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Abstract

Standard logic and probability theory are both beset with
fundamental problems if used as adequacy criteria for relating
logical propositions to learning data. We discuss the problems
of exception, of sample size, and of inclusion. Bayesian pat-
tern logic (‘Bayesian logic’ or BL for short) has been pro-
posed as a possible rational resolution of these problems. BL
can also be taken as psychological theory suggesting fre-
quency-based conjunction fallacies (CFs) and a generalization
of CFs to other logical inclusion fallacies. In this paper, this
generalization is elaborated using trial-by-trial learning scena-
rios without memory load. In each trial participants have to
provide a probability judgment. Apart from investigating lo-
gical probability judgments in this trial-by-trial context, it is
explored whether under no memory load the propositional as-
sessment of previous evidence has an influence on further
probability judgments. The results generally support BL and
cannot easily be explained by other theories of CFs.

Keywords: Conjunction fallacy, probability judgments, trial-
by-trial learning, Bayesian induction, logical predication.

Standard Logic and Probability Theory
as Criteria for True Logical Propositions

The relationship between general logical propositions (or
sentences) and evidence is fundamental to both epistemo-
logy and psychology. We here investigate general predica-
tion of logical relationships between two dichotomous attri-
butes (or predicates), like “ravens are black and they can
fly” (with the conjunction ‘and’). What would be an
adequate justification for such a type of sentences?

Arising from an old tradition going back to Aristotle,
modern formal logic uses truth table definitions for all 16
logical connectives. The truth table definition may be used
as a deterministic criterion of truth for empirical relation-
ships. With regard to a conjunctive predication, like “ravens
(R) are black (A) and they can fly (B)” (A A B| R), the whole
sentence is true (or, more correctly, ‘not false’) as long as
one has observed only exemplars corresponding to true cells
of a truth table (for the conjunction this is the ‘a-cell’, ‘A &
B’). In contrast, the proposition would be falsified, if one
observed a single case defined to be false (here: b-cell: ‘A &
—B’; c-cell: *—=A & B’, or d-cell: ‘—A & —B’).

Problem of Exceptions Exceptions may not prove the
rule, but in ordinary language exceptions are indeed
regularly tolerated. This may reflect the deeper epistemolo-
gical point that in the empirical world deterministic
relationships are rather the exception than the rule. Actually,
in philosophy of science it has been argued that strict falsifi-
cationism would absurdly imply that all important theories
would be falsified. Even more so in normal language, as
evident from our deterministic example, there exist
exceptions: white (albino) ravens as well as ravens that

cannot fly. If exceptions are the rule for contingent,
empirical relationships, it seems reasonable to replace the
strict deterministic truth criteria of logic by a high-
probability criterion (see Schurz, 2005): P(black & can fly |
ravens) > ¥, with W > 5. However, the following two pro-
blems beset a simple extensional probability criterion of
truth as well as one based on standard formal logics.

Problem of Sample Size If we had to access the truth of
“ravens are black and they can fly” without previous know-
ledge about ravens, either one confirmatory raven (A & B
case) or many cases both equally yielded the same exten-
sional probability of 1 (the number of confirmative cases di-
vided by all cases). In the latter case, however, a higher sub-
jective probability of this sentence seems justified. There-
fore, a kind of second order probability, a probability con-
cerning probabilities, is needed, as introduced in the model.

Problem of Inclusion The extension (all cases falling
into a set) of a subset can never be larger than that of a
superset. Comparing conjunctions and inclusive disjunc-
tions, it follows that P(ravens are black AND they can fly) <
P(ravens are black OR they can fly or both) [formally: P(A
A BIR) < P(A v BJR)]. If we use extensional probabilities as
truth criterion, the second sentence can therefore never be
‘less true’ than the first one. If one assumes at least some
exceptions, the latter is even ‘truer’ in principle. Going one
step further, the logical tautology, allowing for all values
(“Ravens are black or not, and they can fly or not”), is a
priori the extensionally most probable sentence [P(A v B|R)
< P(A T B|R) or even P(A v BIR) < P(A T BJR)]. Using
standard (extensional) probabilities as truth criterion, one
would therefore always have to choose tautologies as the
most suitable hypothesis, regardless of the evidence and of
the properties in question. In conclusion, if a truth criterion
should be informative about the observable world, simple
extensional probabilities in principle cannot provide a rea-
sonable truth criterion.

