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Abstract

In contrast to the wealth of saliency models in the vision lit-
erature, there is a relative paucity of models exploring audi-
tory saliency. In this work, we integrate the approaches of
(Kayser, Petkov, Lippert, & Logothetis, 2005) and (Zhang,
Tong, Marks, Shan, & Cottrell, 2008) and propose a model of
auditory saliency. The model combines the statistics of natural
soundscapes and the recent past of the input signal to predict
the saliency of an auditory stimulus in the frequency domain.
To evaluate the model output, a simple behavioral experiment
was performed. Results show the auditory saliency maps cal-
culated by the model to be in excellent accord with human
judgments of saliency.
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Introduction
In general, attention plays a very important role in the survival
of an organism, by separating behaviorally relevant signals
from irrelevant ones. One approach to understanding how
attention functions in the brain is to consider the “saliency
map” over the sensory input space, which may determine sub-
sequent motor control targets or selectively modulate percep-
tual contrast thresholds. The brain’s putative saliency maps
can be thought of as interest operators that organisms use to
enhance or filter sensory signals.

Many visual saliency models have been investigated, but
relatively little attention has been paid to modeling auditory
saliency. However, since the fundamental necessity for per-
ceptual modulation remains the same regardless of modal-
ity, the principles of visual saliency models should apply
equally well to auditory saliency with appropriate sensory
input features. Two representative visual saliency models
are the center-surround contrast model (Itti, Koch, & Niebur,
2002) and the SUN (Salience Using Natural Statistics) model
(Zhang et al., 2008). Itti et al.’s model is neurally-inspired,
with the response of many feature maps (e.g., orientation,
motion, color) combined to create a salience map. The
SUN model uses a single feature map learned using Indepen-
dent Components Analysis (ICA) of natural images, and the
salience at any point is based on the rarity of the feature re-
sponses at that point - novelty attracts attention. Here, rarity
is based on statistics taken from natural images, so the model
assumes experience is necessary to represent novelty.

Previous works that apply the visual saliency paradigm to
the auditory domain include the models of (Kayser et al.,
2005) and (Kalinli & Narayanan, 2007). Both adapt the visual
saliency model of (Itti et al., 2002) to the auditory domain

by using spectrographic images as inputs to the model. Al-
though this is a reasonable approach, these models fail to cap-
ture several important aspects of the auditory modality. First,
this approach treats time as simply another dimension within
the spectrographic representation of the sound. Even though
these models utilize asymmetric temporal filters, the resulting
saliency map at each time point is contaminated by informa-
tion from the future. Second, spectrographic features are not
the most realistic representations of human auditory sensa-
tions, since the cochlea exhibits complex nonlinear responses
to sound signals (Lyon, Katsiamis, & Drakakis, 2010). Fi-
nally, Itti et al.’s model determines the saliency values from
the current input signal, with no contribution from the life-
time experience of the organism. This makes it impossible
for the model to account for potential perceptual differences
induced by differences in individual experience.

The Auditory Saliency Model
In this work, we propose the Auditory Salience Using Natural
statistics model (ASUN) as an extension of the SUN model.
The extension involves (1) using realistic auditory features
instead of visual ones, and (2) combining long-term statis-
tics (as in SUN) with short-term, temporally local statistics.
Although the SUN model has both a top-down, task-based
component and a bottom-up, environmentally driven compo-
nent, here we restrict ourselves to just the bottom-up portion
of SUN. SUN defines the bottom-up saliency of point x in the
image at time t as:

sx(t) ∝− logP(Fx = fx) (1)

Here, f is a vector of feature values, whose probability is
computed based on prior experience. This is also known as
the “self-information” of the features, and conveys that rare
feature values will attract attention. In the SUN model, this
probability is based on the lifetime experience of the organ-
ism, meaning that the organism already knows when feature
values are common and when they are rare. Assuming the
primary purpose of attention is to separate remarkable events
from the humdrum, it is logical to equate the rarity of the
event with the saliency of it. For example, a loud bang may
be salient not only because of its physical energy content, but
also because of its relative rarity in the soundscape. An or-
ganism living under constant noise may not find an explosion
to be as salient as another organism acclimated to a quieter
environment.
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For features, SUN uses ICA features learned from natu-
ral images, following Barlow’s efficient coding hypothesis
(Barlow, 1961). This provides a normative and principled
rationale for the model design. While ICA features are not
completely independent, they justify the assumption that the
features are independent of one another, making the compu-
tation of the joint probability of the features at a point compu-
tationally simple. This is the goal of efficient coding: By ex-
tracting independent features, the statistics of the visual world
can be efficiently represented. Although the saliency filters
used in Kayser et al.’s model have biophysical underpinnings,
exact shape parameters of the filters cannot be determined
in a principled manner. More importantly, their model does
not explain why the attention filters should be the way they
are. In contrast, by using filters based on the efficient cod-
ing hypothesis, the SUN and ASUN models make no such
assumptions; the basic feature transformation used (Gamma-
tone filters) reasonably approximate the filters learned by the
efficient encoding of natural sounds (Lewicki, 2002), and the
distributions of filter responses are learned from the environ-
ment as well. Assuming that the attentional mechanism is
modulated by a lifetime of auditory experience is neurologi-
cally plausible, as evidenced by the experience-induced plas-
ticity in the auditory cortex (Jääskeläinen, Ahveninen, Bel-
liveau, Raij, & Sams, 2007).

