dispersed” theme, IMPs were evenly 
distributed among the 20 target characters. 

The delivery themes were grouped into 4 experimental 
conditions with each condition containing one particular 
combination of the mixture and temporal distribution (Table 
1). For example, in the “PC” condition, only one type of 
IMP was delivered but in a clustered fashion. We also 
implemented 4 levels of IMP delivery rates, which were 
evenly distributed in each of the delivery themes. 

 

A  

B  

C  
Figure 2. How types of IMPs (A: IMP1; B: IMP2; C: 
IMP3) affect dependent measures. i = position in the 
target sequence; n = number of keystrokes. 
 
After practice trials, each subject completed 4 blocks of 

trials, with each block corresponding to one of the 
experimental conditions. The order of the conditions was 
randomized between subjects. Each block consisted of 20 
trials, and each trial consisted of 2 target sequences. At the 

end of each block, subjects were asked to evaluate the 
“reliability” of the input device on an 1-to-7 scale with “1” 
for the most “unreliable” and “7” for the most “reliable”. 
Subjects took a brief break before moving to the next block 
of trials. 

There were two major dependent measures. Stealth 
(covertness) was measured by the subjective evaluations of 
the reliability of the input device. Higher evaluation scores 
indicated higher tolerance of IMPs and therefore less 
suspicion. Disruption was measured by the number of extra 
keystrokes (“ExtraKS”) required to complete the sequence 
(excluding the extra keystrokes directly caused by IMPs). 
Higher scores of ExtraKS indicated more severe disruptions 
to the performance. The relation between IMPs and 
dependent measures is depicted in Figure 2.   

 

Results 
One main result of the study is shown in Figure 3, which 

depicts the effect of delivery themes on stealth and 
disruption. Statistics show that in terms of stealth the mixed-
clumped delivery (IMPs with mixed types are delivered 
continuously) is the best (mean evaluation scores = 4.36, 
3.94, 3.76, 4.01, with standard errors = 0.22, 0.31, 0.19, 
0.25, for MC, MD, PC and PD, respectively). And in terms 
of disruption the pure-dispersed delivery (IMPs with the 
same type are delivered sparsely) is the best (mean 
disruption scores = 2.06, 3.08, 2.62, 3.50, with standard 
errors = 0.59, 0.58, 0.47, 0.73, for MC, MD, PC and PD, 
respectively). Further analysis shows that if we combine the 
two dependent measures, the pure-dispersed delivery has the 
highest effectiveness score, as shown in Figure 4 (mean 
effectiveness scores = 0.43, 0.51, 0.49, 0.56, with standard 
errors = 0.03, 0.02, 0.03, 0.02, for MC, MD, PC and PD, 
respectively). Overall, it seems that the pure-dispersed 
delivery is the most effective IMP delivery theme if the 
tradeoff between stealth and disruption is considered. 

 

 
Figure 3. The effect of delivery themes (Base: no IMP 
was delivered; MC: IMPs were delivered in mixed-
clumped fashion; MD: mixed-dispersed; PC: pure-
clumped; PD: pure-dispersed).  
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Figure 4. Effectiveness by themes. The effectiveness 
index is computed by adding the normalized stealth and 
disruption measures. 
 
The effect of IMP types is shown in Figure 5. In terms of 

stealth, statistics show that IMP1>IMP2 (mean evaluation 
scores = 4.34, 3.70, with standard errors = 0.21, 0.23, for 
IMP1 and IMP2, respectively, p<0.05) and IMP1>IMP3 
(mean evaluation scores = 4.34, 3.62, with standard errors = 
0.21, 0.31, for IMP1 and IMP3, respectively, p<0.05). In 
terms of disruption, no significant difference is found (mean 
disruption scores = 2.63, 3.21, 3.34, with standard errors = 
0.44, 0.68, 0.71, for IMP1, IMP2 and IMP3, respectively). 

 

 
Figure 5. Effect of IMP types on stealth and disruption. 

