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Abstract

Recent work suggests that people predict how objects interact
in a manner consistent with Newtonian physics, but with
additional uncertainty. However, the sources of uncertainty
have not been examined. Here we measure perceptual noise in
initial conditions and stochasticity in the physical model used
to make predictions. Participants predicted the trajectory of a
moving object through occluded motion and bounces, and we
compared their behavior to an ideal observer model. We
found that human judgments cannot be captured by simple
heuristics, and must incorporate noisy dynamics. Moreover,
these judgments are biased in a way consistent with a prior
expectation on object destinations, suggesting that people use
simple expectations about outcomes to compensate for
uncertainty about their physical models.
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Introduction

Predicting how the world will unfold is key to our survival
and ability to function on a daily basis. When we throw a
ball, cross a busy street, or catch a pen about to fall off of a
desk, we must foresee the future physical state of the world
to plan our actions. The cognitive mechanisms that help us
make these predictions have been termed ‘intuitive physics’
models.

Although human performance in physical prediction tasks
tends to approximate real-world (Newtonian) physics, it
does not match exactly: people make systematic prediction
errors. While this has been taken as evidence that human
models of intuitive physics are non-Newtonian (e.g.,
McCloskey, 1983), more recently human behavior has been
explained by intuitive Newtonian physics models under
uncertainty. On this account, human predictions deviate
from Newtonian mechanics because of stochastic error —
uncertainty about the initial positions or velocity of objects
propagates through the non-linear physical model and
causes variability and bias in final judgments. For instance,
human predictions about the stability of a tower of blocks or
the most likely direction for that tower to fall are consistent
with a purely Newtonian model of physics with a small
amount of uncertainty in the initial positions of the
constituent blocks (Hamrick, Battaglia, & Tenenbaum,
2011). Similar models of physics with perceptual noise have
been used to explain relative mass judgments in collisions
(Sanborn, Mansinghka, & Griffiths, 2009) and infants’
expectations for object movement (Téglas et al., 2011).

There are numerous ways in which uncertainty can be
introduced into intuitive physical reasoning. We broadly
classify these into two categories: perceptual uncertainty
and uncertainty about dynamics. Perceptual uncertainty
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arises because initial measurements of the location and
velocity of objects is imperfect; this initial noise propagates
through the model. Uncertainty about dynamics reflects
noise in the physical model itself. Real object movement
and collisions are perfectly deterministic only in an
idealized system; in the world, objects can deviate from
their ideal path because of multiple, unknowable
interactions with the environment (e.g., a ball rolling across
gravel will not move in a straight line). Stochastic dynamics
could thus reflect such environmental uncertainty.

Our goal is to disentangle the influence of initial noisy
percepts and noisy physics on human predictions of object
dynamics. We compared human behavior in a simple
physical prediction task to a stochastic physics model with
parameters reflecting the different types of uncertainty.

Stochastic Physics Model

We designed a model to replicate stochastic physics in a
simple environment: a ball bouncing around a two-
dimensional box. We based this model on idealized
mechanics, but also incorporated the two sources of
uncertainty: we added noise to the initial position and
velocity to capture perceptual uncertainty, while dynamic
uncertainty was captured by jitter in object movement over
time, and variability in bounce angles.

Uncertainty Parameters

The model was based on a simple two-dimensional physics
engine customized to add our sources of uncertainty. As
physical uncertainty goes to zero, this model reduces to laws
from idealized mechanics: the ball would continue to move
in a straight line at a constant velocity until it hit a wall, at
which point it would bounce elastically and with angle of
incidence equal to the angle of exit. Uncertainty was
captured using four parameters, two for the perceptual error,
and two for the stochastic error:

Perceptual Uncertainty At the start of the simulation, the
ball’s position and velocity were based on where the ball
would be in a perfectly deterministic simulation, but with
noise added. Position was perturbed by isotropic two-
dimensional Gaussian noise parameterized by standard
deviation, o,. Noise in velocity direction was captured in a
von Mises (circular normal) distribution on direction of
motion, parameterized by concentration (inverse variance)
Ky. We did not consider uncertainty in the speed of the ball,
as this would only affect the timing of the ball’s movement
but not its destination, which is the prediction we aim to
capture.



