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Abstract

Listeners tend to gaze at objects to which they resolve referring
expressions. We show that this remains true even when these
objects are presented in a virtual 3D environment in which lis-
teners can move freely. We further show that an automated
speech generation system that uses eyetracking information
to monitor listener’s understanding of referring expressions
outperforms comparable systems that do not draw on listener
gaze.

Introduction

In situated spoken interaction, there is evidence that the gaze
of interlocutors can augment both language comprehension
and production processes. For example, speaker gaze to ob-
jects that are about to be mentioned (Griffin & Bock, 2000)
has been shown to benefit listener comprehension by direct-
ing listener gaze to the intended visual referents (Hanna &
Brennan, 2007; Staudte & Crocker, 2011; Kreysa & Knoe-
ferle, 2011). Even when speaker gaze is not visible to the
listener, however, listeners are known to rapidly attend to
mentioned objects (Tanenhaus, Spivey-Knowlton, Eberhard,
& Sedivy, 1995). This gaze behavior on the part of listeners
potentially provides speakers with useful feedback regarding
the communicative success of their utterances: By monitor-
ing listener gaze to objects in the environment, the speaker
can determine whether or not a referring expression (RE) they
have just produced was correctly understood or not, and po-
tentially use this information to adjust subsequent production.

In this paper we investigate the hypothesis that speaker
use of listener gaze can potentially enhance interaction, even
when situated in complex and dynamic scenes that simulate
physical environments. In order to examine this hypothesis in
a controlled and consistent manner, we monitor listener per-
formance in the context of a computer system that generates
spoken instructions to direct the listener through a 3D virtual
environment with the goal of finding a trophy. Successful
completion of the task requires listeners to press specific but-
tons. Our experiment manipulated whether or not the com-
puter system could follow up its original RE with feedback
based on the listener’s gaze or movement behavior, with the
aim of shedding light on the following two questions:

e Do listener eye movements provide a consistent and useful
indication of referential understanding, on a per-utterance
basis, and when embedded in a dynamic and complex,
goal-driven scenario?

o What effect does gaze-based feedback have on listeners’
(gaze-)behavior and does it increase the more general ef-
fectiveness of an interaction?

We show that the listeners’ eye movements are a reliable
predictor of referential understanding in our virtual environ-
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ments. A natural language generation (NLG) system, that ex-
ploited this information to provide direct feedback, commu-
nicated its intended referent to the listener more effectively
than similar systems that did not draw on listener gaze. Gaze-
based feedback was further shown to increase listener atten-
tion to potential target objects in a scene, indicating a gen-
erally more focused and task-oriented listener behavior. This
system is, to our knowledge, the first NLG system that adjusts
its referring expressions to listener gaze.

Related work

Previous research has shown that listeners align with speak-
ers by visually attending to mentioned objects (Tanenhaus
et al., 1995) and, if possible, to what the speaker attends to
(Richardson & Dale, 2005; Hanna & Brennan, 2007; Staudte
& Crocker, 2011). Little is known, however, about speaker
adaptation to the listener’s (gaze) behavior, in particular when
this occurs in dynamic and goal-oriented situations. Typi-
cally, Visual World experiments have used simple and static
visual scenes and disembodied utterances and have analyzed
the recorded listener gaze off-line (e.g., Altmann & Kamide,
1999; Knoeferle, Crocker, Pickering, & Scheepers, 2005).
Although studies involving an embodied speaker inherently
include some dynamics in their stimuli, this is normally con-
strained to speaker head and eye movements (Hanna & Bren-
nan, 2007; Staudte & Crocker, 2011). Besides simplifying
the physical environment to a static visual scene, none of
these approaches can capture the reciprocal nature of interac-
tion. That is, they do not take into account that the listeners’
eye movements may, as a signal of referential understanding
to the speaker, change the speaker’s behavior and utterances
on-line and, as such, affect the listener again.

