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Abstract 

Recent work suggests that people predict how objects interact 
in a manner consistent with Newtonian physics, but with 
additional uncertainty. However, the sources of uncertainty 
have not been examined. Here we measure perceptual noise in 
initial conditions and stochasticity in the physical model used 
to make predictions. Participants predicted the trajectory of a 
moving object through occluded motion and bounces, and we 
compared their behavior to an ideal observer model. We 
found that human judgments cannot be captured by simple 
heuristics, and must incorporate noisy dynamics. Moreover, 
these judgments are biased in a way consistent with a prior 
expectation on object destinations, suggesting that people use 
simple expectations about outcomes to compensate for 
uncertainty about their physical models.  

Keywords: intuitive physics, stochastic simulation, 
uncertainty, probabilistic inference 

Introduction 
Predicting how the world will unfold is key to our survival 
and ability to function on a daily basis. When we throw a 
ball, cross a busy street, or catch a pen about to fall off of a 
desk, we must foresee the future physical state of the world 
to plan our actions. The cognitive mechanisms that help us 
make these predictions have been termed ‘intuitive physics’ 
models. 

Although human performance in physical prediction tasks 
tends to approximate real-world (Newtonian) physics, it 
does not match exactly: people make systematic prediction 
errors. While this has been taken as evidence that human 
models of intuitive physics are non-Newtonian (e.g., 
McCloskey, 1983), more recently human behavior has been 
explained by intuitive Newtonian physics models under 
uncertainty. On this account, human predictions deviate 
from Newtonian mechanics because of stochastic error – 
uncertainty about the initial positions or velocity of objects 
propagates through the non-linear physical model and 
causes variability and bias in final judgments. For instance, 
human predictions about the stability of a tower of blocks or 
the most likely direction for that tower to fall are consistent 
with a purely Newtonian model of physics with a small 
amount of uncertainty in the initial positions of the 
constituent blocks (Hamrick, Battaglia, & Tenenbaum, 
2011). Similar models of physics with perceptual noise have 
been used to explain relative mass judgments in collisions 
(Sanborn, Mansinghka, & Griffiths, 2009) and infants’ 
expectations for object movement (Téglás et al., 2011). 

There are numerous ways in which uncertainty can be 
introduced into intuitive physical reasoning. We broadly 
classify these into two categories: perceptual uncertainty 
and uncertainty about dynamics. Perceptual uncertainty 

arises because initial measurements of the location and 
velocity of objects is imperfect; this initial noise propagates 
through the model. Uncertainty about dynamics reflects 
noise in the physical model itself. Real object movement 
and collisions are perfectly deterministic only in an 
idealized system; in the world, objects can deviate from 
their ideal path because of multiple, unknowable 
interactions with the environment (e.g., a ball rolling across 
gravel will not move in a straight line). Stochastic dynamics 
could thus reflect such environmental uncertainty. 

Our goal is to disentangle the influence of initial noisy 
percepts and noisy physics on human predictions of object 
dynamics. We compared human behavior in a simple 
physical prediction task to a stochastic physics model with 
parameters reflecting the different types of uncertainty. 

Stochastic Physics Model 
We designed a model to replicate stochastic physics in a 
simple environment: a ball bouncing around a two-
dimensional box. We based this model on idealized 
mechanics, but also incorporated the two sources of 
uncertainty: we added noise to the initial position and 
velocity to capture perceptual uncertainty, while dynamic 
uncertainty was captured by jitter in object movement over 
time, and variability in bounce angles. 

Uncertainty Parameters 
The model was based on a simple two-dimensional physics 
engine customized to add our sources of uncertainty. As 
physical uncertainty goes to zero, this model reduces to laws 
from idealized mechanics: the ball would continue to move 
in a straight line at a constant velocity until it hit a wall, at 
which point it would bounce elastically and with angle of 
incidence equal to the angle of exit. Uncertainty was 
captured using four parameters, two for the perceptual error, 
and two for the stochastic error: 

 
Perceptual Uncertainty At the start of the simulation, the 
ball’s position and velocity were based on where the ball 
would be in a perfectly deterministic simulation, but with 
noise added. Position was perturbed by isotropic two-
dimensional Gaussian noise parameterized by standard 
deviation, !p. Noise in velocity direction was captured in a 
von Mises (circular normal) distribution on direction of 
motion, parameterized by concentration (inverse variance) 
"v. We did not consider uncertainty in the speed of the ball, 
as this would only affect the timing of the ball’s movement 
but not its destination, which is the prediction we aim to 
capture. 
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Dynamic Uncertainty Noise was added during the 
simulation in two ways. First, at each time step (1000/sec), 
the direction of the ball was ‘jittered’ by adjusting its 
direction using a von Mises distribution with the 
concentration parameter "m. In addition, noise was added 
during each bounce by assuming that the angle the ball 
bounced off of the wall was defined by a von Mises 
distribution centered on the angle of incidence with a 
concentration parameter "b. 