Dynamic Uncertainty Noise was added during the
simulation in two ways. First, at each time step (1000/sec),
the direction of the ball was ‘jittered’ by adjusting its
direction using a von Mises distribution with the
concentration parameter k. In addition, noise was added
during each bounce by assuming that the angle the ball
bounced off of the wall was defined by a von Mises
distribution centered on the angle of incidence with a
concentration parameter K.

Figure 1: Sources of uncertainty in the stochastic physics
model

Experiment

We aimed to test model predictions against human data and
to estimate uncertainty parameters in intuitive dynamics. In
this experiment, subjects predicted the trajectory of a ball in
a two-dimensional environment on a computer screen. This
was done in a ‘Pong’ game where participants tried to catch
the ball with a paddle. Crucially, we occluded the latter part
of the ball’s movement, so that successful prediction of the
final position required the mental simulation of the object
trajectory. We could estimate the final position predicted by
our stochastic physics model with different parameters, and
thus compare human behavior to model predictions under
varying types and degrees of uncertainty.

In this experiment we parametrically varied both the
distance the ball would travel' and the number of bounces
off of walls while occluded. If intuitive dynamics models
are deterministic, then the number of bounces will have no
effect on human predictions. The distance manipulation was
designed to tease apart the contributions of perceptual
uncertainty about velocity and dynamic velocity noise.

Methods

52 UCSD undergraduates (with normal or corrected vision)
participated in the experiment for course credit.

Subjects used a computer mouse to control the vertical
position of an on-screen ‘paddle’ to catch a moving ball.
The ball moved according to the deterministic physics
underlying the stochastic physics model. Both the paddle
and the ball were confined to a 1200 by 900 pixel area in the
center of the screen. Each trial began with a display of only
the paddle, which subjects could move up and down. The

! Because the ball always moved at a constant velocity, distance
was proportional to duration of occlusion.
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paddle was 100 pixels in height and was centered on the
vertical position of the mouse before each trial. A mouse
click triggered the start of a trial. A ball would then appear
on the screen, moving at a constant velocity of 600
pixels/second. After the ball moved 400 pixels, a grey
rectangle would occlude the portion of the screen containing
the ball (Figure 2). During this period, the ball would
continue to move, bouncing perfectly elastically off of the
edges of the field, but would not be visible. Once the
subjects caught the ball with the paddle, or the ball broke
the plane of the paddle, the trial would end and the occluder
would be removed, showing whether (and by how far) the
subject missed the ball. Upon clicking the mouse, the screen
would clear and reset for the next trial. The number of balls
caught by the subject was always displayed in the upper
right corner as a motivation to perform well.

Figure 2: Diagram of a trial. (A) The ball moves unoccluded
in a straight line. (B) Once the field is occluded, the ball
continues to move until caught or it passes the paddle plane.

Subjects were given 648 trials throughout the experiment.
These 648 trials were identical for all subjects, but presented
in a randomized order. Each trial had a particular ball
trajectory, generated by one of nine conditions. The nine
trajectory conditions crossed the distance the ball travelled
while occluded (600, 800, or 1000 pixels) with the number
of bounces (0, 1, or 2); there were 72 trials of each
condition. The specific path for each trial was generated
prior to the experiment subject to the constraints of the
condition and the constraint that the final position was not in
the top 20% or bottom 20% of the enclosed area to avoid
bias due to positioning the paddle at the ends of the screen.

Before starting the experiment, subjects were given seven
trials without the occluder to demonstrate how the ball
would move, then six practice trials with the occluder.

For each trial, we recorded the position of the midpoint of
the paddle once the ball was caught or moved past the
paddle. From this measure we could calculate, for each trial,
(a) the average expected position of the ball, and (b) the
variance of predictions around that expectation.

Subject Performance

Accuracy Subjects caught the ball on 43.8% of all trials.
Individual subject accuracies varied between 25.6% and
63.7% (chance was 11%). Accuracy also varied by trial
condition: subjects were most accurate in the shortest, no



bounce condition (69%) and least accurate in the longest,
two-bounce condition (32%).

