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Abstract

One major aspect of successful language acquisition is the abil-
ity to generalize from properties of experienced items to novel
items. We present a computational study of artificial language
learning, where the generalization patterns of three generative
models are compared to those of human learners across 10 ex-
periments. Results suggest that an explicit representation of
word categories is the best model for capturing the generaliza-
tion patterns of human learners across a wide range of learning
environments. We discuss the representational assumptions
implied by these models.

Introduction
Learning the grammar of a language consists of at least two
important tasks. First, learners must discover the cues in the
linguistic input that are useful for constructing the grammar
of the language. Second, learners must represent their knowl-
edge of the grammar in a form that makes it possible to assess
the grammaticality of future input. With an appropriate repre-
sentation of the grammar, learners can generalize from prop-
erties of the small set of experienced items to predicted prop-
erties of novel items. This ability for generalization is crucial
for language acquisition, as the input for learning is naturally
limited. Such generalization should extend to only the novel
items that are actually licensed by the language, no more
(over-generalization) and no less (under-generalization).

Previous research has offered several hypotheses regarding
the cues that learners use and the representations of gram-
mar they form. In the realm of syntactic category acquisition,
one hypothesis is that the categories (but not their contents)
are innately specified prior to receiving any linguistic input,
with the assignment of words to categories accomplished with
minimal exposure (e.g. McNeill, 1966). On this view, both
the cues and the representations are predefined and indepen-
dent of linguistic input. A contrasting view states that gram-
matical categories are learned, though different hypotheses
appeal to the importance of different cues or cue combina-
tions during the learning process (such as semantic cues, e.g.,
Bowerman, 1973). Within this class of non-nativist hypothe-
ses, several studies have suggested that distributional cues
may be sufficient for extracting the grammar of the input
language (e.g., Braine, 1987; Maratsos & Chalkley, 1980;
Mintz et al., 2002). Distributional cues are defined over pat-
terns in the linguistic input, such as token frequencies, co-
occurrence statistics, and latent structural dependencies be-

tween linguistic elements. Although studies have shown that
human learners and computational models can successfully
learn grammatical categories when only these cues are avail-
able, the question of representation still remains poorly un-
derstood. How do learners represent the knowledge of pre-
viously encountered linguistic items in order to generalize to
novel ones?

The aim of the present work is to ask what types of repre-
sentations are used by human learners in an artificial grammar
learning (AGL) task that includes many of the distributional
properties of spoken language. We focus on how learners in-
duce grammatical categories and assign words to them. Our
approach involves computational modeling, comparing the
simulated learning outcome of three different models, each of
which makes a different assumption about how learners rep-
resent the learned grammar. We assess the models by com-
paring the generalization patterns of each model and those of
human learners. Our experimental data come from our pre-
vious findings across 10 AGL experiments (Reeder et al., in
review; Schuler et al., in prep). In the next section, we first
provide a brief summary of these results. Importantly, the
goal of our modeling work is not to mirror every detail of hu-
man behavior in AGL experiments: to do so, one must con-
sider psychological variables such as memory and attention,
which are currently not included in our models. Instead, we
are interested in exploring the representational assumptions
that human learners have adopted in our experiments.

Background on Behavioral Results

The behavioral data come from a series of 10 experiments
with adult participants in which we created an artificial gram-
mar with the structure (Q)AXB(R). Each letter represents a
category of nonsense words. Q and R words served as op-
tional categories that made sentences of the language vary in
length from 3 to 5 words and made words of the language
observe patterning in terms of relative order but not fixed po-
sition. The sizes of the categories varied across experiments,
leading to different numbers of possible sentences in the lan-
guage. For ease of presentation, we will number the experi-
ments. In Experiments 1-4 (Reeder et al., 2009), there were
108 possible sentences that could be created from this gram-
mar; in Experiment 5 (Reeder et al., 2009), there were 576
possible sentences; in Experiments 6-10 (Reeder et al., 2010;
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Schuler et al., in prep), there were 144 possible sentences.
Participants in these experiments were first exposed to a

carefully selected subset of the possible sentences of the
grammar. The exposure strings were chosen to test whether
specific distributional cues enabled learners to form a cate-
gory of lexical items and generalize to novel words, or to al-
low exceptions that maintain lexical specificity. In particular,
different experiments tested learners sensitivity to the con-
texts of individual words and their individual frequencies, the
sparsity of sampling the language, the overlaps among con-
texts across words, the non-overlap of contexts (or systematic
gaps in information), and the size of the exposure set. In each
experiment, a portion of the possible strings was withheld in
order to create different kinds of “gaps” in the input to partic-
ipants.

