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Abstract

Any successful attempt at explaining and replicating the com-
plexity and generality of human and animal learning will re-
quire the integration of a variety of learning mechanisms. Here
we introduce a computational model which integrates asso-
ciative learning and reinforcement learning. We contrast the
integrated model with associative learning and reinforcement
learning models in two simulation studies. The first simulation
demonstrates performance advantages for the integrated model
in an environment with a dynamic and diverse reward struc-
ture. The second simulation contrasts the performances of the
three models in a classic latent learning experiment (Blodgett,
1929), demonstrating advantages for the integrated model in
predicting and explaining the behavioral data.
Keywords: Associative Learning, Reinforcement Learning,
Model Integration, Cognitive Modeling, Cognitive Systems,
Latent Learning

Introduction
Integration of computational cognitive models is critical
for accelerating progress in the field of cognitive modeling
(Gray, 2007a). By means of integrative approaches the field
can begin to predict and explain the robustness and flexibil-
ity of human behavior in complex, uncertain, non-stationary
environments (or large worlds, Binmore, 2009). Specifically,
Choi & Ohlsson (2011) assert that the integration of learning
mechanisms is essential to improving the predictability and
explanatory power of cognitive models.

There is no denying that people are adaptive – for example
our memories are retrieved based on their recency and fre-
quency of use (Anderson & Schooler, 1991), visual search
is adapted to the structure of the the task environment (Shen,
Reingold, & Pomplun, 2000; Myers & Gray, 2010), and prob-
lem solving strategies are adapted with increasing task expe-
rience (Siegler & Stern, 1998). People’s ability to adapt al-
lows them to persist and thrive in large worlds. If we are to
build cognitive models for large worlds, we have to endow
them with human learning mechanisms. Hand-coded knowl-
edge engineering results in brittle and expensive models, and
is a method that does not scale well beyond simple laboratory
environments (Gluck, 2010). Our hypothesis is that models
may begin to demonstrate human-like flexibility and adaptiv-
ity in large worlds through the integration of multiple human
learning mechanisms.

In the current paper we present an integrated model of as-
sociative and reinforcement learning, as it is evident that hu-
mans are capable of learning both the spatiotemporal con-
tingencies and the reward structures of their environment

(Stevenson, 1954; Chun, 2000; Myers, Gray, & Sims, 2012).
We demonstrate that model integration improves flexibility
and adaptability, provides better predictions of behavioral
data, and produces more efficient behavior in environments
with diverse and dynamic reward structures when compared
to each of the individual models.

In the following sections we first provide background on
associative and reinforcement learning theories and models.
Next we describe the integrated model. Finally, two simu-
lations are presented. Simulation 1 contrasts the associative
and reinforcement learning models with the integrated model
in their ability to efficiently adjust to novel goals and diverse
reward structures in a grid-navigation environment. Simu-
lation 2 contrasts the associative and reinforcement learning
models with the integrated model in their ability to predict
behavioral data from a classic latent learning experiment.

Reinforcement Learning
Reinforcement learning (RL) is a formal model of action se-
lection where the utility of different actions is learned by
attending to the reward structure of the environment. It
has been used in a wide array of domains, from robotics
(Peters, Vijayakumar, & Schaal, 2003) and artificial intelli-
gence (Russell & Norvig, 1995) to cognitive architectures (Fu
& Anderson, 2006; Nason & Laird, 2005) and cognitive neu-
roscience (Holroyd & Coles, 2002).

Generally speaking, RL works in a trial-and-error fashion
– attempting various actions and recording the reward gained
for those actions (for a review see Sutton & Barto, 1998).
More formally, given the state that an agent is experiencing,
the action most likely to be chosen is the one with the high-
est learned utility, plus or minus some exploratory noise. The
utility of any given state-action pair, SA, in turn, is directly
proportional to the value of the reward, that the agent receives
after SA is executed. Hence, state-action pairs are reinforced
when they result in a reward; and the likelihoods of their fu-
ture selection are directly proportional to the values of the
experienced rewards.