One study that emphasized interactive communication in
a dynamic environment was conducted by Clark and Krych
(2004). In this experiment, two partners assembled Lego
models: The directing participant advised the building par-
ticipant on how to achieve that goal. It was manipulated
whether or not the director could see the builder’s workspace
and, thus, use the builder’s visual attention as feedback for
directions. Clark and Krych found, for instance, that the vis-
ibility of the listener’s workspace led to significantly more
deictic expressions by the speaker and to shorter task com-
pletion times. However, the experimental setting introduced
large variability in the dependent and independent variables,
making controlled manipulation and fine-grained observa-
tions difficult. In fact, we are not aware of any previ-
ous work that has successfully integrated features of natu-
ral environments—realistic, complex and dynamic scenes in
which the visual salience of objects can change as a result of
the listener’s moves in the environment—with the reciprocal
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nature of listener-speaker-adaptation while also being able to
carefully control and measure relevant behavioral data.

Recently, researchers have examined eye gaze of speakers
and listeners in the scenes of Tangram puzzle simulations on
computer screens (Kuriyama et al., 2011; lida, Yasuhara, &
Tokunaga, 2011). In these experiments, eye gaze features are
found to be useful for a machine learning model of reference
resolution. However, this setting is restricted in its dynam-
ics, as it does not embed the objects into physical scenes or
involve any updates to the spatial and visual context of the
objects in the scenes. In contrast, by generating REs and ask-
ing the subjects to resolve them, rather than resolving human-
produced RE:s itself, the system we propose here can provide
more control over the language that is used in the interaction.

Computational models of gaze behavior are frequently im-
plemented in embodied conversational agents as part of non-
verbal behavior that aims at improving the human-computer
interaction (see e.g. Foster, 2007). Such agents do not typi-
cally employ listener gaze tracking for the generation of ap-
propriate REs, though. One work that focuses on situated RE
generation is Denis (2010), which takes the visual focus of
objects into account for the gradual discrimination of refer-
ents from distractors in a series of utterances. However, vi-
sual focus in Denis” work is modeled by visibility of objects
on screen rather than eye gaze. To our knowledge, there exists
no prior RE generation algorithm that is informed directly by
listener gaze.

Finally, gaze as a modality of interaction has been inves-
tigated in virtual reality games before, e.g. by Hiilsmann,
Dankert, and Pfeiffer (2011). However, most such settings
do not use language as a further modality. One virtual game-
like setting which focuses on language is the recent Challenge
on Generating Instructions in Virtual Environments (GIVE;
Koller et al., 2010), which evaluates NLG systems that pro-
duce natural-language instructions in virtual environments. In
this work we use the freely available open-source software in-
frastructure provided by GIVE! to set up our experiment.

Methods

In the GIVE setting (Koller et al., 2010; Striegnitz et al.,
2011), a human user can move about freely in a virtual in-
door environment featuring several interconnected corridors
and rooms. A 3D view of the environment is displayed on a
computer screen as in Fig. 1, and the user can walk forward
and backward, and turn left and right, using the cursor keys.
They can also navigate to buttons and, once they have ap-
proached them closely enough, click on them with the mouse
to press them. In Fig. 1 the object currently under inspection
by the user is the rightmost button on the wall, marked with
a large white circle. The trace of the fixation’s coordinates is
rendered by smaller white circles. These gaze markings do
not appear on the user’s screen during the experiment.

The user interacts with an NLG system in the context of a
treasure-hunt game, where the user’s task is to find a trophy

'"http://www.give-challenge.org/research

8NN Game Replay: 253

Figure 1: A screenshot of one of the virtual 3D environments.

hidden in a wall safe. They must press certain buttons in the
correct sequence in order to open the safe; since they do not
have prior knowledge of which buttons to press, they rely on
instructions and REs generated by the NLG system in order to
carry out the task. A room may contain several buttons other
than the target, which is the button that the user must press
next. These other buttons are called distractors and are there
to make the RE resolution task more challenging. Rooms
also contain a number of landmark objects, such as chairs
and plants, which cannot be interacted with, but may be used
in REs to nearby targets. For our experiment we use three
different virtual environments designed by Gargett, Garoufi,
Koller, and Striegnitz (2010), which differ in what objects
they contain and where they are located.

