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Abstract

We present a statistical account for the subjective probability
of alternation in people’s perception of randomness. By ex-
amining the spatio-temporal distances between pattern events,
specifically, the frequency and delay of binary patterns in a
Markov chain, we obtain some normative measures to calibrate
people’s expectation of randomness. We suggest that it can be
fruitful to study subjective randomness in the context of human
object representation and perception of time and space.

Keywords: subjective randomness; probability of alternation;
waiting time; perception of time and space.

Introduction

Much is known that subjective randomness—people’s intu-
itive judgment on how an event or a series of events appears
random—systematically deviates from the stochastic random-
ness described by normative probability theories. Among
many statistics describing such discrepancy, the probability
of alternation (p 4) has been the most extensively studied in
psychology literature (e.g., Budescu, 1987; Falk & Konold,
1997; Kahneman & Tversky, 1972; Kareev, 1992; Lopes &
Oden, 1987; Nickerson, 2002; Sanderson, 2011). In a binary
sequence generated by independent and stationary Bernoulli
trials (for example, repeatedly tossing a fair coin), p4 can be
defined as the probability that the outcome of any single event
is different from the preceding one. If the process is truly ran-
dom (e.g., the same fair coin is being tossed independently),
the probability of alternation has the expected value p4 = .5.
However, reviewed by Falk and Konold (1997, Table 1, p.304),
in almost all of the studies with the tasks of recognizing or
generating randomness, the modal subjective probability of
alternation was approximately .60. That is, people tend to
perceive sequences with p4 ~ .60 as the most random and
generate random sequences with p4 ~ .60.

One particular reason that the probability of alternation p 4
receives a great deal of attention in the studies on subjective
randomness is that it is highly correlated with many other
sequential statistics, such as the runs test and serial correlation.
Together, these statistics cover a variety of empirical phe-
nomena, for example, the perception of streaks in basketball
shooting (Burns, 2004; Gilovich, Vallone, & Tversky, 1985;
Sun & Wang, 2010b), the recency effect (Ayton & Fischer,
2004), the working memory capacity and detection of covari-
ances in short sequences (Kareev, 1992), and the encoding of
subjective complexity (Falk & Konold, 1997; Falk, Falk, &
Ayton, 2009). (For a recent review, see Oskarsson, Van Boven,
McClelland, & Hastie, 2009).

To explain the biased probability of alternation in subjec-
tive randomness, Falk and Konold (1997) developed a “diffi-
culty predictor” (DP) as a measure of “subjective complexity”.

Based on the concept that random sequences are irreducibly
complex (i.e., algorithmic complexity, Kolmogorov, 1965),
Falk and Konold propose that people’s sense of randomness
is not based on the deviations from the equiprobability of pat-
terns of the same length (i.e., “n-grams”), rather, it may be
based on the difficulty level when people attempt to memo-
rize or copy a sequence by its minimal description. Given
any binary sequence, the difficulty predictor is defined by
adding twice the number of alternating runs to the number of
pure runs. For example, the following sequence is partitioned
into 5 segments, where pure runs (streaks) are underlined and
alternating runs are double underlined:
HHTHTHTHTHTTTHHTHTHTH

Thus, the DP score for this particular sequence is 1 + 2 + 1 +
1+ 2 = 7. By this measure, a perfect streak would be per-
ceived as the most nonrandom because of its lowest DP score
(i.e., the easiest to remember). In contrast, sequences with
more alternating runs—hence greater p 4—are more difficult
to encode therefore tend to be perceived as more random.

