Categorial compositionality continued (further): A category theory explanation
for the systematicity of recursive cognitive capacities

Steven Phillips (steve @ni.aist.go.jp)
Mathematical Neuroinformatics Group, National Institute of Advanced Industrial Science and Technology (AIST),
Tsukuba, Ibaraki 305-8568 JAPAN

William H. Wilson (billw @cse.unsw.edu.au)
School of Computer Science and Engineering, The University of New South Wales,
Sydney, New South Wales, 2052 AUSTRALIA

Abstract

Human cognitive capacity includes recursively definable con-
cepts, which are prevalent in domains involving lists, numbers,
and languages. Cognitive science currently lacks a satisfactory
explanation for the systematic nature of recursive cognitive ca-
pacities. The category-theoretic constructs of initial F-algebra,
catamorphism, and their duals, final coalgebra and anamor-
phism provide a formal, systematic treatment of recursion in
computer science. Here, we use this formalism to explain the
systematicity of recursive cognitive capacities without ad hoc
assumptions (i.e., why the capacity for some recursive cogni-
tive abilities implies the capacity for certain others, to the same
explanatory standard used in our account of systematicity for
non-recursive capacities). The presence/absence of an initial
algebra/final coalgebra implies the presence/absence of all sys-
tematically related recursive capacities in that domain. This
formulation also clarifies the theoretical relationship between
recursive cognitive capacities. In particular, the link between
number and language does not depend on recursion, as such,
but on the underlying functor on which the group of recursive
capacities is based. Thus, many species (and infants) can em-
ploy recursive processes without having a full-blown capacity

for number and language.'

Keywords: systematicity; category theory; endofunctor, F-
(co)algebra; (final) initial algebra; universal construction; cata-
morphism; anamorphism; classicism; connectionism

Introduction

Many cognitive domains include recursively definable con-
cepts (i.e., concepts defined with reference to themselves),
such as domains involving lists, or languages. In card games,
for example, a deck of cards can be defined (recursively) as a
top card (perhaps turned face up to reveal its value) and a (re-
maining) deck of cards. To include finite decks, the definition
has an alternative clause specifying an empty deck; that is, a
deck is either empty, or contains a top card and a (smaller)
deck. Operations on recursively defined concepts may also
be defined recursively. For example, removing jokers from
a deck of cards can be defined (recursively) as removing the
top card if it is a joker and then removing jokers from the
remaining deck of cards. Given that you don’t find people
who can remove the jokers from a hand of seven cards with-
out being able to remove jokers from a deck of fifty-three,
recursion-related capacities are further instances (see below)
of the systematic nature of human cognition.

Systematicity is a property of human cognitive architec-
ture (i.e., the basic processes and modes of composition that

I'This paper is a short version of Phillips and Wilson (2012).

869

together afford cognition) whereby cognitive capacity is or-
ganized around groups of related abilities. A standard exam-
ple since the original formulation of the problem (Fodor &
Pylyshyn, 1988) has been that you don’t find people with the
capacity to infer John as the lover from the statement John
loves Mary without having the capacity to infer Mary as the
lover from the related statement Mary loves John. An in-
stance of systematicity is when a cognizer has cognitive ca-
pacity c; if and only if the cognizer has cognitive capacity
¢ (see McLaughlin, 2009). So, e.g., systematicity is evident
where one has the capacity to remove the jokers if and only if
one has the capacity to remove the aces (assuming, of course,
one has the capacity to identify jokers and aces).

The classical explanation for systematicity has two compo-
nents: (1) combinatorial syntactically structured representa-
tions; and (2) processes that are sensitive to (i.e., compatible
with) those syntactic structures. In a classical cognitive ar-
chitecture, mental representations of constituent entities (e.g.,
John, Mary) are tokened (instantiated) whenever the mental
representations of their complex hosts (e.g., John loves Mary)
are tokened, with the meaning of a complex host represen-
tation obtained (recursively) from the meaning assigned to
its constituent mental representations and their syntactic rela-
tionships. By analogy to language, this form of mental repre-
sentation is called a language of thought (LoT) (Fodor, 1975).

The three aspects of systematicity, i.e., systematicity of rep-
resentation, systematicity of inference, and compositionality
of representation (Fodor & Pylyshyn, 1988), can often be de-
rived from classical cognitive architectures, because the same
component processes are often used for each and every mem-
ber of a group of systematically-related capacities. For in-
stance, a classical system has the capacity to represent John
loves Mary if and only if the system has a capacity to repre-
sent Mary loves John when the common component process
is something like a production rule: S — Agent loves Patient
(where John and Mary are produced from Agent and Patient
by other production rules)—systematicity of representation.
Likewise, a classical system has the capacity to infer John
as the lover in John loves Mary if and only if it has the ca-
pacity to infer Mary as the lover in Mary loves John given
a common process that is sensitive to the syntactic struc-
ture whereby the lover constituent is represented by the first
token—systematicity of inference. And, again, the capacity

to assign the semantic content of John being the lover of Mary
to the representation John loves Mary if and only if there is
the capacity to assign the semantic content of Mary being the
lover of John to the representation Mary loves John derives
from the tokening principle (above) mediating classical repre-
sentations and processes: the process for juxtaposing tokens
(symbols) John, loves, and Mary to form John loves Mary
with corresponding semantic content is the same process that
is used to form Mary loves John with corresponding content.
Classical compositionality would seem to provide an el-
egant explanation for systematicity with regard to recursive
capacities, even though it fails to provide a full account of
systematicity generally (Aizawa, 2003).> For recursive defi-
nitions, like the deck of cards, one self-referencing rule typ-
ically covers all cases (bar the terminating case, such as the
empty deck). For example, removing jokers from a single
hand, or an entire deck invokes the same component process.
The two tasks only differ in the number of recursive steps.