Accuracy improved slightly over time, increasing from
42.7% in the first half of trials to 44.9% on the second half
(x*(1)=15.9, p < 0.001). However, because this was a small
effect, and because in a logistic model predicting accuracy,
trial order did not interact with either distance (x*(2) = 0.72,
p = 0.70) or number of bounces (x*(2) = 4.18, p = 0.12), we
do not try to account for this change.
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Figure 3: Mean predicted paddle position versus path
endpoint using deterministic physics as a function of trial
condition. Each point represents a separate trial.

Expected Positions In addition to decreasing accuracy,
subjects also showed increasing bias in average predictions
as the distance or number of bounces increased. The mean
final position of the paddle for each trial shifted towards the
center as compared to the final ball position (see Figure 3).”
The magnitude of this bias toward the center of the screen
increased as either distance or number of bounces increased.

Table 1: Percent of distance ‘shifted’ from actual end
ball position towards center by trial condition

Distance
° 600 800 1000
°§’ 0 24%  44%  53%
Cg 1 23%  60% 70%
2 41%  63% 84%

2 There was low lag-one autocorrelation between the position of
responses and prior responses (0.11) that did not vary by condition,
suggesting that this mean shifting was not driven by subjects
leaving the paddle in the same position as their prior trial.
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Variance of Responses The variability of subjects’
responses around the mean also increased with distance and
bounces, but only up to a ceiling - well below the maximum
possible spread - once subjects had to take into account even
one bounce.

Table 2: Average standard deviation (in pixels) of
responses within a trial by condition

Distance
° 600 800 1000
°§’ 0 65 76 94
Cg 1 111 115 114
2 115 111 121
Model Application

The coarse results suggest that prediction error and
variability increases with distance or number of bounces.
But they do not indicate which sources of uncertainty
contribute to intuitive physics predictions, nor do they
explain why some trials within the same condition produce
greater bias and variability than others.

We aimed to tease these factors via our model of
stochastic physics. By finding the set of uncertainty
parameters that best fits the empirical data, we can compare
the relative contribution of the perceptual uncertainty
parameters to the dynamic uncertainty parameters. A good
model should capture trial-level differences in subjects’
performance, and explain trial difficulty based on the
interplay of different sources of uncertainty.

Simulation

We replicated the experimental task in the stochastic
physics model, simulating the same 648 trials. To mirror
this task, each simulation started at the point of occlusion
(when subjects could no longer visually track the ball and
must predict its path) and ended when the simulated ball
crossed the plane of the paddle. On each simulation, we
measured the position of the simulated ball along that plane.
Because there is no analytic form of the probability
distribution over possible trajectories, we simulated each
trial 500 times, thus estimating the predictive distribution
for each trial via sampling.

No set of uncertainty parameters produced mean
estimates of the final position of the ball that were
systematically shifted toward the center like the empirical
data; as long as Newtonian physics underlies the model, it
will in general simulate trajectories that are centered around
the actual endpoint, regardless of the uncertainty parameters
chosen. Since the magnitude of the center bias scaled with
distance and number of bounces, we suspected that subjects
were incorporating a prior on final position, producing a
center bias proportional to the uncertainty in their physics-



Figure 4: Sample simulation paths for one trial with each model. The grey lines represent individual simulations, the
black line represents deterministic simulation. There is no initial uncertainty in the dynamic model, but it builds
quickly over time, resulting in wavy paths. The initial position and velocity vary significantly in the perceptual

model, but once started, the simulation unfolds deterministically. The full model uses both types of uncertainty and so
has more certainty in starting positions than the perceptual model and straighter paths than the dynamic model.

based predictions.” People therefore appear to incorporate
prior expectations with their intuitive physics models.

We treated this bias as a simple Gaussian prior on the
final ball position centered on the middle of the screen, with
standard deviation as a free parameter (Gpior). One value of
this parameter was used for all trials and conditions.

The final distribution of predictions for each trial was
calculated by combining the center-prior with the
distribution of predicted positions simulated by the
stochastic physics engine. We treated the distribution of
predicted positions as a Gaussian and calculated their mean
and standard deviation. We could then calculate the mean
and standard deviation of the posterior distribution using
Bayesian cue combination (e.g., Ernst & Banks, 2002):

_>_1, Hpost = (xczenter + #Szﬂ>

1
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Using these equations, trials with greater simulation
variance will be more affected by the prior, and will shift
further towards the screen center. Thus, the model can
account for the center-bias in a manner sensitive to
prediction uncertainty.