There are several variations on how utility is learned in RL
(for an introduction, see Sutton & Barto, 1998). For exam-
ple, Temporal Difference RL (TDRL), a version commonly
used to model human behavior (Anderson, 2007; Holroyd &
Coles, 2002), propagates the received reward to past actions.
Reward is discounted as a function of time, so that actions
taken just prior to the reward are strengthened more than ear-
lier actions. In this way, TDRL reinforces a sequence of ac-
tions that lead to the reward, rather than just a single state-
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action pair, helping to obtain a solution in a more efficient
manner.

Some RL approaches take into account transitions between
SA, the resultant reward R, and the utility of the next SA
(SARSA). SARSA models update the utility of the state-
action pair executed at time t, SA(t), by a function of the
reward that follows it, R(t + 1), combined with a function
of the utility of the state-action pair that follows it, SA(t +1).
SARSA models are not as efficient as TDRL, but are guaran-
teed to converge on an optimal solution.

The Model-based RL approach extends RL by learning the
structure of the world beyond utilities. The term model in
“model-based RL” refers to an agent’s internal representation
of the environment, and an agent developed in this frame-
work is capable of planning its route before execution. This
is extremely useful when memory and decision cycles are less
expensive than actions (e.g. robotics).

One of the limitations of RL as a complete model of human
decision-making becomes apparent in environments where
goals change. Imagine that on your way to work each day
you pass a post office. One day you need to mail a letter. At
this point, an RL agent would consider, “let’s try a random
action, see how that works.” This is because, by definition,
RL models make decisions based solely on the learned state-
action utilities. If the goal changes, the utilities representing
the reward structure from the initial goal become irrelevant at
best, or subversive at worst. Humans and animals, of course,
will employ their knowledge of the environment (e.g. that
there is a post office on the way to work) to make better-than-
chance decisions for achieving new goals (Stevenson, 1954;
Tolman, 1948; Quartermain & Scott, 1960).

The SARSA and Model-based approaches are major steps
toward more flexible behavior. The SARSA approach con-
siders the state-action-state transitions when learning utili-
ties, but stops short of learning these transitions. The Model-
based RL approach learns such transitions, but employs them
strictly to enable planning. The decision process during the
planning stage, however, is still based on the learned utilities.
Thus, when presented with a new goal a Model-based RL
agent will still begin to plan its route by considering random
actions.

Associative Learning
Another class of decision models relies on associative learn-
ing. Associative learning (AL) models focus on acquiring
the spatiotemporal contingencies of the environment and em-
ploying these in action-selection. The utility of any given
choice is estimated as a function of previously experienced
spatiotemporal proximity between this choice and the cur-
rent goal. The advantage of this approach over RL is that
the stored knowledge is goal-independent. Whenever a new
goal is given, an AL model can employ its knowledge to make
informed goal-directed decisions.

Voicu and Schmajuk (2002) implemented a computational
model that learns the structure of the environment as a net-
work of adjacent cells. Once a goal is introduced, reward
signal spreads from the goal-cell through this network, such
that the cells farther from the goal-cell receive less activation
than those that are close. Goal-driven behavior in this model
comprises moving towards the cells with the highest activa-

tion. Once this model memorizes the map of the environment,
it does not need to learn the reward structure through trial-
and-error; rather, the utility of each action-path is identified
through spreading activation from the goal.

SNIF-ACT (Fu & Pirolli, 2007) is another model that em-
ploys associative rather than reward knowledge for action-
selection. SNIF-ACT is a model of human information-
seeking behavior on the World Wide Web. The World Wide
Web is unpredictable in the sense that there is no way for any
of its users to know what links they will encounter during web
browsing. The utility of selecting a link in SNIF-ACT is not
based on any prior reward, but rather on the semantic associa-
tion of a link’s text to the current goal (i.e., information scent).
This mechanism allows SNIF-ACT to make non-random de-
cisions in novel situations based on associative knowledge.

