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Abstract 
Standard logic and probability theory are both beset with 
fundamental problems if used as adequacy criteria for relating 
logical propositions to learning data. We discuss the problems 
of exception, of sample size, and of inclusion. Bayesian pat-
tern logic (‘Bayesian logic’ or BL for short) has been pro-
posed as a possible rational resolution of these problems. BL 
can also be taken as psychological theory suggesting fre-
quency-based conjunction fallacies (CFs) and a generalization 
of CFs to other logical inclusion fallacies. In this paper, this 
generalization is elaborated using trial-by-trial learning scena-
rios without memory load. In each trial participants have to 
provide a probability judgment. Apart from investigating lo-
gical probability judgments in this trial-by-trial context, it is 
explored whether under no memory load the propositional as-
sessment of previous evidence has an influence on further 
probability judgments. The results generally support BL and 
cannot easily be explained by other theories of CFs.  

Keywords: Conjunction fallacy, probability judgments, trial-
by-trial learning, Bayesian induction, logical predication. 

Standard Logic and Probability Theory  
as Criteria for True Logical Propositions 

The relationship between general logical propositions (or 
sentences) and evidence is fundamental to both epistemo-
logy and psychology. We here investigate general predica-
tion of logical relationships between two dichotomous attri-
butes (or predicates), like “ravens are black and they can 
fly” (with the conjunction ‘and’). What would be an 
adequate justification for such a type of sentences?  

Arising from an old tradition going back to Aristotle, 
modern formal logic uses truth table definitions for all 16 
logical connectives. The truth table definition may be used 
as a deterministic criterion of truth for empirical relation-
ships. With regard to a conjunctive predication, like “ravens 
(R) are black (A) and they can fly (B)” (A ∧ B| R), the whole 
sentence is true (or, more correctly, ‘not false’) as long as 
one has observed only exemplars corresponding to true cells 
of a truth table (for the conjunction this is the ‘a-cell’, ‘A & 
B’). In contrast, the proposition would be falsified, if one 
observed a single case defined to be false (here: b-cell: ‘A & 
¬B’; c-cell: ‘¬A & B’, or d-cell: ‘¬A & ¬B’). 

Problem of Exceptions Exceptions may not prove the 
rule, but in ordinary language exceptions are indeed 
regularly tolerated. This may reflect the deeper epistemolo-
gical point that in the empirical world deterministic 
relationships are rather the exception than the rule. Actually, 
in philosophy of science it has been argued that strict falsifi-
cationism would absurdly imply that all important theories 
would be falsified. Even more so in normal language, as 
evident from our deterministic example, there exist 
exceptions: white (albino) ravens as well as ravens that 

cannot fly. If exceptions are the rule for contingent, 
empirical relationships, it seems reasonable to replace the 
strict deterministic truth criteria of logic by a high-
probability criterion (see Schurz, 2005): P(black & can fly | 
ravens) > Ψ, with Ψ > .5. However, the following two pro-
blems beset a simple extensional probability criterion of 
truth as well as one based on standard formal logics. 

Problem of Sample Size If we had to access the truth of 
“ravens are black and they can fly” without previous know-
ledge about ravens, either one confirmatory raven (A & B 
case) or many cases both equally yielded the same exten-
sional probability of 1 (the number of confirmative cases di-
vided by all cases). In the latter case, however, a higher sub-
jective probability of this sentence seems justified. There-
fore, a kind of second order probability, a probability con-
cerning probabilities, is needed, as introduced in the model. 

Problem of Inclusion The extension (all cases falling 
into a set) of a subset can never be larger than that of a 
superset. Comparing conjunctions and inclusive disjunc-
tions, it follows that P(ravens are black AND they can fly) ≤ 
P(ravens are black OR they can fly or both) [formally: P(A 
∧ B|R) ≤ P(A ∨ B|R)]. If we use extensional probabilities as 
truth criterion, the second sentence can therefore never be 
‘less true’ than the first one. If one assumes at least some 
exceptions, the latter is even ‘truer’ in principle. Going one 
step further, the logical tautology, allowing for all values 
(“Ravens are black or not, and they can fly or not”), is a 
priori the extensionally most probable sentence [P(A ∨ B|R) 
≤ P(A T B|R) or even P(A ∨ B|R) < P(A T B|R)]. Using 
standard (extensional) probabilities as truth criterion, one 
would therefore always have to choose tautologies as the 
most suitable hypothesis, regardless of the evidence and of 
the properties in question. In conclusion, if a truth criterion 
should be informative about the observable world, simple 
extensional probabilities in principle cannot provide a rea-
sonable truth criterion. 