We found the maximum likelihood parameters to fit three
quarters of the data (with an equal number of trials from
each of the distance by bounce conditions).* We also fit two
other models: one with only perceptual uncertainty and prior
parameters, and one with only dynamic uncertainty and
prior parameters. We compared these models based on the
likelihood of the 25% of the remaining (cross-validation)
data.
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Model Results

Model Comparison The stochastic physics model was
designed to tease apart how various sources of uncertainty

? The actual endpoint of the ball was uniformly distributed
within the space of allowable endpoints. Therefore, this prior is
unlikely to have been learned from the experiment.

* Numerical optimization techniques can find local minima, so
we used multiple starting points and grid search across 1,600 sets
of parameters to ensure we were finding the global minimum.
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contribute to intuitive physics. Thus we compared the model
with both dynamic and perceptual uncertainty to the two
nested models with either dynamic or perceptual uncertainty
parameters alone to determine which sets of parameters
were necessary to best explain the data.

In addition, we tested how well any of the stochastic
models captures human behavior by comparing them to a
simple regression model with different parameters for each
condition. The regression model assumes that people will
provide the correct answer, plus some error that varies by
condition without regard to individual trial details. We
assume that the average reported position will have some
variance (estimated independently for each condition), and
some bias towards the center (estimated by regressing the
average reported position against the deterministic end
positions within each condition) — in other words, the
regression model is a non-physical error model. This model
can capture the gross ‘shift’ in expected position that was
observed in the data in each condition (see Figure 3), but
does not treat the shift as an inference done independently
on each trial. The spread in responses was assumed to be
constant within each condition, and was set at the average
empirical standard deviation from that condition. Like the
stochastic models, this model was fit on three-quarters of
the trials and tested on the remaining data.

Table 3: Model prediction of left-out data

Model ALLH
Full 2,588
Dynamic 2,568
Perceptual 2,197
Regression 2,326
Oracle 3,259

Table 3 shows cross-validation likelihood for the four
models. All log-likelihoods are shown as improvement over
a baseline assuming that all data came from a single
Gaussian. In addition, we included an ‘oracle’ model that
knows the mean and standard deviation of responses for
each trial — this serves as the plausible upper limit on how
well different models might do. The full stochastic model



does best, followed closely by a model including only
dynamic noise. Both the perceptual noise model and the
non-physical model perform worse by many orders of
magnitude.

The dynamic model performed nearly as well as the full
model for two reasons. First, the parameter representing
error in the initial position (c,) was set to a small value in
the full model and explained very little of the variance in
simulations. Second, much of the noise in initial velocity
direction can be captured by increasing dynamic velocity
noise, and so we cannot say whether any initial velocity
noise is required. The model with only perceptual noise did
quite poorly because subjects’ performance changed with
each additional bounce, and thus human performance cannot
be captured without dynamic uncertainty.

Trial-Level Simulations Human predictions about
individual trials within the same distance-by-bounce
condition varied significantly: some had much larger
variations in responses or greater shifts toward the center
than others. These differences arose from trajectory
characteristics other than total distance traveled or number
of bounces. For instance, it is harder to predict the end
position of a ball that bounces in a corner or balls that
approach the paddle at a steep angle. If the stochastic
physics model is capturing characteristics of intuitive
physics, then it should capture this within-condition
variability as well.
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Figure 5: Full model vs. empirical mean position by
condition. Each point is a separate trial.

The full stochastic model fit the variation in mean paddle

position across trials well (r=0.93), and slightly better than

the predictions of the regression model (r=0.90). However,
the difference between models

is highlighted when

considering individual conditions: although both models
account for the mean position in the no-bounce conditions,
only the full model continues to perform well as bounces
and distance are added (see Table 4).