A limitation of SNIF-ACT is that it does not learn the asso-
ciation strengths between links and goals, but rather imports
these values from an external source. The Voicu & Schma-
juk model learns association strengths in a psychologically
implausible manner. The Goal-Proximity Decision-making
model (GPD; Veksler, Gray, & Schoelles, 2009) mends this
by employing the psychologically-plausible delta learning
rule (Rescorla & Wagner, 1972; Widrow & Hoff, 1960) to
update association strengths. Like the other two models,
GPD then estimates the utility of a path based on its associa-
tion strength to the current goal. Veksler, Gray, & Schoelles
demonstrate that in an environment where goals continue to
change, GPD is able to replicate human performance and RL
cannot.

A limitation of AL models is that no reward information
is learned. In this class of models decisions are based on ex-
plicitly specified goals. Associative learning does not help
to understand a diverse reward structure, where some actions
may result in less reward and some in greater reward. Hence,
AL models cannot explain why an organism might learn to
prefer actions leading to one goal-state over another.

Integrating Associative and Reinforcement
Learning

It is our opinion that AL and RL complement each other.
As discussed above, RL models capture behavior based on
a given reward structure. However, as agent goals change,
so does the reward structure of the environment. Since RL
fails to capture environmental contingencies beyond the orig-
inal reward structure, it cannot predict the efficiency of hu-
man behavior in environments where goals tend to change.
Contrariwise, AL models store the the spatiotemporal contin-
gencies of the environment independent of the reward struc-
ture, and are more flexible in adapting to new goals. How-
ever, in ignoring the reward information in the environment,
association-based models cannot capture people’s sensitivity
to the value of reward. In this section we describe how the
two learning approaches can be integrated to produce more
flexible behavior in environments where the reward structure
is both diverse and dynamic.

Given some agent state, S, and a possible action, A, RL
models learn the utility, u, of the SA state-action pair as di-
rectly proportional to the reward that has been experienced
after prior executions of SA, and, in models like TDRL, in-
versely proportional to the length of time between SA and the
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reward in prior experience. AL models do not learn the utility
of SA, but estimate it based on the strength of association, w,
between SA and the current goal, G, where w is inversely pro-
portional to the length of time (or distance) between SA and G
in prior experience. From the perspective of what is stored in
model memory, the RL models store the values of u for each
state-action pair, SAu, and AL models store the values of w
for each state-action-state transition, SAwS.

To integrate these two models, we propose that the asso-
ciation strength, w should continue to be recorded as in the
AL models, whereas the utility u should be recorded for each
state, S, rather than for each state-action pair SA. Thus, what
will be stored in memory and used for action-selection in the
integrated model is both w and u for each state-action-state
transition, SAwSu. The strength of association, w, is useful
as an estimate of the probability that a state might follow a
given state-action pair and the length of time of this transi-
tion. The utility, u, is useful as an estimate of the reward
probability/value to be received after a transition occurs.

The integrated model uses the delta learning rule to update
both utilities and association strengths. For each previously
executed state-action pair j and each new state i, the strength
of association between j and i, w ji, at current time, n, is in-
creased in the following manner:

∆w ji(n) = β[ai(n)−w ji(n−1)] (1)

where β is the learning rate parameter, and ai is the acti-
vation of i (ai = 1 if i is present, else 0). The utility for each
new state i, ui, at current time, n, is increased in the following
manner:

∆ui(n) = α[r(n)−ui(n−1)] (2)

where α is the learning rate parameter, and r(n) is the re-
ward experienced at time n.

At each decision point, the utility of a given state-action
pair, j, is calculated as follows:

U j = ∑
∀i
(w ji×ui×δ

t)+N (3)

where δ is a discount parameter (0 < δ < 1), t is the tem-
poral distance between j and i, and N (exploratory noise) is
a number drawn randomly from a normal distribution with a
mean of zero and a standard deviation set to some parameter,
σ.