Overall, it has been demonstrated that DP correlates remark-
ably well with participants’ ratings of randomness, memo-
rization time, assessed difficulty of memorization, and copy-
ing difficulty. And, the mean ratings of randomness show
the classic preference for over-alternating sequences (Falk
et al., 2009; Falk & Konold, 1997). However, Griffiths and
Tenenbaum (2003) point out that DP remains a subjective mea-
sure since its objective counterpart, algorithmic complexity,
is not computable. Instead, Griffiths and colleagues propose
to use Bayesian inferences to account for subjective random-
ness (Griffiths & Tenenbaum, 2001, 2003; Hsu, Griffiths, &
Schreiber, 2010). By this account, the subjective randomness
of a particular sequence X is defined as

p(X|random)

dom(X) =1
random(X) = log p(X|regular)

(D
Then, the problem of judging randomness can be reduced to
comparing two probabilities—whether the sequence is pro-
duced by a random process (e.g., independent and stationary
Bernoulli trials), or, by a process with some regularities. To
specify p(X|regular), Griffiths and Tenenbaum (2003) de-
velop a hidden Markov model that makes transitions between
hidden states depending on whether a motif is to be repeated
or altered, where a motif is a short pattern such as H, T, HT, or,
TH. By maximizing p(X |regular), they obtain a set of param-
eters that provide a better fit to the mean randomness ratings
reported by Falk and Konold (1997).

The difficulty predictor and the Bayesian account have the
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advantage to test against specific encoding strategies. How-
ever, DP has some counterintuitive properties. For example,
in Figure 1, sequence (a) may appear to be more random than
sequence (b), but the former actually has a lower DP score
(DP = 5) than the latter (D P = 6). The Bayesian approach
can fix this problem by adding more motifs of various length,
but at the cost of computational complexity—to include all
motifs of length 4, the hidden Markov model will have 22
motifs and 72 states (Griffiths & Tenenbaum, 2003).

Figure 1: “Fast detection” of regularities. Without exactly
counting alternating runs or calculating probabilities, it would
be easily discernible that sequence (a) appears more “random”
than sequence (b). The regularity in sequence (b) can be
detected by the equal distances between patterns (for exam-
ple, between the filled squares or the interruptions of unfilled
squares). In addition, this example shows some of the counter-
intuitive properties of the difficulty predictor in that sequence
(a) has a lower DP score than sequence (b).

Perhaps more interestingly, Figure 1 also prompts a specu-
lation: whether the judgment of randomness can be reached at
before any effort of encoding or estimating the probabilities
of the observed sequences. For example, the regularity in
Figure 1(b) might be quickly spotted by the equal distances
between patterns. Such a speculation has actually led us to
consider the recent advances in the investigations on percep-
tion of time and space. For instance, it has been posited that
complex achievements such as mathematics and geometry,
which are uniquely human in their full linguistic and symbolic
realization, rest nevertheless on a set of core knowledge sys-
tems driven by the representations of object, space, time, and
number, and these representations may have an early develop-
mental origin shared by human infants as well as animals (e.g.,
Dehaene & Brannon, 2010; Spelke & Kinzler, 2007; Spelke,
Lee, & Izard, 2010). Applied to the research on subjective
randomness, it would be plausible to hypothesize that when
people attempt to judge randomness (or detect regularities), the
processing of spatio-temporal distances between observations
and patterns is the primitive driving force, before any encod-
ing effort of memorizing, copying the observed sequences or
comparing the probabilities of specific processes.

Spatio-Temporal Distances between Patterns

In the present paper, we propose to utilize the spatio-temporal
principles in object representation and human perception of
time and space (e.g., Spelke & Kinzler, 2007) to study sub-
jective randomness. Our approach is to first examine the
spatial and temporal distributions of pattern events produced
by random processes then match them to the psychological

spatio-temporal distances in people’s perception of random-
ness. To study the spatio-temporal distances between events,
we focus on two sets of statistics, namely, given a random or a
regular process, how often or how likely an event or a series
of events would occur; And, from the start of an observation,
when or where the events of interest would be encountered.