Bayesian Logic

Bayesian pattern logic (or ‘Bayesian logic’, BL, for short)
formulates a second order probability that given data may
have been generated by noisy-logical patterns of proba-
bilities. The model provides a technical, rational solution to
the three mentioned problems and —in approximation — a
potential psychological model of human induction of noisy-
logical relationships as well. The model is part of a
renaissance of Bayesian approaches in cognitive science
(e.g., Chater, Tenenbaum, Yuille, 2006; Oaksford & Chater,
2007, Kruschke, 2008). The following sketch is meant to
clarify the main idea of Bayesian logic (for more detail, see
von Sydow, 2011).
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The construction of the model starts with all 16 dyadic
logical connectives known from standard propositional
logic. The logical truth tables are taken as explanations that
are distinguished from the data level. While standard logic
makes no assumptions about probabilities of true classes in
a truth table, Step 1 of BL formulates ideal explanations by
assuming equi-probability of all true classes of a truth table.
For instance, for the exclusive disjunction (X are either A or
B, but not both) it is assumed that P(b-cell) = P(c-cell) = %
(for no noise, R = 0). Thereby, 2 by 2 truth tables become 2
by 2 probability tables. Note, however, that such ideal
explanations need not generate ideal data patterns. In Step 2
(cf. Fig. 1) the idea of exceptions is modeled by introducing
possible levels of noise. For each possible level a uniform
noise function is added to all four cells of probability table,
followed by a normalization, so that the resulting sum of all
four cells of a probability table adds up to unity. This results
in a field of ideal (explanatory) noisy-logical patterns of
probabilities, each with an additional second order pro-
bability: P(A connective B, noise level R | data)) =: P(A o B,
R| D). Here flat priors for the connectives and noise levels
are used for each new situation.
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Figure 1: Sketch of the model of only five logical
propositions and three noise levels (cf. text for details).

For the novel noisy-logical representation one can calculate
the posterior probabilities for each probability table by
combining some standard statistics. Given observed data
about the co-occurrence of A and B (a 2 by 2 contingency
matrix), one can calculate (Step 3) the likelihood of the data
given a probability table, P(D | AoB, R), by using the
multinomial distribution, which here determines for each
table of four probabilities how likely it produces the
observed four frequencies. In Step 4, Bayes’ theorem is used
to transform the likelihood P(D| AoB, R) into a posterior
P(A o B, R| D). In a final step, one sums up the probabilities
of a connector over all noise levels (here we modeled 11
equidistant levels from R = 0 to 1). We obtain the requested
posterior pattern probability, Ps(AoB | D), clearly differing
from the analogous extensional probability, Pg(AoB|D)
(frequency of positive cases, divided by all cases).

BL and the Conjunctions Fallacy Debate

One of the most heated and philosophically interesting
psychological debates concerns the apparent inability of
people to understand that conjunctions (for instance, “Linda
is a Bank teller and a feminist™) can never be (extensionally)
more probable than their conjuncts (e.g., “Linda is a bank
teller”)—even for apparent feminists. This phenomenon has
been called “conjunction fallacy” and first has been ex-
plained by the representativeness heuristic (Kahneman &
Tversky, 1982). This heuristic, however, has been criticized
as being formulated too imprecise (Gigerenzer, 1996; cf.
Nilsson, Juslin, & Olsson, 2008).