 
The effect of IMP delivery rate is shown in Figure 6. It is 

clear that with the rate increase the evaluation scores 
decrease (mean evaluation scores = 6.64, 5.12, 4.28, 3.58, 
3.10, with standard errors = 0.17, 0.15, 0.23, 0.25, 0.28, for 
0, 10%, 20%, 30% and 40%, respectively) and the 
disruption scores increases (mean disruption scores = 0.87, 
1.77, 2.75, 2.97, 3.76, with standard errors = 0.25, 0.37, 
0.50, 0.81, 0.59, for 0, 10%, 20%, 30% and 40%, 
respectively). A nonlinear regression supports the notion 
that rate increases led to more disruption and less stealth.  

 
 

 
Figure 6. Effect of IMP delivery rates on stealth and 
disruption, with polynomial fitting curves. 

Summary and Discussion 
In this article we explore ways of covertly delivering 
interventions into the adversary decision cycles so as to 
effectively shape adversary decision-making and 
performance without inducing much suspicion. The focus 
here is not on the delivery technology, which we assume can 
be achieved, but on the covertness. That is, how can we 
deliver interventions that do not induce significant suspicion 
and effectively shape operators’ behavior?  

Attention is often the first cognitive faculty explored in 
the attempt to understand covert interventions. On the one 
hand, there are hardly better ways to implement covertness 
than designing interventions that are invisible even to the 
adversary operator’s attentional system. In this case, the 
interventions are completely hidden and therefore can 
potentially cause most and long-term damage. On the other 
hand, a large body of evidence in the field of psychology 
has shown that attention is a fragile function that is subject 
to exploitation and manipulation. A recent theoretical 
breakthrough of attention research is the notion that there 
exist different types of attention, each of which is subserved 
by different brain regions and is sensitive to different 
variables (Fan, McCandliss, Sommer, Raz, & Posner, 2002; 
Posner, 2004). Equipped with the taxonomy, it has been 
suggested that each type of attention could be subject to 
different exploitations for the purpose of covertness. Studies 
have been conducted to systematically examine the effect of 
parameter changes on inducing covertness and affecting 
performance (Sun, Wang, Zhang, & Smith, 2008; Wang & 
Fan, 2007; Wang, Liu, & Fan, 2012). 

Recognizing the limitation of attention-based covertness 
in real world situations, in this article we propose to a more 
general approach to covertness. That is, instead of 
delivering completely hidden interventions, it is possible to 
deliver interventions that may be noticeable but whose true 
meanings are hidden or distorted. Consequentially the 
similar effect of covertness can be achieved. This approach, 
based on insights from human abductive reasoning rather 
than straightforward attentional manipulations, is easier to 
implement and potentially more powerful. However, the 
success of the approach would require a better 
understanding of adversary decision processes and more 
sophisticated delivery strategies. The study reported in this 
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article is a step towards developing and evaluating 
guidelines and schemes for such deliveries. 

In the experiment we manipulated the type of 
interventions and the delivery themes. In particular, we 
distinguished pure vs mixed and clumped vs dispersed 
deliveries. We evaluated the effect of these manipulations 
on suspicion and performance. Our results support the 
general notion of abduction-based covertness. We show that 
covertness can be achieved even when interventions are 
detected as long as they are not properly explained. Our 
results demonstrate that different intervention types have 
different effectiveness. And more important, we show that 
pure-dispersed delivery scheme is more effective than the 
other delivery schemes, suggesting that when delivering 
interventions, to achieve effective stealth and disruption, try 
to keep the interventions dispersed and do not mix different 
types of interventions. 

In sum, we demonstrate that abduction is a sound and 
insightful framework for understanding human reasoning in 
general and human suspicion in particular. Techniques such 
as “explaining away” and “data reliability” are powerful in 
manipulating suspicion and implementing covertness. 
Additional work is clearly needed for a deeper theoretical 
understanding of the underlying cognitive process and more 
comprehensive guidelines for covert intervention delivery in 
real-world situations. 
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