Here, we extend this model to quickly adapt to recent
events by utilizing the statistics of the recent past of the signal
(the “local statistics”) as well as the lifetime statistics. Denot-
ing the feature responses of the signal at time t as Ft , saliency
at t can be defined as the rarity in relation to the recent past
(from the input signal) as well as to the long-term past beyond
suitably chosen delay k:

s(t) ∝− logP(Ft = ft |Ft−1, ...,Ft−k︸ ︷︷ ︸
recent past

,Ft−k−1, ...︸ ︷︷ ︸
long past

)

In this paper, we simply define t−k as the onset of the test
stimulus. Under the simplifying assumption of independence
between the lifetime and local statistics, this becomes

s(t) ∝− logP(Ft = ft |Ft−1, ...,Ft−k)

− logP(Ft = ft |Ft−k−1, ...)

= slocal(t)+ sli f etime(t),

where slocal(t) and sli f etime(t) are the saliency values calcu-
lated from the local and lifetime statistics, respectively. By
using the local statistics at different timescales, the model
can simulate various adaptation and memory effects as well.
In particular, adaptation effects emerge as the direct conse-
quence of dynamic information accrual, which effectively
suppresses the saliency of repeated stimuli as time proceeds.
With such local adaptation effects, the model behaves simi-
larly to the Bayesian Surprise model (Baldi & Itti, 2006), but
with asymptotic prior distributions provided by lifetime ex-
perience.

Feature Transformations
A model of auditory attention necessarily relies upon a model
of peripheral auditory processing. The simplest approach to
modeling the cochlear transduction is to use the spectrogram
of the sound, as was done in (Kayser et al., 2005). More phys-
iologically plausible simulations of the cochlear processing
require the use of more sophisticated transformations, such
as Meddis’ inner hair cell model (Meddis, 1986). However,
the realism of the model comes at a computational cost, and
the complexity of the feature model must be balanced against
the benefit. Given these considerations, the following fea-
ture transformations were applied to the audio signals in the
ASUN model:

1. At the first stage, input audio signals (sampled at 16 kHz)
are converted to cochleagrams by applying a 64-channel
Gammatone filterbank (from 200 to 8000 Hz.) Response
power of the filters are clipped to 50dB, smoothed by con-
volving with a Hanning window of 1 msec and downsam-
pled to 1 kHz. This yields a 64-dimensional frequency de-
composition of the input signal.

2. At the second stage, this representation is further di-
vided into 20 frequency bands comprised of 7 dimensions
each (with 4 overlapping dimensions,) and time-frequency
patches are produced using a sliding window of 8 sam-
ples (effective temporal extent of 8 msec). This yields 20
bands of 7×8 = 56-dimensional representation of 8 msec
patches.

3. Finally, for each of the four sound collections (described
below), a separate Principal Components Analysis (PCA)
is calculated for each of the 20 bands separately. Retaining
85% of the variance reduces the 56 dimensions to 2 or 3
for each band.

This set of transformations yield a relatively low-
dimensional representation without sacrificing biological
plausibility. The result of these transformations at each time
point, ft , provides input for subsequent processing. Figure 1
illustrates this feature transformation pipeline.

Density Estimation Method
In order to calculate the self-information described in equa-
tion 1, the probability of feature occurrences P(F = ft) must
be estimated. Depending on the auditory experience of the
organism, this probability distribution may vary. To assess
the effect of different types of lifetime auditory experiences,
1200 seconds worth of sound samples were randomly drawn
from each of the following audio collections to obtain empir-
ical distributions:

1. “Environmental”: collection of environmental sounds,
such as glass shattering, breaking twigs and rain sounds
obtained from a variety of sources. This ensemble is ex-
pected to contain many short, impact-related sounds.
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Figure 1: Schematics for the feature transformation pipeline.
Input signals are first converted to smoothed cochleagram.
This is separated into 20 bands of 8 msec patches. The di-
mensions of each band are reduced using PCA.