Apparently, how often, when, and where are different sta-
tistical properties and may bear different psychological rele-
vancies. To set ideas, consider a simple case of coin tossing.
If we tossed a coin three times and got three heads in a row
as HHH (H = heads and T = tails), many of us might start get-
ting suspicious about the fairness of the coin. But we would
think it not at all noteworthy if the three tosses resulted in the
pattern THH. The apparent randomness (or nonrandomness)
cannot be explained by the frequency of encounters since the
probability of obtaining either pattern in their exact orders is
precisely the same, () = § (i.e., the equiprobability of the
“n-grams”, Falk & Konold, 1997). However, less is known
that there is a set of statistical properties that may very well
explain why people consider a streak pattern rare and remark-
able. When a fair coin is tossed repeatedly, it takes on average
8 tosses to observe the first occurrence of THH, but it takes
on average 14 tosses to observe the first occurrence of HHH.
Moreover, when both patterns are monitored simultaneously
in one global sequence, the odds are 7 to 1 that one is more
likely to first encounter THH than to first encounter HHH. That
is, despite equal probabilities of occurrences, the time it takes
to first encounter HHH is significantly “delayed” than that of
THH.

Time '(Space)

Figure 2: Spatio-temporal intervals between encounters of ran-
dom events. An observation starts from scratch at Time = 0.
T, is the first arrival time and its expected value E[T*] is
called waiting time. Ts, Tj, ..., are the interarrival times be-
tween successive occurrences of the events, and their expected
value E[T is called mean time.

For formal definitions, we record the time (or location)
when an event occurs at S, Sz, S3, ..., counting from the
very beginning of the process (Figure 2). Then, 77 = 57 is
the first arrival time with an expected value E[T}] = E[T*]
called waiting time. To =85y — 51,15 = S3 — 5,, ..., are
the interarrival times between successive occurrences of the
events, and their expected value E[T is called mean time.' It
can be shown that the mean time of a pattern is in effect a mea-
sure of frequency as the inverse of probability of occurrence,
and the waiting time is a measure of delay in that a pattern’s
expected first arrival time may be longer but not shorter than

"Note that since the first arrival time may have a different distribu-
tion than later interarrival times, we use T to denote the first arrival
time and 7" to denote interarrival times.
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its mean time (Ross, 2007).

Consider an irreducible Markov chain {X,,,n > 0} with
transition probabilities P; ; and stationary probabilities 7,
¢ > 0. Then, for pattern (i1, i2, ..., i), its mean time (i.e.,
inverse of the pattern’s frequency) is the mean number of
transitions between successive visits to the pattern,

E[Ty] = !

¥ @)

Tk—1,0k

iy Piy iy - -
For the pattern’s waiting time, we first consider whether
a successive arrival of the pattern can “reuse” any of the el-
ements from its previous arrival. For example, in sequence
THHH, pattern HH has occurred twice and its second arrival has
reused the last element from the first arrival. An overlap index
s is defined as the maximum number of elements at the end of
the pattern that can be used as the beginning part of the next
arrival,
i)} (3)

s = max{j <k: (ik_j+1, ,Zk) = (il,

For example, sy = 0 and sy = 1. Let p (a, b) denote the
mean number of transitions for the Markov chain to enter state
b from state a. If the pattern has no overlap, s = 0, its waiting
time is,

E[Ty] = p(a,i) — p (i, i1) + E[Tk] )

If the pattern has an overlap s > 0, we first consider
E[T?], the waiting time for a shorter sub-pattern (i1, iz, ..., is),
which is consisted of the first or the last s elements in pattern
(il, iQ, ceny 'Lk) Then,

E[T;] = E[T{] + BTk ©)

By recursively applying Equation (5) until we reach the
shortest sub-pattern with no overlap, we can obtain the waiting
time for the original pattern. Comparing Equations (4) and (5),
we can see that when looking for the first arrival of a pattern,
if the pattern has an overlap s > 0, anything that goes wrong
after the first s elements will make the counting process start
from scratch. In other words, a pattern’s waiting time can
be delayed by the pattern’s overlapping property. In contrast,
Equation (2) shows that a pattern’s mean time or frequency is
not affected by the overlapping property.