Generation systems

We implemented three different NLG systems for generating
instructions in these virtual environments. All systems gen-
erate navigation instructions, which guide the user to a spe-
cific location, as well as object manipulation instructions such
as “press the blue button” containing REs such as “the blue
button”. The generated instructions are converted to speech
by the MARY text-to-speech system (Schréder & Trouvain,
2003) and presented via loudspeaker. At any point, the user
may press the ‘H’ key on their keyboard to indicate that they
are confused. This will cause the NLG system to generate a
clarified instruction. All three systems operate on the same
codebase for the generation of simple yet effective naviga-
tion instructions (e.g. “go through the doorway”), but differ
in their RE generation strategies.

Our baseline system generates REs that are optimized for
being easy for the listener to understand, according to a
corpus-based model of understandability (Garoufi & Koller,
2011). Crucially, this system does not monitor whether the
listener understood an RE. It never gives any (positive or neg-
ative) feedback, and will only generate a follow-up RE if the
user either asks for help (‘H’ key) or presses the wrong but-
ton. Therefore we call this system the no-feedback system.

The movement system extends the no-feedback system by
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monitoring the user’s movements in the game after it has ut-
tered an RE, and attempting to predict whether they will press
the button it described or not. This system does nothing un-
til only a single button in the current room is visible to the
user; then it tracks the user’s distance from this button, where
“distance” is a weighted sum of walking distance to the but-
ton and the angle the user must turn to face the button. If],
after hearing the RE, the user has decreased the distance by
more than a given threshold, the system concludes that the
hearer has resolved the RE as this button. If it is the button
the system intended to refer to, it utters the positive feedback
“yes, that one!” For incorrect buttons, it utters the negative
feedback ‘“no, not that one.”

Finally, the eyetracking generation system attempts to pre-
dict whether the user will press the correct button or not by
monitoring their gaze. At intervals of approximately 15 ms,
the system samples the (X,y) position on the screen that the
user is looking at. It then resolves this (X,y) screen position to
an object in the 3D scene. If the user fixates the same object
for more than 300 ms, the system counts this as an inspec-
tion of that object; interruptions of the inspection of less than
150 ms are ignored. Once it has detected an inspection to a
button in the room, the eyetracking system generates positive
or negative feedback utterances in exactly the same way as
the movement system does.

The system maps the screen positions reported by the eye-
tracker to 3D objects as follows: When the 3D engine renders
the 3D scene onto the 2D screen, it assumes a certain position
of the “camera” in the 3D environment; this roughly corre-
sponds to the position of the user’s eyes. For each object that
is currently visible, the system computes its bounding box,
i.e. the smallest box that completely contains the object. It
determines the minimum angle « between the ray from the
camera position to some corner of the bounding box and the
ray from the camera position to the center of the bounding
box. Intuitively, o represents the size of the object on the
screen. The system also determines the angle 3 between the
ray from the camera position to the (X,y) position in the screen
plane reported by the eyetracker and the center of the bound-
ing box. Small values of 3 represent situations in which the
user looks directly at the center of an object. An object is a
candidate for being fixated if one of 5/« or § — « is below a
certain threshold. Among all candidates (if there are any), the
system then finally chooses the object with the smallest /3.

Both the movement-based and the eyetracking-based
model withhold their feedback until a first full description of
the referent (a first-mention RE) was spoken. Additionally,
they only provide feedback on newly approached or inspected
buttons and will not repeat this feedback unless the listener
has approached or inspected another button in the meantime.
We call the time between the onset of the first-mention RE
and the next button press in a scene, the critical time region.

Participants

Thirty-one students, enrolled at Saarland University, were
paid to take part in this study (12 females). All reported

their English skills as fluent, and all were able to complete
the tasks. Their mean age was 27.6.

Task and procedure

A faceLAB eyetracking system? remotely monitored partici-
pants’ eye movements on a 24-inch monitor. Before the ex-
periment, participants received written instructions that de-
scribed the task and explained that they would be given in-
structions by an NLG system. They were encouraged to re-
quest additional help anytime they felt that the instructions
were not sufficient (by pressing the ‘H’ key).