After exposure, subjects completed a grammaticality rating
task, where they rated strings on a scale from 1-5, with larger
values indicating higher grammaticality. The test was com-
prised of three types of test strings: familiar AXB sentences
(presented during exposure), novel AXB sentences (withheld
from the exposure set), and ungrammatical strings that vio-
lated the AXB word order (i.e., “A1X1A2” or “A1A2B3”).
Importantly, in order to understand how learners generalized
from training sentences and the type of knowledge represen-
tations suggested by their generalization behaviors, we var-
ied the way the presentation set and the gaps occurred in each
experimental condition, as summarized in Table 1. In Ex-
periments 1-2, we varied the sparseness of sampling the lan-
guage, but learners heard all AX and XB bigrams. In Ex-
periments 3-4, we varied the overlap of contexts across X
words: each X was heard with only 2 of the 3 As and Bs.
Experiments 6-9 included a new X word (called “X4”) that
appeared in only one sentence frame in the training subset.
The purpose was to test whether learners would generalize to
X4 as one of the X words (and therefore able to occur in all
X-word contexts), despite its own extremely limited exposure
and minimal overlap with the other X-word contexts. Exper-
iment 5 created subcategories in the language, with distinct
occurrence privileges for X words and contexts words: half
of the X words only occurred with half of the A words and
half of the B words, while the remaining X words occurred
with the remaining As and Bs.

In experiments 1-9, the bigram statistics were carefully bal-
anced: all grammatical bigrams were presented equally often
(with the exception of the X4 bigrams in Experiments 6-9).
Under this balanced design, one possible strategy for judg-
ing grammaticality could be simply to keep track of bigram
statistics. To examine this, we ran Experiment 10, where the
bigram statistics were not balanced.

By definition, the generative grammar used in all these ex-
periments is the same: (Q)AXB(R). However, our distribu-
tional manipulations across all of these experiments led hu-
man subjects under certain circumstances to restrict gener-
alization to be maximally compatible with the input, while
in other circumstances to generalize to the full grammar.

Table 1: Descriptions of the sampling bias in each experiment
Experiment Sampling bias
Expt 1 Uniformly Distributed Gaps, Dense Sampling

(1/3 withheld): Every X-word heard with every
A- and B-word

Expt 2 Uniformly Distributed Gaps, Sparse Sampling
(2/3 withheld): Every X-word still heard with
every A- and B-word

Expt 3 Systematic Gaps, Sparse Sampling: Each X-
word heard with a subset of possible A- and B-
words

Expt 4 Extended Exposure to Systematic Gaps: Same
as Experiment 3, but exposure was tripled

Expt 5 Subcategorization: Gaps were inserted such
that a clear divide segregated X-words and con-
texts words into two subcategories

Expts 6-9 Same as Experiments 1-4, but included a very
minimally overlapping X-word (X4); X4 seen
in just one sentence frame in each condition

Expt 10 Same as Experiment 3, but bigram statistics are
not balanced because words varied in frequency