Bayesian Logic 
Bayesian pattern logic (or ‘Bayesian logic’, BL, for short) 
formulates a second order probability that given data may 
have been generated by noisy-logical patterns of proba-
bilities. The model provides a technical, rational solution to 
the three mentioned problems and – in approximation – a 
potential psychological model of human induction of noisy-
logical relationships as well. The model is part of a 
renaissance of Bayesian approaches in cognitive science 
(e.g., Chater, Tenenbaum, Yuille, 2006; Oaksford & Chater, 
2007, Kruschke, 2008). The following sketch is meant to 
clarify the main idea of Bayesian logic (for more detail, see 
von Sydow, 2011). 
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The construction of the model starts with all 16 dyadic 
logical connectives known from standard propositional 
logic. The logical truth tables are taken as explanations that 
are distinguished from the data level. While standard logic 
makes no assumptions about probabilities of true classes in 
a truth table, Step 1 of BL formulates ideal explanations by 
assuming equi-probability of all true classes of a truth table. 
For instance, for the exclusive disjunction (X are either A or 
B, but not both) it is assumed that P(b-cell) = P(c-cell) = ½ 
(for no noise, R = 0). Thereby, 2 by 2 truth tables become 2 
by 2 probability tables. Note, however, that such ideal 
explanations need not generate ideal data patterns. In Step 2 
(cf. Fig. 1) the idea of exceptions is modeled by introducing 
possible levels of noise. For each possible level a uniform 
noise function is added to all four cells of probability table, 
followed by a normalization, so that the resulting sum of all 
four cells of a probability table adds up to unity. This results 
in a field of ideal (explanatory) noisy-logical patterns of 
probabilities, each with an additional second order pro-
bability: P(A connective B, noise level R | data)) =: P(A o B, 
R| D). Here flat priors for the connectives and noise levels 
are used for each new situation. 

 

Figure 1: Sketch of the model of only five logical 
propositions and three noise levels (cf. text for details). 

 
For the novel noisy-logical representation one can calculate 
the posterior probabilities for each probability table by 
combining some standard statistics. Given observed data 
about the co-occurrence of A and B (a 2 by 2 contingency 
matrix), one can calculate (Step 3) the likelihood of the data 
given a probability table, P(D | AoB, R), by using the 
multinomial distribution, which here determines for each 
table of four probabilities how likely it produces the 
observed four frequencies. In Step 4, Bayes’ theorem is used 
to transform the likelihood P(D| AoB, R) into a posterior 
P(A o B, R | D). In a final step, one sums up the probabilities 
of a connector over all noise levels (here we modeled 11 
equidistant levels from R = 0 to 1). We obtain the requested 
posterior pattern probability, PP(AoB | D), clearly differing 
from the analogous extensional probability, PE(AoB|D) 
(frequency of positive cases, divided by all cases). 

BL and the Conjunctions Fallacy Debate 
One of the most heated and philosophically interesting 
psychological debates concerns the apparent inability of 
people to understand that conjunctions (for instance, “Linda 
is a Bank teller and a feminist”) can never be (extensionally) 
more probable than their conjuncts (e.g., “Linda is a bank 
teller”)—even for apparent feminists. This phenomenon has 
been called “conjunction fallacy” and first has been ex-
plained by the representativeness heuristic (Kahneman & 
Tversky, 1982). This heuristic, however, has been criticized 
as being formulated too imprecise (Gigerenzer, 1996; cf. 
Nilsson, Juslin, & Olsson, 2008).  