2. “Animal”: collection of animal vocalizations in tropical
forests from (Emmons, Whitney, & Ross, 1997). Most of
the vocalizations are relatively long and repetitious.

3. “Speech”: collection of spoken English sentences from the
TIMIT corpus (Garofolo et al., 1993). This is similar to the
animal vocalizations, but possibly with less tonal variety.

4. “Urban”: this is a collection of sounds recorded from a city
(van den Berg, 2010), containing long segments of urban
noises (such as vehicles and birds), with a limited amount
of vocal sounds.

In the case of natural images, ICA filter responses follow
the generalized Gaussian distribution (Zhang et al., 2008).
However, the auditory feature responses from the sound col-
lections did not resemble any parameterized distributions.
Consequently, a Gaussian mixture model with 10 components
was used to fit the empirical distributions for each band from
each of the collections. Figure 2 shows examples of density
model fits against empirical distributions. The distributions
from each collection represent the lifetime statistics portion
of ASUN model, and each corresponds to a model of saliency
for an organism living under the influence of that particular
auditory environment.

The local statistics of the input signal were estimated us-
ing the same method: at each time step t of the input signal,
the probability distribution of the input signal from 0 to t−1
was estimated. For computational reasons, the re-estimation
of the local statistics were computed every 250 msec. Unfor-
tunately, this leads to a discontinuity in the local probability
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Figure 2: Gaussian mixture model fits (red) against the empir-
ical distribution of feature values (blue). The mixture model
is used to estimate P(Ft = ft |Ft−k−1, ...).

(a) Short and long tones

(b) Gap in broadband noise

(c) Stationary and modulated tones

(d) Single and paired tones

Figure 3: Spectrograms and saliency maps for simple stim-
uli. Left columns are the spectrograms of the stimuli, and
right columns are the saliency maps (top) and saliency values
summed over frequency axis (bottom). Due to the nonlin-
ear cochleogram transform, the y-axes of the two plots are
not aligned. (a) Between short and long tones, the long tone
is more salient. (b) Silence in a broadband noise is salient
compared to the surrounding noise. (c) Amplitude-modulated
tones are slightly more salient than stationary tones. (d) In
a sequence of closely spaced tones, the second tone is less
salient.

distribution every 250 msec. This will be improved in future
work, where we plan to apply continually varying mixture
models to eliminate such transitions.

Qualitative Assessments
In (Kayser et al., 2005), the auditory saliency model repro-
duces basic properties of auditory scene perception described
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in (Cusack & Carlyon, 2003). Figure 3 shows the saliency
maps of the ASUN model using the “Environmental” life-
time statistics. These examples demonstrate that the model is
capable of reproducing basic auditory salience phenomena.

Human Ratings of Saliency
In order to test the validity of the model in a more quantita-
tive manner, a human rating experiment similar to (Kayser et
al., 2005) was performed. In this experiment, seven subjects
were asked to pick the more “interesting” of two stimuli. The
goal of the experiment was to obtain an empirical rating of the
“interestingness” of various audio stimuli, which we conjec-
ture is monotonically related to the saliency. By presenting
the same set of stimuli to the saliency models, we can also
calculate which of the sounds are predicted to be salient. We
assume that the correct model of saliency will have a high
degree of correlation with the human ratings of saliency ob-
tained this way.

Materials
Audio snippets were created from a royalty-free sound collec-
tion (SoundEffectPack.com, 2011), which contains a variety
of audio samples from artificial and natural scenes. In order
to normalize the volume across samples, each sample was di-
vided by the square root of the arithmetic mean of the squares
of the waveform (RMS). To create snippets used in the exper-
iment, each sample was divided into 1.2-second snippets, and
the edges were smoothed by a Tukey window with 500 ms of
tapering both sides. Snippets containing less than 10% of the
power of a reference sinusoidal signal were removed in order
to filter out silent snippets.

From this collection, 50 high-saliency, 50 low-saliency and
50 large-difference snippets were chosen for the experiments.
The first two groups contained snippets for which the Kayser
and ASUN models agreed on high (or low) saliency. Snippets
in the last group were chosen by virtue of producing high-
est disagreements in the predicted saliency values between
Kayser and ASUN models.

With these snippets, 75 trial pairs were constructed as fol-
lows:

(1) High saliency difference trials (50): Each pair consists of
one snippet from the high-saliency and another from the
low-saliency groups.

(2) High model discrimination trials (25): Both snippets were
drawn from the large-difference group uniformly.

We expected both models to perform well on high saliency
difference trials but to produce a performance disparity on the
high model discrimination trials.