Learners rated novel grammatical sentences as high as fa-
miliar grammatical strings in Experiments 1 and 2, show-
ing a strong tendency to generalize across the words within
a category. In Experiments 3 and 10, where a systematically-
gapped training set was presented (balanced or not), learn-
ers became more conservative and treated novel grammatical
sentences as somewhat less grammatical than familiar ones
(but still more grammatical than ungrammatical ones). Gen-
eralization was further reduced in Experiment 4, when the
exposure to systematic gaps was increased. In the subcate-
gorization experiment (Experiment 5), learners did not fully
generalize across the gaps created by the subcategory struc-
ture, indicating that they used the distributional information
to learn that there were two subcategories within the X cate-
gory. Lastly, the results of Experiment 6 showed that when
learners were given a dense sampling of a language with al-
most complete overlap of contexts for several words in the X
category, learners generalized a novel word (X4) to the full
range of grammatical contexts of the other X-words, even
when they heard X4 in only one of those contexts. When con-
texts were more sparse (Experiment 7) and there were signifi-
cantly more systematic gaps in the input (Experiments 8 & 9),
learners did not fully transfer their knowledge of X-category
structure to the minimally overlapping X4 word. In all ex-
periments, ungrammatical sentences were rated significantly
lower than any novel grammatical test string.

Models
We use a generative model-based framework to develop our
three models. The structures of these generative models make
explicit the assumptions about knowledge representations.
The goal of our modeling effort is to understand what ele-
ments must be included in the representation of the QAXBR
grammar so that the models’ generalization behavior will be
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most compatible with human behavior across all 10 experi-
ments. The answer to this question is related to the types of
distributional cues that human learners attend to in the exper-
iments. For the models reported in this paper, we make the
simplifying assumption that learners only attend to local bi-
gram information in the input, the bare minimum to capture
the sequential dependencies within QAXBR sentences (al-
though our models can easily be extended to use other distri-
butional cues). A successful model should assign high proba-
bilities to grammatical sentences and low probabilities to un-
grammatical ones. Crucially, a successful model should as-
sign probabilities to novel grammatical sentences that match
the ratings of human learners.

Word Bigram Model

The first model is the word bigram model: the probability
of a sentence is simply the product of the probabilities of its
ordered word pairs, where the probability of each word wi is
conditioned on the preceding word wi−1:

p(s) = ∏
wi∈s

p(wi|wi−1) (1)

Equation (1) can be interpreted to suggest that a word bi-
gram model represents the grammar with a set of multino-
mial distributions. Each distribution specifies the probabili-
ties that a word will be followed by any other words in the
vocabulary. The parameters of these distributions are typi-
cally estimated from training data with maximum likelihood
estimation (MLE). However, the standard MLE algorithm is
insensitive to sample size, which is a crucial variable of in-
terest in several experiments. When comparing Experiments
3 and 4, for example, our subjects exhibited different gener-
alization patterns as a result of the change in the amount of
exposure to the same set of training data (i.e., a change in
sample size only). Therefore, we adopt a Bayesian approach
that is sensitive to sample size. The fully derived form for
estimating the probability of a word is:

p(wi|wi−1,all previous bigrams) =
nwi−1,wi +β

∑k nwi−1,wk + vβ
(2)

where v is the vocabulary size, nwi−1,wi is the frequency of bi-
gram (wi−1,wi), and β is a free parameter. The β parameter
determines whether certain parameter settings of the multino-
mial distributions are favored. Here, we report results with β

set to 1, which is a non-biased prior.

Simulation Procedure In each experiment, the word bi-
gram model first estimates its model parameters according
to the training sentences. In experiments where the length
of exposure is a predictor of interest (Expts. 3, 4, 8 & 9),
we duplicate the training data to simulate the effect of ex-
tended exposure. Unlike human subjects, however, the model
is given information regarding the size of the vocabulary, and
does not have memory limitations.

Word Bigram Mixture Model
The word bigram model implies that there is one single rep-
resentation that corresponds to the grammaticality of a sen-
tence. Natural languages, however, are usually more flexi-
ble: a sentence can have many different types of grammati-
cality (or ungrammaticality), such as Noun-Verb agreement,
as well as lexical restrictions, such as transitive/intransitive
verbs. We address this problem by developing a word bi-
gram mixture model, where multiple patterns of grammati-
cality can be modeled simutaneously. Each component in the
mixture is a word bigram model. A grammatical sentence is
generated from a component grammar, which is in turn gen-
erated from a stochastic process (the model can be viewed as
a Dirichlet process mixture model; Ferguson, 1973). We can
describe the process of generating a sentence s in two steps:

• (a) p(s is generated by an existing component k) = nk
n+α

(b) p(s is generated by a new component) = α

n+α

• If (a), p(s = w1, . . . ,wm) = p(w1, . . . ,wm|Bk)
If (b), p(s = w1, . . . ,wm) = p(w1, . . . ,wm|Bnew)

where nk is the number of sentences that have been generated
as instances of component grammar k, n is the number of sen-
tences that have already been generated, α is a free parameter
of the model (a larger α leading to more new clusters), and B
refers to the parameters of a component bigram model (as de-
scribed in the previous section). Combining these two steps,
the probability that s will be generated by a word bigram mix-
ture model is

p(s = w1, . . . ,wn) =
∑k p(s|Bk)nk + p(s|Bnew)α

n+α
(3)

Simulation Procedures Equation (3) describes a genera-
tive model, with which we can assess the probability that
a sentence is generated by an existing representation of the
grammar. However, the learner faces the opposite problem:
they must infer the representation given the observed sen-
tences. We used the Gibbs sampling method to infer these
parameters (the exact details are not described due to space
limits). We run the model on the training data used in the ex-
periments. The first 500 samples of each run are discarded
(which may be biased towards initial values). Due to the
small scale of our artificial language, the sampler converges
quickly, well within the discarded 500 samples. Each of the
remaining posterior samples is considered as a candidate rep-
resentation of the grammar. For experiments with longer ex-
posure, we also run the sampler longer to approximate the
effect. The average probability that a sentence is generated
by these posterior representations is taken as a measure of the
grammaticality of the sentence.

Category Bigram Mixture Model
A notable feature of the two models presented so far is the
lack of explicit representation for grammatical categories.
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Figure 1: Grammaticality predictions made by the category bigram mixture model best approximate subject ratings in most
experiments. R2 is calculated by regressing subject ratings against model predictions.

In both models, bigram statistics are based on word tokens.
However, a crucial component of language acquisition in-
volves organizing words into grammatical categories and dis-
covering relations between them. To investigate whether
human learners were in fact organizing the words into cat-
egories, we also developed the category bigram mixture
model. The category bigram mixture model preserves the
notion of multiple component grammars and introduces a
bigram-based word category discovery process nested within
each component grammar. In other words, the component
grammars in the category bigram mixture model are them-
selves infinite mixtures of bigram models on categories.
Therefore, generating a sentence under the grammar is a two-
step process with the second step containing another two-step
process:

• (a) p(s is generated by an existing component k) = nk
n+α

(b) p(s is generated by a new component) = α

n+α

• If (a), for the category of each word, ci:

– (i) p(ci−1,ci belongs to existing bigram l) = nk
l

nk+α0

(ii) p(ci−1,ci is novel) = α0
nk+α0

– If (i), p(wi)∼MultiNomial(ci|ci−1)
If (ii), p(wi)∼MultiNomial(cnew|ci−1)

If (b), for the category of each word, ci:

– (i) p(ci−1,ci belongs to existing bigram l) = nnew
l

nk+α0

(ii) p(ci−1,ci is novel) = α0
nk+α0

– If (i), p(wi)∼MultiNomial(ci|ci−1)
If (ii), p(wi)∼MultiNomial(cnew|ci−1)

where in the top-level process, nk is the number of sentences
that have been generated by component grammar k, n is the
total number of generated sentences, α is the free parameter
(as in the word mixture model) influencing the tendency of
creating more component grammars. For clarity, we write
ci−1,ci as the bigram label that each bigram l is associated
with in the nested process: nl

k is the frequency of category
bigram l in component grammar k; nk is the total number of
category bigrams in component grammar k, and α0 is a free

parameter (a larger value leading to more category bigrams).
Finally, the probability that each word is generated from its
category cI , conditioned on the category of its preceding word
ci−1, is modeled as a multinomial distribution.