 

 
 

Figure 1: Sources of uncertainty in the stochastic physics 
model 

Experiment 
We aimed to test model predictions against human data and 
to estimate uncertainty parameters in intuitive dynamics. In 
this experiment, subjects predicted the trajectory of a ball in 
a two-dimensional environment on a computer screen. This 
was done in a ‘Pong’ game where participants tried to catch 
the ball with a paddle. Crucially, we occluded the latter part 
of the ball’s movement, so that successful prediction of the 
final position required the mental simulation of the object 
trajectory. We could estimate the final position predicted by 
our stochastic physics model with different parameters, and 
thus compare human behavior to model predictions under 
varying types and degrees of uncertainty.  

In this experiment we parametrically varied both the 
distance the ball would travel1 and the number of bounces 
off of walls while occluded. If intuitive dynamics models 
are deterministic, then the number of bounces will have no 
effect on human predictions. The distance manipulation was 
designed to tease apart the contributions of perceptual 
uncertainty about velocity and dynamic velocity noise. 

Methods 
52 UCSD undergraduates (with normal or corrected vision) 
participated in the experiment for course credit. 

Subjects used a computer mouse to control the vertical 
position of an on-screen ‘paddle’ to catch a moving ball. 
The ball moved according to the deterministic physics 
underlying the stochastic physics model. Both the paddle 
and the ball were confined to a 1200 by 900 pixel area in the 
center of the screen. Each trial began with a display of only 
the paddle, which subjects could move up and down. The 

                                                             
1 Because the ball always moved at a constant velocity, distance 

was proportional to duration of occlusion. 

paddle was 100 pixels in height and was centered on the 
vertical position of the mouse before each trial. A mouse 
click triggered the start of a trial. A ball would then appear 
on the screen, moving at a constant velocity of 600 
pixels/second. After the ball moved 400 pixels, a grey 
rectangle would occlude the portion of the screen containing 
the ball (Figure 2). During this period, the ball would 
continue to move, bouncing perfectly elastically off of the 
edges of the field, but would not be visible. Once the 
subjects caught the ball with the paddle, or the ball broke 
the plane of the paddle, the trial would end and the occluder 
would be removed, showing whether (and by how far) the 
subject missed the ball. Upon clicking the mouse, the screen 
would clear and reset for the next trial. The number of balls 
caught by the subject was always displayed in the upper 
right corner as a motivation to perform well. 

 

 
 

Figure 2: Diagram of a trial. (A) The ball moves unoccluded 
in a straight line. (B) Once the field is occluded, the ball 

continues to move until caught or it passes the paddle plane. 
 

Subjects were given 648 trials throughout the experiment. 
These 648 trials were identical for all subjects, but presented 
in a randomized order. Each trial had a particular ball 
trajectory, generated by one of nine conditions. The nine 
trajectory conditions crossed the distance the ball travelled 
while occluded (600, 800, or 1000 pixels) with the number 
of bounces (0, 1, or 2); there were 72 trials of each 
condition. The specific path for each trial was generated 
prior to the experiment subject to the constraints of the 
condition and the constraint that the final position was not in 
the top 20% or bottom 20% of the enclosed area to avoid 
bias due to positioning the paddle at the ends of the screen. 

Before starting the experiment, subjects were given seven 
trials without the occluder to demonstrate how the ball 
would move, then six practice trials with the occluder. 

For each trial, we recorded the position of the midpoint of 
the paddle once the ball was caught or moved past the 
paddle. From this measure we could calculate, for each trial, 
(a) the average expected position of the ball, and (b) the 
variance of predictions around that expectation. 

Subject Performance 
Accuracy Subjects caught the ball on 43.8% of all trials. 
Individual subject accuracies varied between 25.6% and 
63.7% (chance was 11%). Accuracy also varied by trial 
condition: subjects were most accurate in the shortest, no 
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bounce condition (69%) and least accurate in the longest, 
two-bounce condition (32%). 

Accuracy improved slightly over time, increasing from 
42.7% in the first half of trials to 44.9% on the second half 
(#2(1) = 15.9, p < 0.001). However, because this was a small 
effect, and because in a logistic model predicting accuracy, 
trial order did not interact with either distance (#2(2) = 0.72, 
p = 0.70) or number of bounces (#2(2) = 4.18, p = 0.12), we 
do not try to account for this change. 