Procedure
In each trial, each subject was presented with one second
of white noise (loudness-adjusted using the same method as
above) followed immediately by binaural presentation of a
pair of target stimuli. The subject would then respond with

the left or right key to indicate which stimuli sounded “more
interesting” (2AFC.) Each experiment block consisted of 160
such trials: 75 pairings balanced with left-right reversal, plus
10 catch trials in which a single stimulus was presented to
one side. Each subject participated in a single block of the
experiment within a single experimental session.

Model Predictions

To obtain the model predictions, the same trial stimuli (in-
cluding the preceding noise mask) were input to the models
to produce saliency map outputs. To reduce border effects,
10% buffers were added to the beginning and end of the stim-
uli and removed after saliency map calculation. The portion
of the saliency map that corresponded to the noise mask were
also removed from peak calculations.

In (Kayser et al., 2005), saliency maps for each stimuli pair
were converted to scores by comparing the peak saliency val-
ues. It is unclear what the best procedure is to extract a single
salience score from a two-dimensional map of salience scores
over time. Following (Kayser et al., 2005), we also chose the
peak salience over the snippet. To make predictions, the score
for the left stimulus was subtracted from that of the right stim-
ulus in each trial pair. This yielded values between −1 and 1,
which were then correlated against the actual choices subjects
made (−1 for the left and 1 for the right.)

Seven different candidate models were evaluated in this
experiment. (1) The chance model outputs −1 or 1 ran-
domly. This model serves as the baseline against which to
measure the chance performance of other models. (2) The
intensity model outputs the Gammatone filter response in-
tensity. This model simply reflects the distribution of inten-
sity within the sound sample. (3) The Kayser model uses
the saliency map described in (Kayser et al., 2005). Finally,
ASUN models with different lifetime statistics were evalu-
ated separately: (4) “Environmental” sounds, (5) “Animal”
sounds, (6) “Speech” sounds, and (7) “Urban” sounds.

Results

To quantify the correspondence between the model predic-
tion and the human judgments of saliency, Pearson product-
moment correlation coefficients (PMCC) were calculated be-
tween the model predictions and human rating judgment re-
sults (N=7) across all 75 trials. All subjects responded cor-
rectly to the catch trials, demonstrating that they were paying
attention to the task. Figure 4 shows the correlation coeffi-
cient values for the ASUN models for each type of dataset
from which lifetime statistics were learned. The correlation
between the ASUN model predictions and the human subjects
(M = 0.3262,SD = 0.0635) was higher than the correlation
of the Kayser model predictions (M = 0.0362,SD = 0.0683).
The result shows that the ASUN model family predicted
the human ratings of saliency better than the Kayser model
(t(6) = 7.963, p < 0.01.)

To evaluate the model performance in context, across-
subject correlation was also calculated. Since the models
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Figure 4: Correlation coefficient between various models and
human ratings of saliency (N=7.) ASUN models correlated
with the human ratings of saliency significantly better than
the Kayser model.

are not fit to individual subjects, this value provides the ceil-
ing for any model predictions. Because three of the seven
subjects went through the same trial pairs in the same order,
these trials were used to calculate the across-subject correla-
tion value, and the model responses. Figure 5 shows the cor-
relation values including the across-subject correlation. The
result shows that the difference between the across-subject
correlations (M = 0.6556,SD = 0.0544) and the ASUN
model predictions (M = 0.4831,SD= 0.0432) was significant
(t(2) = 16.9242, p = 0.0035), indicating that the models do
not yet predict saliency at the subject-consensus level. Never-
theless, the ASUN model correlations were still significantly
higher than the Kayser model (M = 0.1951,SD = 0.0815) at
(t(2) =−9.855, p = 0.0101).

The performance for the Kayser model in this experiment
was notably worse than what was reported in (Kayser et al.,
2005). There are several possible explanations for this. First,
the audio samples presented in this experiment were roughly
normalized for the perceived loudness. This implies that a
saliency model that derives saliency values from the loudness
measure in large part may not perform well in this experi-
ment. Indeed, the intensity model does not predict the result
above chance (t(6) = 0.66, p = 0.528). Although the Kayser
model does combine information other than the intensity im-
age alone, it is possible that the predictive power of the model
is produced largely by loudness information.

