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Abstract

There have been several computational alternatives to the
cloze task (Taylor, 1953) intended to approximate word
predictability effects on eye movements during reading. In
this study, we implement a computational model that
instantiates each content word in a sentence as an input that
activates semantic concepts in working memory. The
predictability of a word is then determined by the extent to
which its corresponding semantic representation is associated
with the network of concepts already active in working
memory from the preceding context. The computation of
concept activation is based on a connectionist model
(Landscape model, see van den Broek, 2010). Latent semantic
analysis (LSA) is used to establish connections between
words and simulate the long-term semantic associations
among concepts (Landauer & Dumais, 1997). This model
provides a means of investigating how language
comprehension and eye movement behavior are affected by
the activation of concepts in working memory.

Keywords: eye movements; reading; word predictability;
latent semantic analysis; Landscape model.

Introduction

It has been well-established that eye movement behavior
is affected by lexical variables such as frequency and
predictability (Rayner, 1998; 2009). As such, the eye
movement record provides an indication of language
processing as it unfolds during normal reading. Rayner and
Well (1996; see also Ehrlich & Rayner, 1981) found that the
predictability of target words had a strong influence on eye
movements during reading. In their experiment, subjects
fixated unpredictable target words longer than either highly
or moderately predictable target words; highly predictable
words were also skipped more often than moderately
predictable or unpredictable target words.

Accordingly, in the E-Z Reader model (Pollatsek, Reichle,
& Rayner, 2006; Reichle, Pollatsek, Fisher, & Rayner,
1998; Reichle, Rayner, & Pollatsek, 1999; 2003), word
predictability within a given sentence context is considered
in both first stage processing (i.e., L1, including
identification of orthographic form and a familiarity check)
and second stage processing (i.e., L2, including
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identification of  phonological/semantic  form  and
completion of lexical access). The model also maintains that
the predictability effect is stronger in L2 than in L1.
Estimates of word predictability are typically derived from
a modified cloze task procedure (Taylor, 1953) in which
subjects are asked to guess the identity of a word when
given the prior sentence context. Most reading studies
utilize the cloze task to establish or confirm word
predictability manipulations. These experiments use target
words that differ substantially in cloze value (the probability
with which subjects select the word), often with
probabilities of .70 to .90 for highly predictable words and
less than .10 for “low” predictability words. As an
alternative to necessarily subjective cloze responses, several
computational methods have been successfully utilized to
approximate degrees of contextual constraint and predict the
influence on eye movements during reading; including,
transitional probabilities (McDonald and Shillcock, 2003;
but see Frisson, Rayner, & Pickering, 2005), surprisal
(Boston, Hale, Kliegl, Patil, and Vasishth, 2008; Levy,
2008), conditional co-occurrence probability (Ong and
Kliegl, 2008). Additionally, Latent Semantic Analysis
(LSA) (Landauer & Dumais, 1997) was used by Pynte,
New, and Kennedy (2008) as well as Wang, Chen, Ko,
Pomplun, and Rayner (2010), who reported that eye
movement behavior during first-pass reading on content
words could be predicted using LSA. McDonald and
Shillcock (2003) and Wang et al. (2010) used the
transitional probability (corpus-based statistical likelihood
of encountering a word given the preceding or subsequent
word) to categorize predictability conditions; both
proposing that predictability effects could be accounted for
using only the content word preceding a target. One
limitation of these objective measures could be that prior
context, before the immediately preceding lexical item, may
affect processing of a word in many instances. Wang et al.
(2010) also used all concepts in the preceding sentence
context to compute contextual constraint for targets using
the standard weighting from LSA. However, without a
clearer understanding of working memory constraints



during comprehension it is difficult to make regarding
semantic constraint.