There have been several other classes of explanations of
CFs. One focusses on possible misunderstandings. “A and
B” may actually be understood as “A or B” or to “if A then
B” (Mellers, Hertwig, & Kahneman, 2001; Hertwig, Benz &
Krauss, 2008). Moreover, “A” may be interpreted as “A but
not B” instead of “A, whether B or not B” (Kahneman &
Tversky, 1983; Hilton, 1995; cf. Sides, Osherson, Bonini, &
Viale, 2002; Wedell & Moro, 2008). A second class of
explanations considers different ways in which probabilities
are introduced and how the probability question is posed. It
has been shown that frequency presentations (Fiedler, 1988;
Gigerenzer, 1996), rating formats (Sloman, Over, Slovak, &
Stibel, 2003), and clear set inclusions (Johnson-Laird, Le-
grenzi, Girotto, & Legrenzi, 1999; Sloman et al., 2003)
often substantially reduced the portion of CFs. Although
these factors often do play a role, BL under certain
conditions (if one is concerned with alternative hypotheses
about whole situations) has predicted CFs even when all
these factors apply simultaneously (von Sydow, 2011a, b).
A third class of explanations specifies quantitative con-
ditions of CFs. Most prominently, it has been suggested that
the requested probability P(AAB |D) is replaced by the
inverse probability P(D | AAB); cf. Wolford, 1991; Fisk &
Slattery, 2005), or by a measure of support, like P(AAB | D)
- P(AAB) (support theory, cf. Sides, et al., 2002; Lagnado &
Shanks, 2002; cf. Tentori, Bonini, & Osherson, 2004; Crupi,
Fitelson, & Tentori, 2008), or several other measures, like
signed summation, averaging, quantum logic, or rescaling
(see Wedell & Moro, 2008; von Sydow, 2009).

BL provides a rational quantitative account of frequency-
based a particular class of conjunction fallacies and made
several novel predictions that cannot be explained by the
previous models (von Sydow, 2011). One important aspect
has been the generalization of the idea of CFs into a system
of logical inclusion “fallacies’ (von Sydow, 2009).

Experiment: Trial-By-Trial Induction
of Logical Relationships

The primary goal of the reported experiment is to test as-
pects of the postulated system of frequency-based logical in-
clusion ‘fallacies’ in a trial-by-trial way. Whereas con-
firmatory results for this system have already been achieved,
even using trial-by-trial presentation of items (von Sydow,
2011b; cf. Lagnado et al., 2001), we here additionally
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investigate trial-by-trial assessment of the
dependent variable: the selection of the

_ aggressive not aggressive

most probable hypotheses after each new curious & aggressive curious & not aggressive
observation. To the best knowledge of the | “ : ..: : :..... ®e
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the finally predicted hypothesis is expected
to appear most probable all along (homoge-
neous condition) and in another condition
different hypotheses are predicted to appear
more probable throughout the first learning
trials (heterogeneous condition). In its
current formulation BL, as a model of data-
based induction, would not be able to
account for such top-down effects. This is
the case although BL goes beyond naive
probability, and leaves room also for
subjective priors. As we think there are top-
down effects for instance of categorization
(Hagmayer, Meder, von Sydow, & Wald-
mann, 2011) or causal coherence (von 0
Sydow, Hagmayer, Meder, & Waldmann,
2010), we think there may well be top-
down-effects of mere verbalization. In this
experiment, however, participants are pro-

00NN

ja Nie Bie Bie B Nie e e Bie Be e B He Bie

b) How confident are you regarding the choice of the proposition?

a) What proposition about this monkey species appears most probably valid to you? Answer intuitively.
© 1. ..curiousand at the same time aggressive

... curious and at the same time not agressive

... not curious and at the same time agressive

... not curious and at the same time not agressive

... CUriOUS (and are agressiveor not agressive)

... NOt CUTiOUS (and are agressive or not agressive)

... ABresSIVe (and are curious or not curious)

... NOt @gressive (andare curious or not curious)

... either agressive (andnot curious) OF CUTIOUS (and not agressive)

10. ... either both (curious and atthe same time agressive] OF neither of both (not curious and not agressive).

11. ... cUrious (andnot agressive), AEreSSIVE (and not curious), OF also both at the same time (curious and not agressive)

12. .. curious & agressive, curious & not agressive, or also not agressive & not curious.

13. ... curious & agressive, agressive & not curious, or also not agressive & not curious.

14. ... curious & not agressive, agressive & not curious, or a. not agressive & not curious.

15. ... curious and agressive, curious and not agressive, not curious and agressive,
or also not curious and not agressive (alicombinations)

Continue

el ol sl ol sl il ol ol ol ol sl ol ol ol ol sl ol ol o i el o
10 20 30 40 50 60 70 80 90 100
Highly unconfident

Please read all hypotheses carefully

Relatively confident Very confident and then answer intuitively.

Figure 3: Format of the frequency presentation in Phase 1 (patterns)
and in Phase 2 and 3 (trial-bv-trial) and formulation of hvpotheses.

vided with summary statistics, excluding memory effects. In
such settings, also intended as base-line for future ex-
periments, no such additional top-down effects are expected.