 

 
Figure 3: Mean predicted paddle position versus path 

endpoint using deterministic physics as a function of trial 
condition. Each point represents a separate trial. 

 
Expected Positions In addition to decreasing accuracy, 
subjects also showed increasing bias in average predictions 
as the distance or number of bounces increased. The mean 
final position of the paddle for each trial shifted towards the 
center as compared to the final ball position (see Figure 3).2 
The magnitude of this bias toward the center of the screen 
increased as either distance or number of bounces increased. 
 

  Table 1: Percent of distance ‘shifted’ from actual end 
ball position towards center by trial condition 

 
  Distance 

B
ou

nc
e  600 800 1000 

0 24% 44% 53% 
1 23% 60% 70% 
2 41% 63% 84% 

 

                                                             
2 There was low lag-one autocorrelation between the position of 

responses and prior responses (0.11) that did not vary by condition, 
suggesting that this mean shifting was not driven by subjects 
leaving the paddle in the same position as their prior trial.  

Variance of Responses The variability of subjects’ 
responses around the mean also increased with distance and 
bounces, but only up to a ceiling - well below the maximum 
possible spread - once subjects had to take into account even 
one bounce. 

 
Table 2: Average standard deviation (in pixels) of 

responses within a trial by condition 
 

  Distance 

B
ou

nc
e  600 800 1000 

0 65 76 94 
1 111 115 114 
2 115 111 121 

Model Application 
The coarse results suggest that prediction error and 

variability increases with distance or number of bounces. 
But they do not indicate which sources of uncertainty 
contribute to intuitive physics predictions, nor do they 
explain why some trials within the same condition produce 
greater bias and variability than others. 

We aimed to tease these factors via our model of 
stochastic physics. By finding the set of uncertainty 
parameters that best fits the empirical data, we can compare 
the relative contribution of the perceptual uncertainty 
parameters to the dynamic uncertainty parameters. A good 
model should capture trial-level differences in subjects’ 
performance, and explain trial difficulty based on the 
interplay of different sources of uncertainty.  

Simulation 
We replicated the experimental task in the stochastic 
physics model, simulating the same 648 trials. To mirror 
this task, each simulation started at the point of occlusion 
(when subjects could no longer visually track the ball and 
must predict its path) and ended when the simulated ball 
crossed the plane of the paddle. On each simulation, we 
measured the position of the simulated ball along that plane. 
Because there is no analytic form of the probability 
distribution over possible trajectories, we simulated each 
trial 500 times, thus estimating the predictive distribution 
for each trial via sampling.  

No set of uncertainty parameters produced mean 
estimates of the final position of the ball that were 
systematically shifted toward the center like the empirical 
data; as long as Newtonian physics underlies the model, it 
will in general simulate trajectories that are centered around 
the actual endpoint, regardless of the uncertainty parameters 
chosen. Since the magnitude of the center bias scaled with 
distance and number of bounces, we suspected that subjects 
were incorporating a prior on final position, producing a 
center bias proportional to the uncertainty in their physics-
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based predictions.3 People therefore appear to incorporate 
prior expectations with their intuitive physics models.  

We treated this bias as a simple Gaussian prior on the 
final ball position centered on the middle of the screen, with 
standard deviation as a free parameter (!prior). One value of 
this parameter was used for all trials and conditions. 

The final distribution of predictions for each trial was 
calculated by combining the center-prior with the 
distribution of predicted positions simulated by the 
stochastic physics engine. We treated the distribution of 
predicted positions as a Gaussian and calculated their mean 
and standard deviation. We could then calculate the mean 
and standard deviation of the posterior distribution using 
Bayesian cue combination (e.g., Ernst & Banks, 2002): 

!!"#$! ! !
!!"#$"! ! !

!!"#!
!!

, !!"#$ ! !!"#$"%
!!"#$"! ! !!"#

!!"#!
! !!"#$!  

Using these equations, trials with greater simulation 
variance will be more affected by the prior, and will shift 
further towards the screen center. Thus, the model can 
account for the center-bias in a manner sensitive to 
prediction uncertainty. 

We found the maximum likelihood parameters to fit three 
quarters of the data (with an equal number of trials from 
each of the distance by bounce conditions).4 We also fit two 
other models: one with only perceptual uncertainty and prior 
parameters, and one with only dynamic uncertainty and 
prior parameters. We compared these models based on the 
likelihood of the 25% of the remaining (cross-validation) 
data.  