The predictability of a given word can, in large part, be
conceptualized as the degree to which the semantic concept
represented by the word is associated with the context of
preceding lexical items. By treating incoming lexical items
as semantic concepts that interactively influence working
memory processes, prior context for a word can be
represented as inputs which influence the activation of
associated concepts and have the potential to facilitate or
inhibit the processing of upcoming words. As a result, the
higher the activation of a concept when it is encountered,
the more processing of the concept is facilitated.
Importantly, individuals can allocate their processing
attention to only a finite number of linguistic items at a
given moment. Thus, any model of language processing
and working memory must establish limits to the number of
lexical-semantic concepts that can be simultaneously active
and exert an appreciable influence on the processing of
upcoming lexical inputs.

A Connectionist Model for
Sentence Reading

This study proposes a computational model to monitor the
activations of concepts in working memory. The
computation of concept activation is derived from a
connectionist model (the Landscape model, see van den
Broek, 2010). The current model is not connectionist in the
sense of having distributed semantic representations; rather,
words are represented as localized semantic "concepts” with
weighted connections to a network of additional concepts.
The semantic connections among concepts in the simulation
are computed using LSA cosine values based on the default
300 dimension semantic space, “general reading up to 1st
year college”, available at the LSA@CU Boulder website
(http://1sa.colorado.edu/). LSA represents word meaning and
computes associations by applying a linear algebra method,
singular value decomposition (SVD), to a large corpus of
text (see Landauer & Dumais, 1997).

The Landscape model is a connectionist approach to
instantiating comprehension using psychologically plausible
algorithms that can potentially be used to model several
aspects of text comprehension (see van den Broek, 2010;
Tzeng, van den Broek, Kendeou, & Lee, 2005). The
architecture of the conventional Landscape model assumes
that as a reader proceeds through a text in reading cycles
(with each cycle roughly corresponding to the reading of a
new sentence), concepts fluctuate in activation as a function
of four sources of information: the current processing cycle,
the preceding cycle, the current episodic text representation,
and reader’s background knowledge. With the reading of
each cycle, particular concepts are activated and added as
nodes to the episodic memory representation of the text. If a
concept is already part of the text representation and is
reactivated, its trace is strengthened. Furthermore, co-

activation of concepts leads to the establishment (or
strengthening) of connections between those concepts. The
resulting network representation influences subsequent
activation patterns. This phenomenon is called the cohort
effect. These cyclical and dynamically fluctuating
activations lead to the gradual emergence of an episodic
memory representation and discourse model of the text, in
which textual propositions and inferences are connected via
semantic relations (such as causal and referential links).
Thus, the model captures the fluctuations of concepts during
reading (Linderholm, Virtue, Tzeng, van den Broek, 2004),
as well as readers’ memory representation of text (Tzeng,
2007). As such, this model has prescribed mechanisms that
can link the iterative and reciprocal relations between
fluctuations of activations and the episodic text
representation. However, there are necessary differences
with regard to how readers generate and update active
discourse representations for the comprehension of an
individual sentence, compared to the processing of a longer
narrative or expository text. For the comprehension of an
individual sentence, a reader must primarily rely on
establishing connections between relevant concepts in
working memory and pre-existing long-term semantic
representations. For a longer text, on the other hand, readers
are often able to take advantage of more extensive and
detailed context and presumably a more enriched discourse
model. Thus, the current computational approach adapts the
Landscape Model to a connectionist framework more
suitable for capturing sentence reading. The current model
utilizes LSA in order to represent pre-existing connections
between semantic representations stored in long-term
memory (i.e., background or world knowledge).

In the current model, as with the Landscape Model, text
inputs are represented by an input matrix and each is
indexed as a Mention (concepts being read from the text).
The conventional Landscape model also defines other
sources of activation including Referential (for building
referential coherence), Causal, and Enabling (for the causal
explanation of the current statement), but those activations
are as of yet, not implemented here. The input matrix for
example sentence: “The knight uses his sword to fight the
dragon” is shown in Table 1.

Table 1: Input matrix for the Knight example.

cycle knight use sword fight  Dragon
1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
S 0 0 0 0 1

Initially, the sentence is segmented into component
concepts: “knight”, “use”, “sword”, “fight”, and “dragon”;
as, currently, only content words are considered as concepts.