The eye-tracker was calibrated using a nine-point fixation
stimulus. We disguised the importance of gaze from the par-
ticipants by telling them that we videotaped them and that the
camera needed calibration. Participants then started with a
short practice session to familiarize themselves with the game
controls and to clarify remaining questions, before playing
three full games (each with a different virtual environment
and generation system). The order of games was alternated
according to the Latin square design. Finally, each partici-
pant received a questionnaire which aimed to assess whether
participants noticed that they were eye-tracked and that one
of the generation systems made use of that. The entire exper-
iment lasted approximately 30 minutes.

Analysis

Firstly, we determined whether the participant pressed the
correct button (without having to ask for help by pressing the
‘H’-key) by comparing each button the participant pressed
with the target referent of the most recent first-mention RE.
REs that did not lead to a button press (e.g. because the par-
ticipant navigated away to another room, causing the system
to switch to navigation instructions) were considered unsuc-
cessful. This served as a dependent variable but also as a
means for subdividing data according to un-/successful trial
completion. Secondly, inspections recorded on a button in the
player’s room, i.e., on the target or a distractor, during the crit-
ical time region were registered in all conditions (not just the
eyetracking NLG system) and analyzed as a main dependent
variable. Further total trial time, i.e., the time taken from the
onset of an RE to the button press, as well as the onset time
of system feedback (when provided) were recorded. Finally,
we considered the frequency with which participants asked
for help by pressing the ‘H’ key as a measure of confusion.

To control for external factors, we discarded individual
scenes in which the systems rephrased their first-mention REs
(e.g. by adding further attributes), as well as a few scenes
which the participants had to go through a second time due to
technical glitches. To remove errors in eyetracker calibration,
we included interactions with the eyetracking NLG system in
the analysis only when we were able to record inspections (to
the referent or any distractor) in at least 80% of all referen-
tial scenes. This filtered out 9 interactions out of the 93 we
collected.

http://www.seeingmachines.com/product/
facelab
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Inferential statistics on this data were carried out using
mixed-effect models from the Ime4 package in R (Baayen,
Davidson, & Bates, 2008). Specifically, we used logistic re-
gression for modeling binary data such as referential success
rates, Poisson regression for count variables (e.g., ‘H’-key
strokes) and linear regression for inspection durations. Fur-
ther, main effects and interactions were determined through
model reduction, which assesses the contribution of a pre-
dictor or interaction to a fitting model by running a x?-
comparison between models with and without the particular
predictor(s).

Results

The post-task questionnaires, revealed no differences in par-
ticipants’ preferences for any particular NLG system. Similar
numbers of participants chose each of the systems on ques-
tions such as “which system did you prefer”. When asked
for differences between the systems in free-form questions,
no subject mentioned eye gaze. We take this to mean that the
participants did not realize they were being eyetracked.

Eye movements

We recorded and analyzed inspections to target and distractor
buttons in all conditions. Mean inspection durations during
the critical time region (reference onset until button press)
were correlated with the success in pressing the correct button
and are provided in Table 1.

To investigate our first hypothesis, namely that listener eye
movements provide a consistent and useful indication of ref-
erential understanding even when embedded in a dynamic,
complex and goal-driven scenario, we first consider our base-
line condition, the no-feedback system, separately: Model re-
duction revealed that both inspection duration on the target
and inspection duration on the distractors indeed predict suc-
cess (x%(1) = 28.87,p < .001 and x?(1) = 96.24,p < .001,
respectively). While target inspection duration positively pre-
dicts success (Coeff. = 0.00110, SE = 0.00024, Wald’s Z
=453, p < .001), distractor inspections negatively pre-
dict success (Coeff. = —0.00178, SE = 0.00027, Wald’s Z
=—6.71,p < .001).