Model Results 
Model Comparison The stochastic physics model was 
designed to tease apart how various sources of uncertainty 

                                                             
3 The actual endpoint of the ball was uniformly distributed 

within the space of allowable endpoints. Therefore, this prior is 
unlikely to have been learned from the experiment. 

4 Numerical optimization techniques can find local minima, so 
we used multiple starting points and grid search across 1,600 sets 
of parameters to ensure we were finding the global minimum. 

contribute to intuitive physics. Thus we compared the model 
with both dynamic and perceptual uncertainty to the two 
nested models with either dynamic or perceptual uncertainty 
parameters alone to determine which sets of parameters 
were necessary to best explain the data. 

In addition, we tested how well any of the stochastic 
models captures human behavior by comparing them to a 
simple regression model with different parameters for each 
condition. The regression model assumes that people will 
provide the correct answer, plus some error that varies by 
condition without regard to individual trial details. We 
assume that the average reported position will have some 
variance (estimated independently for each condition), and 
some bias towards the center (estimated by regressing the 
average reported position against the deterministic end 
positions within each condition) – in other words, the 
regression model is a non-physical error model. This model 
can capture the gross ‘shift’ in expected position that was 
observed in the data in each condition (see Figure 3), but 
does not treat the shift as an inference done independently 
on each trial. The spread in responses was assumed to be 
constant within each condition, and was set at the average 
empirical standard deviation from that condition. Like the 
stochastic models, this model was fit on three-quarters of 
the trials and tested on the remaining data. 

 
Table 3: Model prediction of left-out data 

Model $LLH 
Full 2,588 
Dynamic 2,568 
Perceptual 2,197 
Regression 2,326 
Oracle 3,259 

 
Table 3 shows cross-validation likelihood for the four 

models. All log-likelihoods are shown as improvement over 
a baseline assuming that all data came from a single 
Gaussian. In addition, we included an ‘oracle’ model that 
knows the mean and standard deviation of responses for 
each trial – this serves as the plausible upper limit on how 
well different models might do. The full stochastic model 

Figure 4: Sample simulation paths for one trial with each model. The grey lines represent individual simulations, the 
black line represents deterministic simulation. There is no initial uncertainty in the dynamic model, but it builds 
quickly over time, resulting in wavy paths. The initial position and velocity vary significantly in the perceptual 

model, but once started, the simulation unfolds deterministically. The full model uses both types of uncertainty and so 
has more certainty in starting positions than the perceptual model and straighter paths than the dynamic model. 
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does best, followed closely by a model including only 
dynamic noise. Both the perceptual noise model and the 
non-physical model perform worse by many orders of 
magnitude.  

The dynamic model performed nearly as well as the full 
model for two reasons. First, the parameter representing 
error in the initial position (!p) was set to a small value in 
the full model and explained very little of the variance in 
simulations. Second, much of the noise in initial velocity 
direction can be captured by increasing dynamic velocity 
noise, and so we cannot say whether any initial velocity 
noise is required. The model with only perceptual noise did 
quite poorly because subjects’ performance changed with 
each additional bounce, and thus human performance cannot 
be captured without dynamic uncertainty. 
 
Trial-Level Simulations Human predictions about 
individual trials within the same distance-by-bounce 
condition varied significantly: some had much larger 
variations in responses or greater shifts toward the center 
than others. These differences arose from trajectory 
characteristics other than total distance traveled or number 
of bounces. For instance, it is harder to predict the end 
position of a ball that bounces in a corner or balls that 
approach the paddle at a steep angle. If the stochastic 
physics model is capturing characteristics of intuitive 
physics, then it should capture this within-condition 
variability as well.  

 

 
Figure 5: Full model vs. empirical mean position by 

condition. Each point is a separate trial. 
 
The full stochastic model fit the variation in mean paddle 

position across trials well (r=0.93), and slightly better than 
the predictions of the regression model (r=0.90). However, 
the difference between models is highlighted when 

considering individual conditions: although both models 
account for the mean position in the no-bounce conditions, 
only the full model continues to perform well as bounces 
and distance are added (see Table 4).  

 
Table 4: Correlation between model and empirical by-trial 

means within condition  
  Full  Regression 
  Distance Distance 

B
ou

nc
e  600 800 1000 600 800 1000 

0 .99 .99 .99 .99 .99 .99 
1 .86 .88 .85 .88 .77 .68 
2 .89 .87 .82 .82 .68 .45 

 
The standard deviation of predictions from the full 

stochastic model was well correlated with the standard 
deviation of subjects’ responses across trials (r=0.79, see 
Figure 6), albeit with a tendency to overestimate. Moreover, 
the stochastic physical model also captures the variability 
across trials within each distance-by-bounce condition 
(Table 5). Together, these results indicate that human 
uncertainty about final outcomes accumulates in a manner 
qualitatively similar to that predicted by a stochastic 
physical model. 