The model assumes that each word is fixated and processed



sequentially. In each cycle, the concept of Mention receives
1 unit of activation. In addition to the sequential activation
of concepts, the influence of semantic knowledge and pre-
existing lexical associations between concepts is established
using LSA corpus-learned associations. Table 2 presents
the connection matrix for the example sentence. The values
are always between -1 and 1, but are rarely below 0 because
of LSA’s high-dimensional space.

Table 2: Connection matrix for the example.

knight use sword  fight  dragon
knight 1 .01 .64 A5 .28
use .01 1 .03 -.02 .06
sword .64 .03 1 .20 40
fight 15 -.20 .20 1 13
dragon .28 .06 40 A3 1

The activation values for each concept are represented in
an m x n activation matrix, where m represents the number
of concepts in the sentence and n represents the number of
cycles. Each column in the matrix thus represents the status
of each concept. The activation matrix takes each column of
the input matrix as raw input and processes it row by row.
In our model, the activation during the current reading cycle
is defined by Equation (1):

Acycle - Zé»Ajcycle—la(Sij) n Z input cyclea(sij) Q)

j=1 j=i

A~ js the activation of concept i during the current
cycle. Starting from the summation (%) term in Equation (1),
for all activated concepts in the previous reading cycle, each
activation value is multiplied by a transformation function ¢
of connection strength (S;) and by the cohort activation
parameter 3. Sj; is the strength of the relation from concept j
to i. For the current cycle, input™ is the activation of concept
i in the input matrix. The sum of the net inputs for these m
concepts is multiplied by the transformation function ¢ of
connection strength (Sy).

The conventional Landscape model uses a sigmoid
function as the transformation function ¢ to control the
possible linear growth of spreading of activation and limit
the effect of cohort activation to those strongly related to the
concept. Since Sj is usually between 0 and 1, a linear
function with absolute value is used in this model. The
value of the cohort activation parameter, 6, directly
determines the amount of cohort activation and in the future
can be used to mimic individual differences in the spreading
of activation. Our model assumes that for any concept, its
cohort activation can never exceed its input activation. For
this reason the model will take the largest of the input and
cohort activation values, and Mention is the maximum
activation a concept can receive. Furthermore, the system
parameter- Activation Threshold sets any activation below a
set threshold to zero.

877

The working memory constraint is implemented by a
parameter WMC (Working Memory Capacity). When the
actual sum of activation exceeds the value of WMC, the
activation of each concept is scaled down using Equation (2):

cycle __ pcycle .__WMC
Ai - A1,Actual

S I
cycle
z AI ,Actual
i=1

O]

For the example sentence, the activation matrix is shown
in Figure 1. For the 1¥ cycle (in which “knight” is processed
during first-pass reading), the activation of “knight” is 1,
from the Mention input. There is no cohort effect for the
first reading cycle since no previous cycle exists. The
activations for “use”, “sword”, “fight”, and “dragon” are
established by multiplying their connections, .01, .64, .15,
and .28 respectively, and the input of “knight” (1). The
activation of “use” does not reach the threshold (set to 0.1)
and as a result receives an activation of 0. For the 2™ cycle
when “use” is being processed, the activation of each
concept is calculated according to Equation (1). Figure 1
illustrates that the activation of “dragon” stays relatively
high from cycle 1 to cycle 4 because of relatively strong
connections to “knight”, “sword”, and “fight.” Conversely,
the activation of “use” decreases from cycle 2 to 5 because
of relatively weak connections to “sword”, “fight”, and
“dragon” (less than .06).

Activation Matrix

Activation

knight

sword

fight
Concepts

1

dragon

Figure 1: The “landscape” of the activation matrix for the
Knight example.

The conventional Landscape model updates the
connection strengths in its episodic memory using a learning
algorithm in order to adjust active discourse representations
for the comprehension of a longer text. In this study, we
assume that the background knowledge (represented by the
connection matrix) is not altered during sentence reading.

In summary, by assuming (a) that words in a sentence are
read and processed sequentially, and (b) long-term memory



representations (i.e., background knowledge) are not
affected during comprehension; we propose a computational
model of sentence processing which takes advantage of an
existing discourse comprehension model designed to take
into account contextual effects. The proposed model allows
us to examine several factors that affect sentence
comprehension; namely, (1) semantic activation in working
memory, (2) background knowledge, and (3) working
memory capacity. To assess the model’s ability to reflect
linguistic processing we will compare its performance to the
cloze task.