Further, to assess the influence of gaze-based feedback
back on listeners’ gaze behavior, we investigated whether the
type of system used for generating REs did in fact influence
inspection durations (as given in Table 1). We fitted mod-
els to target inspection duration and distractor inspection du-
ration using system as predictor, for successful and unsuc-
cessful scenes separately. Model reductions revealed a main
effect of system (target: x?(2) = 12.79,p < .01, distrac-
tor: x?(2) = 47.10,p < .001) on both inspection variables,
but only in successful scenes. That is, with the eyetracking-
based feedback system, participants inspected both the target
and distractor buttons longer than with the other two systems.
An average trial also lasted longer with this system than with
the no-feedback system. In unsuccessful scenes no signifi-
cant differences between inspection durations were observed.

Table 1: Mean inspection durations for target and distrac-
tor buttons and the total trial time in milliseconds, for suc-
cessful and unsuccessful button presses separately. (ET =
eyetracking-based system, MOV = movement-based system,
NO = no-feedback system.) Differences to ET are significant
at: #¥* p < 0.001, ** p < 0.01, * p < 0.05, #p < 0.1.

System (# Trials) Target Distractor  Trial Total
Successful:
ET (182) 2111.6 720.5 8096
MOV (258) 1493.8%* 260.5%** 7418
NO (237) 1492.0%**  185.7***  6877**
Unsuccessful:
ET (16) 752.1 3378.9 10892
MOV (37) 602.6 2113.1 10343
NO 47) 619.5 1891.7 9130

However, this is most likely due to the low amount of unsuc-
cessful scenes.

Finally, we considered only cases in which feedback was
indeed given in order to more precisely assess the influence
of effective feedback (types) on participant inspections dur-
ing reference resolution. Table 2 shows this data further
subdivided into scenes with initially positive feedback and
scenes with initially negative feedback (the eyetracking sys-
tem is used as intercept for comparisons between both sys-
tems). This is to explore the effect of positive and confirm-
ing feedback given by each system and the possibly differ-
ent effect of negative feedback which unspecifically re-directs
the participant to other buttons. We observed that positive
feedback of both systems leads to a similar increase of tar-
get and decrease of distractor inspections (cf. before and af-
ter columns in Table 2). However, eyetracking-based feed-
back was given earlier (Coeff. = 573.6, SE = 240.2, t =
2.39, p(McMC) < 0.05) and led to overall longer inspec-
tions of the target and distractor buttons relative to the trial
duration. That is, participants spent significantly more time
of a trial (34.1%) looking at potential target buttons than with
movement-based feedback (25.5%, Coeff. = —0.0552, SE =
0.0178, t = —3.11, p(meme) < 0.01). This effect was even
larger with negative feedback where the difference in feed-
back onset was even greater (Coeff. = 1237.8, SE = 378.1,
t = 3.27, p(MCMC) < 0.01) and the relative button inspec-
tion time was also longer (Coeff. = —0.1818, SE = 0.0283,
t = —6.43, p(MCcMC) < 0.001). Possibly because of this
large difference in feedback onset, we also found (marginally)
longer inspections to the buttons after feedback onset.

Interaction Effectiveness

To evaluate our second hypothesis, namely that gaze-based
feedback potentially sustains a more effective interaction than
other or no feedback, we considered several indicators for in-
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Table 2: Mean values for initial positive and negative feedback separately: inspection durations for target and distractor buttons
(before and after feedback onset), feedback onset times, total trial durations, proportion of time spent fixating buttons during
trials, and referential success rates. Differences to ET are significant at: *** p < 0.001, ** p < 0.01, * p < 0.05,# p < 0.1.

Target Distractor Feedback Trial Button Fix.  Success
Onset Total  Proportion
Before  After Before After

Positive Feedback:

ET 513 1389 111 67 4115 6511  34.1 97.6

MOV 465 1123 196 30 4688* 7051%  25.5%* 97.0
Negative Feedback:

ET 109 2155 733 1596 3987 11888 39.5 84.0

MOV 120 926%** 484#  802#  5225%* 11319 20.1%%* 68.0%*

teraction effectiveness. As a first measure, we looked at the
frequency with which participants pressed the ‘H’ key to in-
dicate their confusion. The overall average of ‘H’ keystrokes
per game was 1.14 for the eyetracking generation system,
1.77 for the movement system was employed, and 2.26 for the
no-feedback system. A model fitted to the key stroke distri-
bution per system shows significant differences both between
the eyetracking and the no-feedback system (Coeff. = 0.703,
SE =0.233, Wald’s Z = 3.012, p < .01) and between the eye-
tracking and the movement-based system (Coeff. = 0.475, SE
=0.241, Wald’s Z = 1.967, p = .05).