There have been several other classes of explanations of 
CFs. One focusses on possible misunderstandings. “A and 
B” may actually be understood as “A or B” or to “if A then 
B” (Mellers, Hertwig, & Kahneman, 2001; Hertwig, Benz & 
Krauss, 2008). Moreover, “A” may be interpreted as “A but 
not B” instead of “A, whether B or not B” (Kahneman & 
Tversky, 1983; Hilton, 1995; cf. Sides, Osherson, Bonini, & 
Viale, 2002; Wedell & Moro, 2008). A second class of 
explanations considers different ways in which probabilities 
are introduced and how the probability question is posed. It 
has been shown that frequency presentations (Fiedler, 1988; 
Gigerenzer, 1996), rating formats (Sloman, Over, Slovak, & 
Stibel, 2003), and clear set inclusions (Johnson-Laird, Le-
grenzi, Girotto, & Legrenzi, 1999; Sloman et al., 2003) 
often substantially reduced the portion of CFs. Although 
these factors often do play a role, BL under certain 
conditions (if one is concerned with alternative hypotheses 
about whole situations) has predicted CFs even when all 
these factors apply simultaneously (von Sydow, 2011a, b). 
A third class of explanations specifies quantitative con-
ditions of CFs. Most prominently, it has been suggested that 
the requested probability P(A∧B | D) is replaced by the 
inverse probability P(D | A∧B); cf. Wolford, 1991; Fisk & 
Slattery, 2005), or by a measure of support, like  P(A∧B | D) 
- P(A∧B) (support theory, cf. Sides, et al., 2002; Lagnado & 
Shanks, 2002; cf. Tentori, Bonini, & Osherson, 2004; Crupi, 
Fitelson, & Tentori, 2008), or several other measures, like 
signed summation, averaging, quantum logic, or rescaling 
(see Wedell & Moro, 2008; von Sydow, 2009).  

BL provides a rational quantitative account of frequency-
based a particular class of conjunction fallacies and made 
several novel predictions that cannot be explained by the 
previous models (von Sydow, 2011). One important aspect 
has been the generalization of the idea of CFs into a system 
of logical inclusion ‘fallacies’ (von Sydow, 2009).  

Experiment: Trial-By-Trial Induction  
of Logical Relationships 

The primary goal of the reported experiment is to test as-
pects of the postulated system of frequency-based logical in-
clusion ‘fallacies’ in a trial-by-trial way. Whereas con-
firmatory results for this system have already been achieved, 
even using trial-by-trial presentation of items (von Sydow, 
2011b; cf. Lagnado et al., 2001), we here additionally 
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investigate trial-by-trial assessment of the 
dependent variable: the selection of the 
most probable hypotheses after each new 
observation. To the best knowledge of the 
authors, this has never been investigated 
before in the CF debate.  

A supplementary goal is to assess whe-
ther putting evidence into language in the 
course of trials may have an additional top-
down effect on the successive evaluation of 
evidence. Here the ways how one obtains a 
final (fixed) pattern of evidence are varied, 
so that this may affect the predicted propo-
sitional representations. In one condition 
the finally predicted hypothesis is expected 
to appear most probable all along (homoge-
neous condition) and in another condition 
different hypotheses are predicted to appear 
more probable throughout the first learning 
trials (heterogeneous condition). In its 
current formulation BL, as a model of data-
based induction, would not be able to 
account for such top-down effects. This is 
the case although BL goes beyond naïve 
probability, and leaves room also for 
subjective priors. As we think there are top-
down effects for instance of categorization 
(Hagmayer, Meder, von Sydow, & Wald-
mann, 2011) or causal coherence (von 
Sydow, Hagmayer, Meder, & Waldmann, 
2010), we think there may well be top-
down-effects of mere verbalization. In this 
experiment, however, participants are pro-
vided with summary statistics, excluding memory effects. In 
such settings, also intended as base-line for future ex-
periments, no such additional top-down effects are expected.  

 
Figure 2: Design (see main text for details). 