Phase 1: Phase 2: First
Pattern phase trial-by-trial phase

Phase 3: Second
trial-by-trial Phase

G1 L For all groups G1 0 G C1: AND, homogeneous  (3:»<, homogeneous |
G2 [ pattern1  Pattemn2 C1: AND, homogeneous C4: »<, heterogeneous |
G3 I: B2 5 6 C2: AND, heterogeneous  C3: »<, homogeneous I
2 3 2 2
: 1 ><
G4 [ patterns  pettema C2: AND, heterogeneous  C4: ><, heterogeneous |
G5 E 02 4 1 C3:»<, homogeneous C1: AND, homogeneous |
0 1 00

G6 ]

G7 [ 8 10 2 2 C4: »<, heterogeneous C1: AND, homogeneous |

Ga[l

C3: »<, homogeneous C2: AND, hetemgeneousl

C4: »<, heterogeneous C2: AND, heterogeneousl

Figure 2: Design (see main text for details).

The design involves three phases. All phases involve a
selection of the most probable logical hypothesis given
some evidence. In Phase 1, participants in all conditions are
randomly presented with six patterns of evidence, each
referring to a different situation (Fig. 2, Phase 1). First, this
phase should replicate previous generalizations of BL (von
Sydow, 2009, 2011b). Secondly, it investigates whether par-
ticipants grasp the intended meaning of logical terms, and,

thirdly, it excludes a deterministic understanding of the
rules in the next phases by inducing a non-deterministic
noise-prior (especially for few observed cases, priors may
well affect the results).

Phase 2 and 3 are both trial-by-trial judgment tasks. BL
predicts that various hypotheses should be selected to be
most probable, each from an extensional perspective invol-
ving several logical inclusion fallacies. The sequences
should end up either in an AND hypothesis (C1, C2) or an
EITHER-OR hypothesis (C3, C4). Both hypothesis are
extensionally less probable than the OR hypothesis or the
tautology. Additionally, the order in which data is presented
differs, investigating whether verbalization throughout
learning affects the verbalization of identical final patterns
(the probability judgments). As sketched, either a
homogeneous condition (C1, C3) or a heterogeneous con-
dition (C2, C4) is used. Finally, Phase 2 and 3 are identical,
in order to assess whether the previous learning phase had
an effect (as, e.g., suggested by support theory) and to find
out whether participants increasingly make either
extensional or BL selections.

Material

130 participants of the University of Géttingen participated
in the experiment. The participants were told about newly
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discovered species of apes on a
lonely island. They were in the
role of ethologist concerned with
statements the animals of a species
are curious or not (here A) and
whether they are aggressive or not
(here B), as well as judging the

relation of these properties.

In Phase 1 participants were
concerned with six species of apes
in randomized order. For each spe-
cies they were shown a photo of an
ape (e.g., “P. calvus”) with a text
“The animals of this species
, leading to the main in-

are...
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structions (Fig. 3) and a contingency table summing up the
observed features combinations (cf. Fig. 2, 3). For each
species one had to select the most probable logical hypo-
thesis and one had to provide a confidence rating (Fig. 3).
Phase 2 and 3 were concerned with trial-by-trial learning.
Participants were randomly assigned to the eight conditions.
Single events were symbolized by a circle flying to a place
in the contingency table (Fig. 3, Phase 2/3, left table),
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Figure 4: Six patterns of Phase 1 (first row), BL’s pattern probabilities
(second row) and the frequency of hypotheses (cf. Fig. 3) selected (third row).

followed by an update of a summary table (right table). Of
the 18 trials the first nine are presented in Figure 5 and 6.