Frequency and Delay by pa

To generate binary patterns, we can use a Markov chain with
two states H and T, where Pyt = Pry = pa,and Py g =
Pr 1 = 1—pa. This Markov chain is equivalent to the models
used by Lopes and Oden (1987), where p4 < .5 represents the
tendency of repetition, and p4 > .5 represents the tendency
of alternation.

Assuming that the initial state is equally likely to be in either
Hor T, from equation (2), we have

2
E[Tur] = E[Ttn] = oa (6)

2

E[Tyu] = E[Trr] = 1 (7N

—pa

From Equations (4) and (5), we have

* * 3
E[Thyr] = BTyl =1+ Y (3

PA

* * _2p2 + 5pA + 1

E[Tiy] = ETr] = —2 ——— 9

2pa(l —pa)

Figure 3 plots the mean time and waiting time for patterns
of length 2 as the functions of probability of alternation p 4.
When p4 = .5, we have a case of independent and stationary
Bernoulli trials. We first note that the mean time is the same
for all patterns of the same length. For example, E[TxT] =
E[Tun] = 4. However, the waiting time can be different
depending on the pattern’s overlapping property. For example,
sut = 0, E[T{ir) = 4, and, syu = 1, E[T}jy]| = 6. That is,
the waiting time is longer for the shortest streak patterns HH or
TT than for the shortest alternating pattern HT or TH. Solving
the equality between Equations (8) and (9), we obtain p4 = %
Thus, as long as p4 > 1, we have E[Ty;y] > E[Thy).

Moreover, let Var(T") denote the variance of the interarrival
times, it can be shown that patterns may differ substantially
in how evenly they are distributed over time (or space), for

A 12 T T T
—e—HH,TT
—o—HT,TH

Mean Time E[T]

2 | | | | | |
02 03 04 05 06 07 08

Probability of Alternation p4

12 T T T

=

Waiting Time E[T*]

L L | | L
02 03 04 05 06 07 08
Probability of Alternation p4

Figure 3: Mean time (A) and waiting time (B) as the functions
of probability of alternation p 4. When p4 = .5, the process
is equivalent to independent and stationary Bernoulli trials.
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example, Var(Try) = 4, and Var(Thp) = 20. In addition,
the waiting time is highly correlated with the variance of in-
terarrival times since both values are extended by a pattern’s
overlap tendency (see Table 1). (For the calculation of vari-
ances, see Sun & Wang, 2010a.)

Table 1: Mean and variance of the first arrival time
(T*) and interarrival times (7") for binary patterns in
independent Bernoulli trials (p4 = 0.5) when toss-
ing a fair coin. Reciprocal patterns are listed only
once, for example, HH is equivalent to TT, and, HT is
equivalent to TH.

Patterns s E[T] Var(T) E[T*] Var(T")
H 0 2 2 2 2
HT 0 4 4 4 4
HH 1 4 20 6 22
HHT 0 8 24 8 24
HTT 0 8 24 8 24
HTH 1 8 56 10 58
HHH 2 8 120 14 142

Psychological Implications

The Markov model described above may provide quantitative
measures to calibrate subjective randomness, particularly re-
garding the seemingly miscalibrated subjective probability of
alternation p 4. Different from previous studies that focus on
the frequency of patterns, here we examine the spatio-temporal
distances between pattern events that cover both frequency and
delay (including variances), either from the very beginning of
the process (waiting time), or between successive occurrences
of the pattern given that the pattern has occurred before (mean
time).

It should be noted that so far our analyses are limited to
short patterns. This consideration is based on the empirical
findings that people are sensitive to even the shortest patterns
of length 2. For example, it has been reported that participants
would report “a streak is occurring” beginning at the third
repeating event (Carlson & Shu, 2007). In an fMRI study,
Huettel, Mack, and McCarthy (2002) show that a distributed
set of regions in prefrontal cortex are exquisitely sensitive to
the presence and the termination of streak patterns even when
pattern length was only 2, despite the fact that participants
were informed of the random order of the sequences.