Experiment: Reanalysis of
Previous Data

The key objective for this implementation is to
disambiguate high from low semantic constraint in sentence
contexts. Another objective of this implementation is to
demonstrate that the LS model surpasses previously utilized
methods as an alternative to the cloze task. In order to
demonstrate that the proposed computational model is
capable of matching cloze results more accurately than
previous approaches, i.e., Wang et al. (2010), we re-
analyzed the materials in Gollan, Slattery, Goldenberg, Van
Assche, Duyck, and Rayner (2011), in which
predictable/unpredictable target words were determined by a
norming cloze task. We estimated predictability of a target
word by (1) the previous content word, (2) all words in prior
context, and (3) the estimates of the proposed connectionist
model in this endeavor. We expect that our model can
outperform other predictors on differentiating high- and
low-constraint contexts and generate higher correlation to
cloze values.

Participants. Twenty undergraduate students at the
University of California, San Diego, participated. All of
them were native speakers of English.

Materials. There were 90 target words; all target words
were embedded in either a high-constraint (HC) or low-
constraint (LC) sentence. For example, “the hockey player
moved on the ice on his ” (S1) was considered HC
while “The little girl was very happy when she
unwrapped her brand new ” (S2) was LC for the
target “skates”. The target words in HC context were
generated 87% of the time, whereas the ones in LC context
were generated less than 3% of the time.

Procedure. Participants were presented with the
sentences up to the target words, and asked to provide one-
word continuations for each sentence.

Analysis. The first estimate of predictability of each
target word was derived by extracting the LSA connection
weight to the previous content word (PreCont) for each
target, e.g., the previous content word of S1 is “ice,” while
the one of S2 is “new.” The second approach computed the
LSA cosine value using all words in the previous context
(AllW). The final estimate was derived from Landscape

model of sentence processing described above in the
previous section (LS). We manually segmented the sentence
into concepts and removed function words such as “a”,
“the”, “in”, etc., for instance, “hockey / player / moved /
ice” for S1. The parameters of our model were set as
following: & = .7, Mention = 1, Activation Threshold = .1,
and WMC = 7. The averages and standard deviations of
Cloze, PreCont, AllW, and LS for HC and LC are described
in Table 4.

Table 4. The averages and standard deviations (in
parentheses) of Cloze, PreCont, AW, and LS for HC and
LC conditions.

Cloze PreCont AllW LS
HC .87(13) .17(16) .21(.16) .66 (.29)
LC .03(03) .05(11) .04(.07) .13(.20)
Results

As shown in Figure 2, an operating characteristic (ROC)
analysis demonstrates that the area under the curves (AUC)
of Cloze, PreCont, AW, and LS are 1, .70, .87, .91,
respectively. The LS model obtains a higher AUC than
AW or PreCont. Furthermore, a correlation analysis
demonstrates that the Pearson correlations between Cloze

and PreCont, AllW, and LS are .39, .56, and .70,
respectively.
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Figure 2: ROC curves for Cloze, PreCont, AIIW, and LS.

The results suggest that the LS model can simulate much
of the linguistic processing subjects perform when



producing cloze responses (and presumably during normal
reading). The current objective is not to match cloze
probabilities per se, but to successfully demonstrate the
model's ability to differentiate highly constrained and
unconstrained sentence contexts as well as the
conventionally used cloze task. The LS model also
demonstrates superiority over objective measures that utilize
only the prior content word or LSA connections between
content words exclusively.