In all probability judgment tasks the formulations of the
hypotheses were carefully chosen to rule out the plausible
misunderstandings discussed in the CF debate. For instance,
the conjunctions were formulated as “A and at the same time
B” and the single conjuncts (the affirmations or negations)
as “A (and are B or not B)” (Fig. 3).
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Figure 6: Patterns, predictions and results for

Results

Figure 4 shows the presented data patterns, the predicted
pattern probabilities (BL), and the empirically found
frequency of selected logical hypotheses for the six shown
species of apes. Participants for each pattern actually
selected the hypothesis that had the highest pattern
probability, Pp(A 0 B); from left to right: H1 (A and B); H5
(A); H8 (not-B); HI (either A or B), H11 (A or B or both),
H15 (everything is possible). If one extended other theories
so that they may predict these connectives, one would
presumably not to be able to explain the data (cf. von
Sydow, 2010). For instance, the interesting support theory
would make predictions for Pattern 6 [8, 10, 9, 9] based on
the five other patterns (resulting in sum in [30, 29, 25, 10]).
The highest support is suggested for the d-cell (H4) which is
actually found only rarely. The strongest deviation from BL
is observed in Pattern 5 were participants did not only select
H11 but also H1. But this needs not to refer to an alternative
strategy, but perhaps — and without elaborating this here —
with a noise prior excluding deterministic patterns and cau-
sing the actual outcome (cf. von Sydow, 2011b).

Condition 2 and 3 (cf. Fig. 4 and main text for details).

With regard to Phase 2 and 3, Figures 5 and 6 show for all
conditions the presented data sequence, the resulting BL
probabilities, and the actually observed frequencies of the
selections of the most probable hypotheses. Even for the
low trial numbers 1 to 9, reported here, the main selections
are generally surprisingly in line with the pattern probabi-
lities (presented without any fitting).

There were only small deviations. For instance, in
Condition 1 only in Pattern 4 the predicted mode of answers
(H5: A) differed from the observed one (H1l: AAB).
However H1 has actually the second highest pattern
probability and there may again have been a plausible
influence of noise priors resulting from Phase 1 (lowering
P(R = 0)), which would actually increase Pp(H1). This
would likewise be coherent with Pattern 6 [4 1 0 0], were a
surprisingly clear majority choose the AND-hypothesis (H1)
and the extensional answer would be the A-hypothesis (H5).

The patterns that were kept identical in the corresponding
homogeneous and heterogeneous conditions (the bold
printed Patterns number 4, 6, 8, and 9) mostly corroborated
the same results, suggesting that if memory effects are ruled
out (as done here), no or only small effects of homogeneous
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versus heterogeneous conditions are obtained. Furthermore,
as predicted based on BL, the results were more pronounced
for the conjunction conditions than for the exclusive dis-
junctions. Finally, the outcomes of Phase 2 and 3 did not
differ much (or the results for BL even improve over time).

The confidence ratings varied less clearly than expected.
One reason may be that this measure reflects not only, for
instance, Py(H most probable)/Pp(H second most probable),
but a general belief in a system of answers corresponding to
BL or extensional probabilities. Furthermore, the ratings,
averaged over all participants, may not be diagnostic, since
they include ratings of unpredicted hypotheses (particularly
relevant in C3 and C4). However, at least in the second
trial-by-trial phase (Phase 3) participant’s confidence ratings
roughly corresponded to predictions derivable from BL: In
C1 confidence increases from Pattern 1 to 3. In Pattern 9 the
confidence is higher than in all previous patterns (despite
more outliers). For Condition 3 and 4 the ratings show less
differences, as is understandable based on pattern probabili-
ties. Nonetheless, if one additionally takes a look at the next
repeated nine trials, not reported here, Trial 18, for instance,
confirmed a high confidence, leading to a median of 80 in
C3 and 70 in C4. Hence, also the confidence ratings, at least
in Phase 3, strongly reflect changes coherent with BL.

Discussion

The results show correspondence with the predictions of BL
also in trial-by-trial probability judgment tasks. Although
other models of the CF have not been extended to all other
connectives, it seems implausible that they could account
for the findings (cf. von Sydow, 2009, 2011a). Without
being able to discuss this here, some deviations (but clearly
not all findings) may be coherent with a model that | have
previously called pattern support, combining the pattern
idea of BL with the idea of support. Overall, however, the
results provide additional evidence for the predicted class of
frequency-based CFs and for BL as a (computational level)
psychological model for noisy-logical relationships.

Furthermore, as expected the results show no (or only a
small) top-down effects of verbalization of hypotheses
about the same situation (homogeneous vs. heterogeneous
conditions). In the future it will be interesting to investigate
identical settings without memory hooks (without summary
statistics in Phase 2 and 3). Then verbalization may well
effect represented exemplars (cf. von Sydow, 2011b). A
further line of future research should be to investigate the
role of noise priors on the selection of hypotheses.
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