It appears that the waiting time statistics fit well to one
of the most influential accounts for subjective randomness,
the “representativeness heuristic” (e.g., Gilovich et al., 1985;
Kahneman & Tversky, 1972). By this account, people expect
smaller sequences to resemble the balanced distributions in
the long run, such that a streak of heads would seem to be rare
and remarkable as it would not be representative of the process
of random coin tossing. This would have explained the biased
subjective probability of alternation in that people tend to
expect fewer and shorter streaks than would be mathematically
probable when observing sequences produced by a random

process, and, they avoid repetitions of the same elements when
instructed to generate such sequences (e.g., Falk & Konold,
1997; Wagenaar, 1972).

Despite its plausibility, the representativeness account has
been criticized for the lack of definition (Ayton & Fischer,
2004; Falk & Konold, 1997; Gigerenzer, 1996). Neverthe-
less, it has been proposed that the waiting time statistics may
provide quantitative explanations to this account (Hahn &
Warren, 2009; Sun, Tweney, & Wang, 2010a; Sun & Wang,
2010a, 2010b). Specifically, people judge the frequency of an
event on the basis of how it is representative of the underlying
population or process (representativeness), and how easily an
example can be brought to mind (availability). When people
think of a truly random process (by actually tossing a coin
or conducting a mental experiment), a streak pattern—even
at its shortest length of 2 (e.g., HH in tossing a coin)—may
be perceived as the most nonrepresentative and the most un-
available. Compared with other patterns of the same length, a
streak is the most delayed in its first arrival and has the largest
variance of interarrival times thus the most uneven or clustered
distribution over time (see Table 1). Note that these particu-
lar properties are not limited to independent Bernoulli trials
where p4 = .5. For example, Figure 3B shows that as long
aspy > %, the waiting time for the streak pattern HH will be
longer than that of non-streak pattern HT.

Moreover, there has been direct evidence suggesting that
people may at least have an approximate sense of the wait-
ing time, namely, the delayed occurrence of streak patterns.
Oppenheimer and Monin (2009) report that when participants
were asked to estimate the number of coin flips before the
occurrence of a pattern of length 5, they believed that a se-
quence of coin flips was nearly twice as long before a streak
(mean estimate = 16.2) than when there was no streak (mean
estimate = 8.7). Applying Equations (4) and (5), we can show
that for patterns of length 5, the waiting time for a streak is 62
tosses, and the average waiting time for non-streak patterns is
approximately 34.3 tosses: the former is nearly twice as long
as the latter.

In the light of the delayed first arrival for streak patterns,
we speculate that people’s expectation of the probability of
alternation as p4 ~ 0.6 might in effect have been driven by
their experiences of pattern events as random patterns unfold
in time and space. For example, we can reconstruct the task
of generating randomness with the Markov chain described
above. Since at any given moment, participants face the choice
of either repeating or reversing the current outcome (an H or
a T), the generation process is equivalent to the process of
choosing patterns of length 2—either a streak pattern (HH or
TT) or a non-streak pattern (HT or TH). Then, p4 = .6 means
that 60% of the time participants choose a non-streak pattern,
indicating a false belief that in tossing a fair coin independently
(i.e., pa = .5), streak patterns should occur less frequently
than non-streak patterns. Such belief can be formulated as a
ratio of pattern mean times. From Equations (6) and (7), when
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pa = .6,

E [Tuu,rr] : E Tar,rua] =pa: (1 —pa)=3:2
Then, comparing the waiting time in the process of indepen-
dent coin tossing yields exactly the same ratio, where p4 = .5,

E[Tiurr) : B [Tirm] =6:4=3:2

That is, measured by the mean time, participants have failed
the task of producing randomness (i.e., the independence prop-
erty where p4 = .5) as if they have falsely believed that
patterns HH and TT would occur less frequently than patterns
HT and TH. Quantitatively, this comparison indicates that the
observed bias might have stemmed from participants’ expec-
tation of waiting time from a truly random process, since the
mean time does not distinguish any patterns when p4 = .5
(e.g., see Figure 3A).