A second measure of interaction quality is the ratio of
all REs that the participants resolved correctly. Mean suc-
cess rates for trials with feedback only are further reported
in the final column of Table 2. Logistic mixed-effects mod-
els revealed a significant difference in success rates (Coeff. =
—0.918, SE = 0.461, Wald’s Z = —1.990, p < .05) for nega-
tive feedback while the success rates were similar for positive
feedback. Additionally, total trial time is significantly short-
ened by positive (but not negative) eyetracking-based feed-
back (Coeff. = 713.7, SE = 311.4, t =2.29, p < .05). Thus,
when positive feedback was given, the eyetracking system
had shorter trial times (along with earlier feedback), while
having similar success rates as the movement system. Con-
versely, negative feedback led to similar trial times but with
higher success rates by the eyetracking system.

Discussion

Concerning our first hypothesis—that gaze reflects on-
line referential understanding even in dynamic 3D
environments—we find that participants indeed tend to
rapidly fixate the object described by the system. Appro-
priate feedback by the eyetracking system, in turn, elicits
longer inspection durations on potential targets, showing
more focused, task-oriented listener attention.

This positive finding is further supported by the perfor-

mance of the eyetracking NLG system, which outperforms
the no-feedback baseline on listener confusion and on RE
success rate. If gaze was not a reliable indicator of RE inter-
pretation, this system would frequently give misleading feed-
back and therefore perform worse. Together with the find-
ing that positive gaze-based feedback leads to shorter trial
times than positive movement-based feedback, while nega-
tive gaze-based feedback leads to better success rates than
negative movement-based feedback, this confirms our second
hypothesis. That is, the eyetracking system (positively) influ-
ences interaction effectiveness.

One observation from the games in the experiment is that
listeners tend to rapidly look back and forth between differ-
ent buttons when they are confused. However, it needs to be
still worked out, how to interpret such signals more gener-
ally. A further issue is that all objects in the 3D world shift
on the screen when the user turns or moves in the virtual en-
vironment. The user’s eyes will typically follow the object
they are currently inspecting, but lag behind until the screen
comes to a stop again. One topic for future work would be to
remove such noise from the eyetracking signal.

Finally, the negative feedback our systems gave was very
unspecific (“no, not that one”, even when there were other
distractors) and given earlier and numerically also more fre-
quently by the eyetracking system. This could explain the
different effects of positive and negative feedback on inspec-
tion behavior and the time-accuracy trade-off for each sys-
tem: Longer trial times but better success rates for negative
gaze-based (compared to movement-based) feedback. We
used negative feedback to keep the experimental situation
more controlled but the performance of the feedback systems
could possibly be improved by giving more specific feedback
(“no, the BLUE button”). Another avenue for future research
is to examine whether listener gaze could also be useful for
other NLG or dialog tasks apart from RE generation.

1011



Conclusion

We reported on an experiment in which an NLG system used
listener gaze to track the listener’s understanding of REs and
provide positive or negative feedback when needed. This
shows that listener gaze provides consistent and useful feed-
back about the listener’s interpretation process, and that NLG
systems can be improved by tracking this interpretation pro-
cess in real time.

These findings have consequences both for psycholinguis-
tics and for computational linguistics. On the psycholinguis-
tic side, they open the way for eyetracking experiments that
are set in a more natural and dynamic, and importantly, truly
interactive, environment than traditional Visual World exper-
iments. On the computational side, they offer a testbed for
interactive NLG and dialogue systems; even though eyetrack-
ing devices are not yet commonplace as computer peripherals
they can still allow us to implement and test theories of how
to effectively track the comprehension process of the user.
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