 
The design involves three phases. All phases involve a 

selection of the most probable logical hypothesis given 
some evidence. In Phase 1, participants in all conditions are  
randomly presented with six patterns of evidence, each 
referring to a different situation (Fig. 2, Phase 1). First, this 
phase should replicate previous generalizations of BL (von 
Sydow, 2009, 2011b). Secondly, it investigates whether par-
ticipants grasp the intended meaning of logical terms, and, 

thirdly, it excludes a deterministic understanding of the 
rules in the next phases by inducing a non-deterministic 
noise-prior (especially for few observed cases, priors may 
well affect the results).   

Phase 2 and 3 are both trial-by-trial judgment tasks. BL 
predicts that various hypotheses should be selected to be 
most probable, each from an extensional perspective invol-
ving several logical inclusion fallacies. The sequences 
should end up either in an AND hypothesis (C1, C2) or an 
EITHER-OR hypothesis (C3, C4). Both hypothesis are 
extensionally less probable than the OR hypothesis or the 
tautology. Additionally, the order in which data is presented 
differs, investigating whether verbalization throughout 
learning affects the verbalization of identical final patterns 
(the probability judgments). As sketched, either a 
homogeneous condition (C1, C3) or a heterogeneous con-
dition (C2, C4) is used. Finally, Phase 2 and 3 are identical, 
in order to assess whether the previous learning phase had 
an effect (as, e.g., suggested by support theory) and to find 
out whether participants increasingly make either 
extensional or BL selections. 

Material 
130 participants of the University of Göttingen participated 
in the experiment. The participants were told about newly 

Figure 3: Format of the frequency presentation in Phase 1 (patterns) 
and in Phase 2 and 3 (trial-by-trial) and formulation of hypotheses. 
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discovered species of apes on a 
lonely island. They were in the 
role of ethologist concerned with 
statements the animals of a species 
are curious or not (here A) and 
whether they are aggressive or not 
(here B), as well as judging the 
relation of these properties.  

In Phase 1 participants were 
concerned with six species of apes 
in randomized order. For each spe-
cies they were shown a photo of an 
ape (e.g., “P. calvus”) with a text 
“The animals of this species 
are…”, leading to the main in-
structions (Fig. 3) and a contingency table summing up the 
observed features combinations (cf. Fig. 2, 3). For each 
species one had to select the most probable logical hypo-
thesis and one had to provide a confidence rating (Fig. 3).   

Phase 2 and 3 were concerned with trial-by-trial learning. 
Participants were randomly assigned to the eight conditions. 
Single events were symbolized by a circle flying to a place 
in the contingency table (Fig. 3, Phase 2/3, left table), 

followed by an update of a summary table (right table).  Of 
the 18 trials the first nine are presented in Figure 5 and 6.  

In all probability judgment tasks the formulations of the 
hypotheses were carefully chosen to rule out the plausible 
misunderstandings discussed in the CF debate. For instance, 
the conjunctions were formulated as “A and at the same time 
B” and the single conjuncts (the affirmations or negations) 
as “A (and are B or not B)” (Fig. 3).  

Figure 4: Six patterns of Phase 1 (first row), BL’s pattern probabilities 
(second row) and the frequency of hypotheses (cf. Fig. 3) selected (third row). 

Figure 5: Patterns, predictions and results for Condition 1 and 2 (Phase 2 and 3). Within each condition, Row 1 shows 
the first nine shown patterns (Fig. 3, Phase 2 and 3, right). Row 2 depicts BL’s pattern probabilities for 15 hypotheses  

(cf. Fig. 3). Row 3 and 4 show the portion of hypotheses actually selected to be most probable (in Phase 2 and 3). 

1093



Results 
Figure 4 shows the presented data patterns, the predicted 
pattern probabilities (BL), and the empirically found 
frequency of selected logical hypotheses for the six shown 
species of apes. Participants for each pattern actually 
selected the hypothesis that had the highest pattern 
probability, PP(A o B); from left to right: H1 (A and B); H5 
(A); H8 (not-B); H9 (either A or B), H11 (A or B or both), 
H15 (everything is possible). If one extended other theories 
so that they may predict these connectives, one would 
presumably not to be able to explain the data (cf. von 
Sydow, 2010). For instance, the interesting support theory 
would make predictions for Pattern 6 [8, 10, 9, 9] based on 
the five other patterns (resulting in sum in [30, 29, 25, 10]). 
The highest support is suggested for the d-cell (H4) which is 
actually found only rarely. The strongest deviation from BL 
is observed in Pattern 5 were participants did not only select 
H11 but also H1. But this needs not to refer to an alternative 
strategy, but perhaps – and without elaborating this here – 
with a noise prior excluding deterministic patterns and cau-
sing the actual outcome (cf. von Sydow, 2011b).  