In the following section the SAwSu model is examined in
terms of efficiency and psychological validity within environ-
ments with diverse and dynamic reward structures.

Simulations
The following subsections compare the integrated AL+RL
model (SAwSu) with AL-only and RL-only models. First,
the models are evaluated based on the efficiency of finding
rewarding states in a 10× 10 grid. Second, the models are
evaluated based on the ability to match data from a classic
latent learning experiment. A single value for the discount
parameter (ε = .9) was used for both simulations.

Simulation 1: Dynamic & Diverse Reward
Structure
As pointed out in the Introduction, the strength of RL is in
learning a diverse reward structure, where some actions may
lead to greater reward than others; AL excels at learning the
environmental structure independent of rewards, such that
this knowledge may be applied in purposive behavior when-
ever new goals arise. However, large worlds are both di-
verse and dynamic. The following simulation was conducted
to highlight the conditions under which the RL and AL ap-
proaches begin to falter, and how an integrated approach ad-
dresses these limitations.

A 10 × 10 navigation grid was used, where a model’s state
was uniquely identified as one of the cells in the grid, and
the model had four possible actions from each cell – to move
north, south, east, or west1. If an illegal move was selected
(i.e. a move that would take the model off the grid), the
model’s state was not changed. For each model run, a model
was placed in a random cell on the grid. Each time the model
reached a reward state, the model would again be placed in
a random cell on the grid. Before the model began the task
of locating a reward, a reward of 1.0 was placed in a random
cell on the grid. After 4000 steps, the reward was cleared,
and placed in a different random cell. Following the next
4000 steps (8,000 total steps), the reward was cleared, and
rewards of 1.0 and 0.1 were placed in two randomly selected
cells. Finally, after the next 4000 steps (12,000 total steps),
the reward was cleared again, and replaced with rewards of
1.0 and 0.1 in two randomly selected cells.

The integrated AL+RL model (SAwSu) was compared
with Random-walk, AL (GPD), and two RL models –
Temporal-Difference RL (TDRL), and Q-learning (Q-RL).
As discussed above, TDRL is the version of RL most com-
monly used in modeling human/animal behavior. Q-RL is a
popular SARSA model that is not as efficient as TDRL, but
is guaranteed to converge on an optimal solution (Sutton &
Barto, 1998). The results, averaged over 100 model runs for
each model type, may be observed Figure 1.

AL+RL was the best overall model, averaging a total score
of 1328.4 for the entire run in this environment, whereas AL
(GPD), TDRL, Q-RL, and Random models scored 1107.8,
362.2, 237.1, and 66.1, respectively. Q-RL is guaranteed to
converge to an optimal solution for any one reward structure
in the environment, but it is too inefficient to find such a so-
lution within the 4000 trials allotted in this task (though its
efficiency improves after the first 8000 steps, where there is
more than one goal-state).

TDRL, AL, and AL+RL produce indistinguishable perfor-
mance until the first goal change (see Figure 1, first 4000
steps). However, once a new goal is presented, TDRL strug-
gles to relearn the reward-structure of the environment, as
all of the state-action utility values need to be relearned
(these may be relearned faster if the exploratory noise was in-
creased, but this would come at the expense of performance,
even for the first goal). Q-RL struggles with the same issue,
as both RL models drop to random-level performance once
a new reward-structure is introduced. In contrast, AL and

1This is a standard simulation environment for performance ex-
amination of computational agents, as it aims to represent a generic
problem space.
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Figure 1: Simulation 1 results.

AL+RL can employ all of the associative knowledge that was
gathered in the first 4000 steps, and apply it to achieving the
new goal.

Where AL+RL begins to differ from AL is when the reward
structure of the environment becomes more diverse. After
8000 steps, there are two rewarding states introduced into the
environment, one of these having a high value (1.0) and the
other having a low value (0.1). The AL+RL model learns the
correct reward values of these states. AL, however, cannot
distinguish between the two types of goals, as it records no
information corresponding to varying reward values.