Relation to other models The problem of discovering cat-
egories for word tokens in a language is analogous to the
problem of part-of-speech tagging in computational linguis-
tics, which has been under active research for several decades.
Our category bigram mixture model is most similar to the
Bayesian unsupervised tagging algorithm developed by Gold-
water & Griffiths (2007). While our approach is not fully
Bayesian (in the sense that hyper-parameters are treated as
free parameters), it has the flexibility of discovering multiple
part-of-speech sequence patterns (i.e. component grammars)
and creating as many part-of-speech tags as needed (due to
the nested Dirichlet Process).

Simulation Procedure As in the case of the word bigram
mixture model, Gibbs sampling is applied to the inference
problem to find samples of the posterior distribution. Each
of the remaining posterior samples is considered as a candi-
date representation of the grammar under the category bigram
mixture model. The average probability that a test sentence
will be generated by these representations is taken as a mea-
sure of the grammaticality of the sentence.

Results and Discussion
Model predictions are in the format of probability estimates.
A higher probability estimate means that a sentence is more
grammatical. The quality of model predictions is determined
by examining how well they correlate with subject ratings. To
ensure that subject ratings are maximally comparable with
model predictions, we transformed discrete ratings into z-
scores within each subject and experiment, so that the ratings
of subjects with consistent biases (consistently high or con-
sistently low ratings) were normalized. We computed the R2

metric for each group using a linear regression where model
predictions were used to predict subject ratings. A model
with a high R2 indicates that the particular model explains
a significant amount of variance in subject ratings (see Fig 1).
Overall, the category bigram mixture model best captures hu-
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man behavior across all 10 experiments combined (R2 Word
Bigram = 0.4, R2 Word Bigram Mixture = 0.35, R2 Category
Bigram Mixture = 0.47).

The general advantage of the category bigram mixture
model suggests that our human learners may have acquired
a representation of an X category, and not just a set of sim-
ple word co-occurrences. In X4-related experiments (Expts.
6-9), we asked whether learners could extend their knowl-
edge of a target category to a very infrequently presented
word for which they only had minimal context information.
We found that there was a point in learning where hearing
just one context for the minimally overlapping X4 word was
enough to generalize full category privileges for that word
(Expt 6). Simple word co-occurrence and bigram counts
will not achieve this outcome. The category bigram mixture
model, however, has the appropriate representation for sup-
porting such a learning outcome. Indeed, in Experiment 6,
X4 gets assigned to the same category as all other X-words,
thus enabling the generalization to novel X4 sentences (the
effect of X4 sentences on overall R2 is reduced by the ex-
tremely small number of X4 sentences in the testing phase).

Limitations of the category bigram mixture model
While the category bigram mixture model best approximates
human generalization patterns across the 10 experiments, it
does no better than the other two models in capturing hu-
man performance in the subcategorization experiment. In-
deed, the two mixture models acquire the subcategory struc-
ture, but fit human performance no better than the simplest
word bigram model. This paradoxical result is due to the ex-
perimental design: all bigrams in the training subset conform
to the subcategory boundaries and are presented equally of-
ten. At test, novel subcategory-conforming items are rated
as high as familiar ones because they contain only bigrams
that have been presented (thus indistinguishable from famil-
iar ones). Test strings violating the subcategory structure are
rated low by the word bigram model simply because they con-
tain one or two bigrams which are never seen in the training
data. The balanced presentation of all within-subcategory bi-
grams enables the word bigram model to distinguish between
subcategory conforming and violation items without learning
the existence of two subcategories. As a result, even though
the two mixture models successfully discover the existence of
two subcategories, the additional advantage of such discover-
ies is minimal.

The category bigram mixture model also tends to over-
generalize in experiments with systematic gaps. This is most
clearly demonstrated in Experiments 4 and 9 (see Fig 2).
In those experiments, subjects were exposed to a language
with frequent systematic gaps in the input. Human learners
gave novel grammatical sentences a significantly lower rating
than familiar grammatical strings, especially when the train-
ing materials were presented multiple times. We view this re-
striction of generalization as a rational behavior that prevents
human learners from over-generalizing when systematic and
persistent gaps occur in the input.
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Figure 2: Z-score normalized grammaticality ratings by mod-
els and human subjects in 3 experiments where the Category
Bigram Mixture model had highest R2. Error bars = SE. Re-
garding the difference between familiar and novel ratings,
Expt 4 shows overgeneralization by the category bigram mix-
ture model, Expt 9 shows overly conservative behavior of the
category bigram mixture model, and Expt 10 shows the cat-
egory bigram mixture model best capturing human behavior,
despite systematic gaps and variable bigram frequencies.