With regard to Phase 2 and 3, Figures 5 and 6 show for all 
conditions the presented data sequence, the resulting BL 
probabilities, and the actually observed frequencies of the 
selections of the most probable hypotheses. Even for the 
low trial numbers 1 to 9, reported here, the main selections 
are generally surprisingly in line with the pattern probabi-
lities (presented without any fitting).  

There were only small deviations. For instance, in 
Condition 1 only in Pattern 4 the predicted mode of answers 
(H5: A) differed from the observed one (H1: A∧B). 
However H1 has actually the second highest pattern 
probability and there may again have been a plausible 
influence of noise priors resulting from Phase 1 (lowering 
P(R = 0)), which would actually increase PP(H1). This 
would likewise be coherent with Pattern 6 [4 1 0 0], were a 
surprisingly clear majority choose the AND-hypothesis (H1) 
and the extensional answer would be the A-hypothesis (H5).  

The patterns that were kept identical in the corresponding 
homogeneous and heterogeneous conditions (the bold 
printed Patterns number 4, 6, 8, and 9) mostly corroborated 
the same results, suggesting that if memory effects are ruled 
out (as done here), no or only small effects of homogeneous 

Figure 6: Patterns, predictions and results for Condition 2 and 3 (cf. Fig. 4 and main text for details). 
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versus heterogeneous conditions are obtained. Furthermore, 
as predicted based on BL, the results were more pronounced 
for the conjunction conditions than for the exclusive dis-
junctions. Finally, the outcomes of Phase 2 and 3 did not 
differ much (or the results for BL even improve over time).  

The confidence ratings varied less clearly than expected. 
One reason may be that this measure reflects not only, for 
instance, PH(H most probable)/PP(H second most probable), 
but a general belief in a system of answers corresponding to 
BL or extensional probabilities. Furthermore, the ratings, 
averaged over all participants, may not be diagnostic, since 
they include ratings of unpredicted hypotheses (particularly 
relevant in C3 and C4). However, at least in the second 
trial-by-trial phase (Phase 3) participant’s confidence ratings 
roughly corresponded to predictions derivable from BL: In 
C1 confidence increases from Pattern 1 to 3. In Pattern 9 the 
confidence is higher than in all previous patterns (despite 
more outliers). For Condition 3 and 4 the ratings show less 
differences, as is understandable based on pattern probabili-
ties. Nonetheless, if one additionally takes a look at the next 
repeated nine trials, not reported here, Trial 18, for instance, 
confirmed a high confidence, leading to a median of 80 in 
C3 and 70 in C4. Hence, also the confidence ratings, at least 
in Phase 3, strongly reflect changes coherent with BL. 

Discussion 
The results show correspondence with the predictions of BL 
also in trial-by-trial probability judgment tasks. Although 
other models of the CF have not been extended to all other 
connectives, it seems implausible that they could account 
for the findings (cf. von Sydow, 2009, 2011a). Without 
being able to discuss this here, some deviations (but clearly 
not all findings) may be coherent with a model that I have 
previously called pattern support, combining the pattern 
idea of BL with the idea of support. Overall, however, the 
results provide additional evidence for the predicted class of 
frequency-based CFs and for BL as a (computational level) 
psychological model for noisy-logical relationships.    

Furthermore, as expected the results show no (or only a 
small) top-down effects of verbalization of hypotheses 
about the same situation (homogeneous vs. heterogeneous 
conditions). In the future it will be interesting to investigate 
identical settings without memory hooks (without summary 
statistics in Phase 2 and 3). Then verbalization may well 
effect represented exemplars (cf. von Sydow, 2011b). A 
further line of future research should be to investigate the 
role of noise priors on the selection of hypotheses. 
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