In summary, the integration of associative and reinforce-
ment learning results in better performance than could be
achieved by either model alone in an environment where the
reward structure is dynamic and diverse. The AL+RL model
displays more flexibility than RL in adapting to changing
goals, and more flexibility than AL in adapting to a varying
reward structure.

Simulation 2: Blodgett, 1929
Latent learning is a classic behavioral paradigm that focuses
on performance in an environment with a dynamic reward
structure, and often involves a diverse reward structure. In
this paradigm, after having spent some time in an environ-
ment, subjects are presented with some goal. Upon the intro-
duction of the goal, subjects display a higher level of perfor-
mance than would be expected if they had not spent any time
in the environment prior to the goal introduction. This phe-
nomenon is observable in children, adults, and animals (e.g.
Quartermain & Scott, 1960; Stevenson, 1954; Tolman, 1948).

For example, Blodgett (1929) ran three groups of rats in
a maze-learning experiment. One group (the control) was re-
warded upon reaching the end of the maze on every trial (R1).
The second group began receiving rewards on trial 3 (R3).
The third group began receiving rewards on trial 7 (R7). Re-
sults demonstrate that subjects in groups R3 and R7 began
to perform at the level of control subjects immediately upon
the introduction of the reward, producing much steeper error-
reduction slopes in these groups than that of R1 (see Figure 2,
top-left panel). An associative learning model can predict this

phenomenon. Such a model would learn the structure of the
maze and begin to employ its knowledge immediately once
the reward is introduced.

Blodgett 1929 data
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Figure 2: Maze Performance: Avg. Errors by Trial. Data
adapted from Blodgett, 1929 (top-left) and simulation re-
sults from Reinforcement Learning (bottom-left), Associative
Learning (bottom-right), and integrated (top-right) models.

Interestingly, groups R3 and R7 did not continue to dis-
play random-level performance until the introduction of the
reward. Rather, these groups displayed a shallow error-
reduction curve, indicating that there was at least some in-
tention to complete the maze even in the “no-reward” tri-
als (“low-reward” from hereon)2. An RL model can predict
this phenomenon, producing a shallow learning curve for the
“low-reward” trials (R3 until trial 3, R7 until trial 7), and a
steeper learning curve for the high-reward trials (R1).

A model that integrates RL and AL should reproduce both
(1) the better-than-random level of performance in groups R3
and R7 prior to the introduction of reward, and (2) the steep
improvements in performance once this reward is introduced.

The integrated AL+RL model (SAwSu) was compared
with AL (GPD) and RL (TDRL) models. A parameter search
was performed, seeking the model parameters that produced
the best fit (least sums of square differences) to data in the
constant-reward (R1) and the “low-reward” (R7, trials 1-7)
conditions. Three parameters were varied for each model:
learning rate, amount of exploratory noise (σ), and the per-
ceived low-reward (LowR) for finishing the maze on the “low-
reward” trials. The learning rate parameter varied for RL was
the utility-learning constant, α, and for AL and AL+RL it was
the associative-learning constant, β (α remained unvaried for
AL+RL at 1.0).

Once the best parameter values were found (RL: α =
.4,σ = .08,LowR = .15; AL and AL+RL: β = .2,σ =

2We interpret the shallow learning curves as resulting from a low
reward, such as being taken out of the maze.
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Table 1: Root Mean Square Difference to Blodgett, 1929.

Best fit to data Predicted
Model R1 R7 [trials 1-7] R3 R7*
AL+RL 0.21 0.14 0.11 0.15
RL 0.26 0.17 0.19 0.32
AL 0.22 0.56 0.23 0.50
*Only trials 8 and 9 are predicted.

.05,LowR = .15), the full simulations were executed to get
model predictions for R3 and for R7 after the introduction of
reward (these conditions were not included during the param-
eter search). Results may be observed in Figure 2 and Table 1.
As expected, AL and AL+RL produced steeper performance
improvements than RL upon the introduction of the reward
by the experimenter on trials 3 and 7. As expected, RL and
AL+RL replicated the shallow error-reduction curves in trials
1-3 for condition R3 and 1-7 for condition R7, and AL did
not.