Second, as described previously, some of the trial pairs
were chosen intentionally to produce maximal difference be-
tween the Kayser and ASUN models, and this produced the
large performance disparity. Figure 6 support this hypothesis:
in the high saliency difference trials, both models performed

**
*

S
ub

je
ct

s

R
an

do
m

In
te

ns
ity

K
ay

se
r

A
S

U
N

(E
nv

)
A

S
U

N
(A

ni
m

al
)

A
S

U
N

(S
pe

ec
h)

A
S

U
N

(U
rb

an
)

A
S

U
N

(A
ll)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
ns

Figure 5: Correlation coefficient between various models and
human ratings of saliency. A subset of data for which the
same trial pairs were presented was analyzed (N=3). Across-
subject performance was estimated using the correlation co-
efficients for all possible pairs from the three subjects.

equally well (t(6) = 0.3763, p = 0.7091.) In contrast, in high
model discrimination trials, ASUN models performed signif-
icantly better than the Kayser model (t(6) = 17.31, p < 0.01.)
Note that the high model discrimination group was not picked
based on the absolute value (or “confidence”) of the model
predictions, but rather solely on the large difference between
the two model predictions. This implies the procedure itself
does not favor one model or the other, nor does it guarantee
performance disparity on average. Nevertheless, the result
shows that the ASUN models perform better than the Kayser
model in those trials, suggesting the performance disparity
may be explained in large part from those trials.

Discussion
In this work, we demonstrated that a model of auditory
saliency based on the lifetime statistics of natural sounds is
feasible. For simple tone signals, auditory saliency maps cal-
culated by the ASUN model qualitatively reproduce phenom-
ena reported in the psychophysical literature. For more com-
plicated audio signals, assessing the validity of the saliency
map is difficult. However, we have shown that the relative
magnitudes of the saliency map peaks correlate with human
ratings of saliency. The result was robust across different
training sound collections, which suggest a certain common-
ality in the statistical structure of naturally produced sounds.

There are aspects of the saliency model that may be im-
proved to better model human physiology. For example,
there is ample evidence of temporal integration at multiple
timescales in human auditory processing (Poeppel, 2003).
This indicates that the feature responses of the input signal

1052



K
ay

se
r

A
S

U
N

(E
nv

)

A
S

U
N

(A
ni

m
al

)

A
S

U
N

(S
pe

ec
h)

A
S

U
N

(U
rb

an
)

A
S

U
N

(A
ll)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
ns

(a) High saliency difference trials
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(b) High model discrimination trials

Figure 6: Correlation coefficients for the subsets of trials. (a)
For High saliency difference trials, both Kayser and ASUN
models show high correlation to human rating of saliency,
and there are no significant differences between them. (b) For
High model discrimination trials, ASUN models show sig-
nificantly higher correlation with human ratings of saliency
compared to the Kayser model.

may be better modeled by multiple parallel streams of in-
puts, each convolved with exponentially decaying kernels of
varying timescales. This may be especially important for cal-
culating saliency of longer signals, such as music and spo-
ken phrases. In order to accommodate higher-level statistical
structure, the model can be stacked in a hierarchal manner as
well, with appropriate feature functions at each level. These
expansions will provide insights into the nature of attentional
modulations in human auditory processing.
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Jääskeläinen, I. P., Ahveninen, J., Belliveau, J. W., Raij, T., &
Sams, M. (2007). Short-term plasticity in auditory cogni-
tion. Trends Neurosci., 30(12), 653–661.

Kalinli, O., & Narayanan, S. (2007). A saliency-based au-
ditory attention model with applications to unsupervised
prominent syllable detection in speech. In Interspeech 2007
(pp. 1941–1944). Antwerp, Belgium.

Kayser, C., Petkov, C., Lippert, M., & Logothetis, N. (2005).
Current biology; mechanisms for allocating auditory atten-
tion: An auditory saliency map. , 15(21), 1943–1947.

Lewicki, M. S. (2002). Efficient coding of natural sounds.
nature neurosci, 5(4), 356–363.

Lyon, R. F., Katsiamis, A. G., & Drakakis, E. M. (2010).
History and future of auditory filter models. In Iscas (pp.
3809–3812). IEEE.

Meddis, R. (1986). Simulation of mechanical to neural trans-
duction in the auditory receptor. JASA, 79(3), 702–711.

Poeppel, D. (2003). The analysis of speech in different
temporal integration windows: cerebral lateralization as
’asymmetric sampling in time’. Speech Communication,
41(1), 245–255.

SoundEffectPack.com. (2011). 3000 sound effect pack. Re-
trieved 2011-03-31, from tinyurl.com/7f4z2wo

van den Berg, H. (2010). Urban and nature sounds. Retrieved
2011-02-27, from http://tinyurl.com/89mr6dh

Zhang, L., Tong, M. H., Marks, T. K., Shan, H., & Cottrell,
G. W. (2008). SUN: A bayesian framework for saliency
using natural statistics. Journal of vision, 8(7), 1-20.

1053