Discussion

The current implementation of the model has
demonstrated that it is an effective measure of contextual
constraint; in that it differentiates high and low-constraint
sentence contexts better than previously employed
alternatives to the cloze task.  Furthermore, model
activations for target words correlate with cloze responses
more highly than previous objective methods of measuring
contextual constraint. We believe this is an initial step
toward the ultimate objective of representing both the
fluctuating activation of lexical-semantic concepts in
working memory during online sentence processing and
how the processing of upcoming words can be facilitated by
prior context. Discourse-mediated spreading activation
across lexical-semantic representations has been proposed
as an appreciable source of predictability effects during
reading (Morris, 1994; Pynte et al., 2008; Traxler, Foss,
Seely, Kaup, & Morris, 2000). Thus, modeling the process
whereby linguistic inputs activate concepts in long-term
memory and continuously influence working memory
operations during sentence comprehension is an important
endeavor in psycholinguistics.

As shown by the comparison to standard cloze responses,
the current model can be wused to reliably derive
predictability of word n given the preceding context. The
model generates a specific level of activation for word n,
assuming that each word in the preceding context has been
identified and all associated concepts have been engaged in
working memory. As demonstrated above, this predicted
level of activation correlates to cloze probabilities for a
target word (n).

Critically, the LS Model is able to reliably differentiate
high and low constraint sentence fragments. Moreover,
when using the LS model, in many cases the level of
activation for word n will provide a more psychologically
realistic measure of word processing difficulty when
compared to cloze proportions, especially in neutral or
unconstrained contexts. For instance, referencing cloze
scores alone, there is no distinction between words that are
plausible, yet not highly-predictable, and those that are
completely implausible or anomalous given the preceding
sentence context. In fact, it is quite feasible for plausible
target words in unconstrained sentence frames to receive
cloze probabilities at or around zero; however, low cloze
probabilities are not necessarily indicative of potential
processing difficulty. The manner in which the cloze task is
conventionally used produces binary measurements (to the
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extent that non-target responses are ignored). In this way,
the current computational model may produce a more
accurate representation than cloze scores with regard to
indexing online word processing difficulty. This is
particularly true for low constraint sentence frames. As
such, the next logical step is to assess the LS model’s
goodness-of-fit to reading times and other eye movement
data.

By modifying the framework of the conventional
Landscape Model to reduce the size of text segments being
processed during a reading cycle and situating activated
concepts within limited working memory resources, we
have attempted a psychologically plausible computational
model of semantic effects on sentence comprehension.
Crucially, the fluctuating activation of within sentence
concepts is not determined merely by summing its
cumulative activation across all preceding words; rather, the
interactive and co-dependent influence of the prior sequence
of words determined the extent to which the prior sentence
context results in activation for a particular lexical-semantic
concept.

The model is also a useful tool for investigating the
number of semantic entities that are generally active in
working memory. As well as the upper limits for the
number of lexical-semantic entities simultaneously
activated. Computationally examination of working memory
limitations during reading could provide insight into what
linguistic constructions are likely to elicit processing
difficulty, result in longer fixation times, and lead to inter-
word regressions during sentence reading. Model outputs
can also be used to make predictions as to which concepts
are likely to maintain relatively high levels of activation in
working memory.

While among the most sophisticated computational
frameworks in the field of cognitive science, current models
of eye movement control during reading do not focus on
how prior words render specific words predictable. The
more well-developed models of oculomotor behavior and
language comprehension represent the predictability of a
given word in a sentence using only its cloze probability
(Engbert, Nuthmann, Richter & Kliegl, 2005; Reichle et al.,
1999; 2003). Our model successfully attempts to represent
the cognitive processes that are sensitive to semantic
constraint. Future implementations of the LS model will be
capable of more thoroughly examining aspects of language
processing and eye movement behavior. The connection
matrix in the LS model can operationalize a variety of
linguistic characteristics stored represented in long-term
memory. Semantically-based connection weights can be
modified to accommodate mediation by parafoveal preview
information. In addition, the connection matrix could be
modified to capture morphological, orthographic, and
phonological  relationships  between lexical items.
Currently, the LS model is a computational alternative to the
cloze that is sensitive to both strong and subtle changes in
contextual semantic constraint; as shown by the reasonable
activation of plausible words in low constraint sentence



frames. Ultimately, the model will be expanded in an effort
to achieve more comprehensive measurement of lexical-
semantic predictability as it affects reading behavior.
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