AL+RL produced a better overall fit to data than did the
other two models (see Table 1). The advantages become more
apparent when we focus on the error-reduction after the intro-
duction of reward. Figure 3 demonstrates model predictions
for error reduction in the R3 group between trials 3 and 5, and
the R7 group between trials 7 and 9. The AL model predicts
too high a performance improvement (because the initial per-
formance is underestimated), and the RL model predicts too
low a performance improvement in these trials.

Figure 3: Error reduction after the introduction of reward in
Blodgett, 1929.

Summary and Discussion
In this paper we described how two learning mechanisms
widely supported in the psychological literature, reinforce-
ment and associative learning, may be integrated. In contrast
with RL-only and AL-only models, the integrated model,
SAwSu, was shown to produce more efficient, higher fidelity
behavior in environments where the reward structure is both
diverse and dynamic.

Gläscher, Daw, Dayan, and O’Doherty (2010) propose an
alternative integration of AL and RL by including a supervi-
sory mechanism that learns to arbitrate between AL and RL.
This implementation seems less parsimonious than SAwSu –

it has three learning and three decision mechanisms, whereas
SAwSu has two and one, respectively. Further comparison of
the two approaches is warranted.

To the best of our knowledge there are no other compu-
tational frameworks that learn the reward structure and the
spatiotemporal predictions of the environment, and employ
both in the decision-making process. Frameworks that em-
ploy some form of Model-based planning (e.g. Daw, Niv, &
Dayan, 2005; Sutton & Barto, 1998) include both AL and RL,
but these tend to focus on the trade-off between planning in
the head and acting in the world. Associative knowledge in
this class of models is used to enable planning rather than to
determine how a path of actions, whether in the head or in the
world, is chosen.

The overall scarcity of decision models that employ AL
and RL together is rather surprising given the long history
of research on learning in experimental psychology, cogni-
tive science, and artificial intelligence. Ohlsson (e.g. Choi &
Ohlsson, 2011) has been promoting the integration of learn-
ing mechanisms, including AL and RL, and Alonso & Mon-
dragón (2006) and Dickinson & Balleine (1993, 1994) call
for AL+RL integration. None of these proposals, however,
has been implemented as a computational model, and thus
cannot be easily contrasted with the SAwSu implementation.

The Voicu & Schmajuk (2002) model mentioned in the
Introduction, does employ AL in action-selection, and even
considers variable utility of the goal state in the decision
phase. However, the Voicu & Schmajuk model does not spec-
ify any way of actually learning state utilities.

Earlier versions of the ACT-R integrated cognitive archi-
tecture included both RL and AL (see Anderson, 1993; An-
derson & Lebiere, 1998). However, according to Ander-
son (2001), the particular form of associative learning imple-
mented in ACT-R turned out to be “disastrous,” and produced
“all sorts of unwanted side effects” (p. 6). Thus, as it stands,
the implementation of associative learning in ACT-R 6 has
been reduced to a single equation that relates the fan effect
to spreading activation. This limits AL to chunks that have a
direct symbolic relationship, where associative strengths can
only decrease as more knowledge enters the system and the
“fan” of associations to each chunk increases.

The current effort to integrate AL and RL is in accord with
the many calls for the integration of cognitive mechanisms
within a unified computational framework (e.g. Gray, 2007b;
Choi & Ohlsson, 2011). However, the current work presents
the integration of only two learning mechanisms, addressing
only some of the complexities of large worlds. In the pursuit
of models that can produce persistent, adaptive, and flexible
behavior in large worlds, it is required that we address how
a model like SAwSu might be incorporated into a broader
cognitive architecture such as ACT-R. Further integration of
AL and RL with other cognitive mechanisms is the necessary
next step for this research.
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