In the word-based models, the reduced generalization is
captured because an increase in the probabilities of observed
word bigrams necessarily leads to a decrease in the probabil-
ities of unobserved ones, thus producing restricted general-
ization. However, this effect is much weaker in the category
bigram mixture model, where repeated exposure to training
sentences only strengthens the category bigram dependen-
cies. When a novel grammatical sentence is presented to this
model, its category bigrams have been observed many times
during training and the sentence will receive a relatively high
rating as a result (despite this, R2 is relatively higher in the
category bigram mixture model because its predictions are
qualitatively closer to subject ratings; see Fig 2). This is an
indication that learners have slightly different constraints on
learning and/or a slightly different strategy from the category
bigram mixture model. We are currently exploring other pos-
sible models that build on the idea of an underlying category
representation, but incorporate learning constraints that more
closely mimic human learning (e.g. incremental models of
learning) and lead to the construction of a more restrictive
grammar that is still compatible with the input.
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This pattern can be contrasted with model performance on
Expt 10, where not all grammatical bigrams are seen equally
often during exposure. Results from this experiment make
clear that the category bigram mixture model is the most ro-
bust to manipulations of the bigram distribution (see Fig 2).
The other two models rate grammatical novel sentences al-
most as low as ungrammatical sentences, since novel gram-
matical sentences contain novel and low-frequency bigrams.
By definition, these are less grammatical to the word-based
models due to having a lower probability. The category mix-
ture model, on the other hand, is not negatively influenced
by the unbalanced design due to the abstraction of word cate-
gories.

General Discussion

Across 10 experiments, we compared the grammaticality pre-
dictions of three different models to human subject ratings.
Our primary interest was to find the representational elements
of the grammar that are most compatible with the generaliza-
tion behaviors displayed by the learners. Generalization de-
pends on the ability to abstract over categories, which is fun-
damental to linguistic productivity. A number of researchers
have asked whether there is adequate distributional infor-
mation in the input to form linguistic categories. Previous
work uses hierarchical clustering and a computational learn-
ing mechanism to attempt to deduce grammatical categories
from corpora of child directed speech based solely on distri-
butional analyses of the input (e.g. Mintz et al., 2002; Red-
ington et al., 1998). These models have been able to use co-
occurrence statistics among words to achieve relatively good
categorization performance for frequent target words, indicat-
ing the utility of these types of distributional cues for catego-
rization.

The behavioral experiments that this work is built upon
suggest that the patterning of word tokens in a substantial cor-
pus of linguistic input appears to be sufficient to extract the
underlying structural categories in a natural language, given
an appropriately capable learner. Our modeling results have
further explicated the representational assumptions for ex-
tracting the knowledge of a grammar. Of the three models,
two models are based on simple word bigrams collected from
training data. While word bigrams are useful for capturing
the lexical dependencies of the grammar, they cannot explain
how human learners could generalize from experienced ex-
amples to novel items, especially when the prior experience
is minimal (i.e., Expts 6-9). Such rapid and automatic gener-
alization behavior calls for a richer representation, in which
the grammar of the artificial language is organized around
potential categories of vocabulary words. The category bi-
gram mixture model introduces the notion of categories as a
representational assumption, which led to model predictions
that better approximated the behavior of human learners in
almost all experiments. A limitation of the category bigram
mixture model, however, is that it overgeneralizes compared
to human performance. A fourth type of model could add a

generative component that asks how likely it is that a string
is absent given a random sampling process. If that probabil-
ity is low, then it would penalizes the probability even fur-
ther by downweighting it in the grammar. We are explor-
ing this direction, in conjunction with other mixture models
that may more closely mirror the constrained learning envi-
ronment that human learners face during natural grammatical
category acquisition.
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