 
 

 
Figure 6: Full model vs. empirical standard deviation by 

trial 
 

Table 5: Correlation between full model and empirical by-
trial standard deviations within condition  

 
  Distance 

B
ou

nc
e  600 800 1000 

0 .54 .43 .17 
1 .53 .44 .30 
2 .14 .16 .17 

 
In the experimental data, the amount of mean-shifting for 

each trial is related to the variance of the observations from 
that trial (Spearman’s rho = 0.30), suggesting that people 
hedge their guesses towards the middle more as the amount 
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of uncertainty increases. A center-prior captures this 
behavior by causing more reliance on the prior when there is 
a wider distribution of model simulations. This has the 
effect of shifting guesses more towards the center when 
physical simulations are more uncertain. The stochastic 
physics model captures this phenomenon by predicting trial-
level differences in uncertainty, and is thus better able to 
describe variation in human responses across trials than a 
constant mean-shift for each condition (see Figure 5). 

General Discussion 
We found that human performance on a physical prediction 
task is captured by a model of stochastic physics with a 
prior expectation about the final position of objects. 
Furthermore, we found that bias and variability of human 
predictions are driven by uncertainty about the dynamics: 
people use stochastic, rather than deterministic, physics to 
make predictions. This result supports recent findings that 
people predict object dynamics using unbiased intuitive 
physics models (e.g., Hamrick, et al., 2011), and suggests 
two refinements to this view. First, the internal physics 
models themselves must be stochastic rather than rely solely 
on perceptual uncertainty to demonstrate non-determinism. 
Second, people do not directly use predictions from their 
physical models, but combine them with simple priors to 
produce rich behaviors. 

Though we found that dynamic uncertainty contributes 
substantially to predictions in this task, we do not know how 
people might adjust this uncertainty based on task demands. 
In this experiment, the ball was easy to see (low perceptual 
uncertainty) and the background was uniform (suggesting 
less perturbation during movement). Lower contrast 
between object and background might cause greater 
perceptual uncertainty; likewise, backgrounds suggesting a 
rough surface might cause people to introduce more 
stochastic movement error into their simulations. An 
interesting direction for future work is to explore how 
people adjust the uncertainty within their intuitive physics 
models to account for different expectations about the 
world. 

We also found that people modulate their physical 
predictions via prior expectations about the outcomes. 
Although these expectations could arise in many ways, here 
we were able to capture human behavior well by using a 
simple expectation about the final position: despite there 
being no evidence for it within the experiment, people 
believed that the ball was more likely to end up in the center 
of the screen. We made a simplifying assumption that this 
was a prior expectation about final location; it is possible 
that this is an approximation of other sorts of priors (e.g., 
objects tend to travel in a more horizontal direction). More 
research is required to understand exactly what these prior 
expectations are, how they develop, and under what 
conditions they become integrated into models of intuitive 
physics. Regardless of the prior used, we think that this 
might reflect a more general strategy that people may adopt 
to account for their uncertainty in their internal physical 

model itself: by adjusting model predictions via a simple 
prior on outcomes, behavior will be more robust to errors in 
the simulation model.  A similar process may suggest a 
means for combining model-based and model-free 
predictions (Gläscher, Daw, Dayan, & O'Doherty, 2010): 
learning simple expectations about the world is a good 
hedge against model error.  

Our models predicted systematically larger variances than 
those we observed. This may be due to our simplistic choice 
of the shape of the prior. Gaussian cue combination of the 
prior and simulated distributions produces dependence 
between variance and mean-shift: a greater mean-shift arises 
only from greater variance. Thus to best fit the predicted 
means, using a Gaussian prior required a biased variance 
estimate. Further work is required to understand the priors 
people actually hold (e.g., Stocker & Simoncelli, 2006) to 
refine the models that people use to simulate the world. 

This work supports the hypothesis that intuitive physics 
models can be built upon a Newtonian framework.  
Moreover, these models are not deterministic, but 
incorporate sources of dynamic uncertainty. Furthermore, 
people do not trust these models entirely, but combine their 
predictions with simple expectations about the outcome 
itself.  Though just a first step, this provides a framework 
for disentangling and understanding the various components 
of intuitive physics models. 
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