Table 4: Correlation between model and empirical by-trial
means within condition

Full Regression
Distance Distance
600 800 1000 | 600 800 1000

0 .99 .99 .99 .99 .99 .99
1 .86 .88 .85 .88 a7 .68
2 .89 .87 .82 .82 .68 45

Bounce

The standard deviation of predictions from the full
stochastic model was well correlated with the standard
deviation of subjects’ responses across trials (r=0.79, see
Figure 6), albeit with a tendency to overestimate. Moreover,
the stochastic physical model also captures the variability
across trials within each distance-by-bounce condition
(Table 5). Together, these results indicate that human
uncertainty about final outcomes accumulates in a manner
qualitatively similar to that predicted by a stochastic
physical model.
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Figure 6: Full model vs. empirical standard deviation by
trial

Table 5: Correlation between full model and empirical by-
trial standard deviations within condition

Distance
600 800 1000
0 .54 43 17
1 53 44 .30
2 .14 .16 17

Bounce

In the experimental data, the amount of mean-shifting for
each trial is related to the variance of the observations from
that trial (Spearman’s rho = 0.30), suggesting that people
hedge their guesses towards the middle more as the amount
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of uncertainty increases. A center-prior captures this
behavior by causing more reliance on the prior when there is
a wider distribution of model simulations. This has the
effect of shifting guesses more towards the center when
physical simulations are more uncertain. The stochastic
physics model captures this phenomenon by predicting trial-
level differences in uncertainty, and is thus better able to
describe variation in human responses across trials than a
constant mean-shift for each condition (see Figure 5).

General Discussion

We found that human performance on a physical prediction
task is captured by a model of stochastic physics with a
prior expectation about the final position of objects.
Furthermore, we found that bias and variability of human
predictions are driven by uncertainty about the dynamics:
people use stochastic, rather than deterministic, physics to
make predictions. This result supports recent findings that
people predict object dynamics using unbiased intuitive
physics models (e.g., Hamrick, et al., 2011), and suggests
two refinements to this view. First, the internal physics
models themselves must be stochastic rather than rely solely
on perceptual uncertainty to demonstrate non-determinism.
Second, people do not directly use predictions from their
physical models, but combine them with simple priors to
produce rich behaviors.

Though we found that dynamic uncertainty contributes
substantially to predictions in this task, we do not know how
people might adjust this uncertainty based on task demands.
In this experiment, the ball was easy to see (low perceptual
uncertainty) and the background was uniform (suggesting
less perturbation during movement). Lower contrast
between object and background might cause greater
perceptual uncertainty; likewise, backgrounds suggesting a
rough surface might cause people to introduce more
stochastic movement error into their simulations. An
interesting direction for future work is to explore how
people adjust the uncertainty within their intuitive physics
models to account for different expectations about the
world.

We also found that people modulate their physical
predictions via prior expectations about the outcomes.
Although these expectations could arise in many ways, here
we were able to capture human behavior well by using a
simple expectation about the final position: despite there
being no evidence for it within the experiment, people
believed that the ball was more likely to end up in the center
of the screen. We made a simplifying assumption that this
was a prior expectation about final location; it is possible
that this is an approximation of other sorts of priors (e.g.,
objects tend to travel in a more horizontal direction). More
research is required to understand exactly what these prior
expectations are, how they develop, and under what
conditions they become integrated into models of intuitive
physics. Regardless of the prior used, we think that this
might reflect a more general strategy that people may adopt
to account for their uncertainty in their internal physical

model itself: by adjusting model predictions via a simple
prior on outcomes, behavior will be more robust to errors in
the simulation model. A similar process may suggest a
means for combining model-based and model-free
predictions (Gldscher, Daw, Dayan, & O'Doherty, 2010):
learning simple expectations about the world is a good
hedge against model error.

Our models predicted systematically larger variances than
those we observed. This may be due to our simplistic choice
of the shape of the prior. Gaussian cue combination of the
prior and simulated distributions produces dependence
between variance and mean-shift: a greater mean-shift arises
only from greater variance. Thus to best fit the predicted
means, using a Gaussian prior required a biased variance
estimate. Further work is required to understand the priors
people actually hold (e.g., Stocker & Simoncelli, 2006) to
refine the models that people use to simulate the world.

This work supports the hypothesis that intuitive physics
models can be built upon a Newtonian framework.
Moreover, these models are not deterministic, but
incorporate sources of dynamic uncertainty. Furthermore,
people do not trust these models entirely, but combine their
predictions with simple expectations about the outcome
itself. Though just a first step, this provides a framework
for disentangling and understanding the various components
of intuitive physics models.
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