Discussion

The development of waiting time statistics appears to be
promising and may have potential significance in explaining
a range of human cognitive functions (e.g., Oppenheimer &
Monin, 2009; Sun et al., 2010a; Sun, Tweney, & Wang, 2010b;
Sun & Wang, 2010b, 2010a, 2011). Specifically, we argue that
it can be fruitful to study subjective randomness in the context
of human perception of time and space. And, the frequency
and delay of pattern events, rather than individual events (e.g.,
a single coin toss), may be the key statistics and theoretical
constructs that underlie human perception of randomness.

It has been posited that by exposing to the various environ-
mental statistics, human mind may have evolved an accurate
sense of randomness but may fail to reveal it by the standard
of a particular measuring device (e.g., Pinker, 1997). Given
that the waiting time and the variance of interarrival times can
be substantially different for patterns with the same mean time
(e.g., Table 1 and Figure 3), one may logically assume that
these statistics may play a critical role in shaping people’s
perception and judgment of randomness. Unfortunately, in
the long lasting investigations on subjective randomness, the
mean time of patterns serves as the sole normative measure of
randomness. Despite various forms of experimental tasks (e.g.,
randomness generation or recognition, probabilistic predic-
tions) and statistical methods (e.g., runs test, serial correlation,
Bayesian inferences), existing studies have been focusing on
the discrepancies between subjective responses and the proba-
bilities of the occurrences of random patterns. Nevertheless,
the absence of waiting time statistics in the investigations on
subjective randomness may be due to its late and still ongoing
development in statistical research (e.g., Pozdnyakov, 2008;
Ross, 2007), and, remain fairly novel to the audience in psy-
chology (c.f., Hahn & Warren, 2009; Konold, 1995; Nickerson,
2007; Sun et al., 2010a, 2010b).

More significantly, recent advances in the behavioral and
neurological sciences on human cognitive achievements all
point to the role of the perception of time and space. It has

been proposed that complex achievements such as mathemat-
ics and geometry, which are uniquely human in their full
linguistic and symbolic realization, rest nevertheless on a set
of core knowledge systems that are driven by the representa-
tions of object, space, time and number (Dehaene & Brannon,
2010; Spelke & Kinzler, 2007; Spelke et al., 2010). And,
these representations may have a common perceptual metric
in the form of a mental number line (Burr & Morrone, 2011;
Dehaene, Piazza, Pinel, & Cohen, 2003) and have an early
developmental origin shared by human infants as well as other
animals (de Hevia & Spelke, 2010; Haun, Jordan, Vallorti-
gara, & Clayton, 2010; Hubbard, Piazza, Pinel, & Dehaene,
2005). Applied to the research on subjective randomness, it
would be plausible to hypothesize that when people attempt
to judge randomness (or detect regularities), the processing of
spatio-temporal distances between observations and patterns
is the primitive driving force, before any encoding effort for
memorizing, copying, or assessing the probability of pattern
occurrences (e.g., see Figure 1).

Nonetheless, we need to collect more empirical evidence
to investigate whether and how human cognition is sensitive
to the statistics of random patterns, for example, via experi-
ments that manipulate the overlapping and delay properties
of pattern events then measure the psychological responses.
Moreover, a theoretical breakthrough would also require us to
firmly demonstrate the psychological relevance of the pattern
time statistics and the spatio-temporal principles in object rep-
resentation and human perception of time and space, in order
to develop a mental calculus of how these constructs work
together.
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