Classical, but not systematically recursive

However, the classical explanation with regard to recursive
capacities still suffers the same general problem that it suffers
for non-recursive capacities. To illustrate, suppose one card
game requires removing the lowest value card in the hand
dealt, while another card game requires removing the highest
value card. Suppose the following recursive procedure, low-
est, for identifying the lowest valued card in a deck of cards
(containing at least one card):

lowest(c : cs)
lowest(c: [])

lower(c,lowest(cs))

Cc

where a deck of cards c : cs is represented by a recursively
defined list with ¢ as the top card and cs as the remaining
deck, [] is the empty deck, and lower returns the lower of two
cards. Suppose, also, the following classical non-recursive
procedure, highest, for identifying the highest valued card:

highest(cs) (i, high) + (0,undefined)
while i < ndo
(i,high) < (i+ 1, higher(high, cs;))

return high

where deck cs is represented by an array of n cards with po-
sition indexed by i (i.e., c¢s; is the ith card), high maintains
a representation of the (currently) highest card, higher re-
turns the higher of two cards (undefined is some value guar-
anteed to be lower than any card), and < indicates variable-
value assignment. Clearly, the two procedures do not share

2Classical theory fails to provide a complete explanation because
one can construct syntactically compositional systems that support
some but not all members of a group of systematically-related cog-
nitive capacities. Additional (ad hoc) assumptions are needed to
derive only those classical cognitive architectures that support sys-
tematicity (Aizawa, 2003). This problem echoes the one originally
raised against connectionism as a theory of cognitive architecture
(Fodor & Pylyshyn, 1988; Fodor & McLaughlin, 1990).

870

any component processes, and so do not provide a basis
for systematicity, even though systematicity could be sup-
ported when both tasks are implemented in either the first
style only, or the second style only. Notice that we are not
unfairly stressing classical theory by apportioning capacity
at the level of constituents—systematicity concerns “molec-
ular”, not “atomic” capacities (Fodor & Pylyshyn, 1988).
Rather, given constituent capacities lower and higher, clas-
sical theory admits two independent compositional forms, as
the example illustrates.

In this paper, we extend our category theory explanation
to recursive capacities using universal constructions called an
initial F-algebra and a final F-coalgebra, which have been
extensively developed in computer science as a theoretical ba-
sis for recursive computations (Manes & Arbib, 1986). Our
previous work (Phillips & Wilson, 2010, 2011) dealt with
non-recursive domains using a kind of universal construc-
tion called adjoint functors—a functor is a way relating cate-
gories, which can be viewed as a way of constructing objects
and morphisms from one category based on those in another.
The current work uses endofunctors, which relate categories
to themselves, hence their relevance to recursion.

Category theory: F-(co)algebras

A category theory treatment of recursion starts with the con-
cept of an F-algebra constructed on an endofunctor F.3
Definition (F-algebra). For an endofunctor F : C — C, an F-
algebra is a pair (A,0), where A is an objectand a.: F(A) — A
is a morphism in C.

For example, if F(A) = A X A, then the addition operator
+:A XA +— Ais an F-algebra.
Definition (F-algebra homomorphism). An F-algebra ho-
momorphism h : (A,0) — (B,B) is a morphism 4 : A — B (in
C) such that the following diagram commutes:

(D

That is, ho ot = Bo F(h).

Definition (F-algebra category). For endofunctor F' : C —
C, an F-algebra category Alg(F) has F-algebras (A, o) for
objects, and F-algebra homomorphisms 4 : (A,a) — (B,B)
for morphisms.

Definition (Initial algebra). An initial F-algebra (A,in),
also called initial algebra, is an initial object in the category

3We omit definitions of category, functor, and initial object (see
Phillips & Wilson, 2010, 2011, for introductions tailored to the sys-
tematicity problem—short versions appear in CogScil0/CogScill
proceedings). An example category is Set, whose objects are sets,
morphisms are functions, and composition of morphisms is function
composition. Functors are like generalized functions, but map mor-
phisms to morphisms as well as objects to objects. An endofunctor
is a functor whose domain and codomain are the same category.

of F-algebras Alg(F). Le., there exists a unique F-algebra
homomorphism from (A, in) to every F-algebra in Alg(F).
Definition (Catamorphism). A catamorphism h: (A,in) —
(B, B) is the unique F-algebra homomorphism from initial F-
algebra (A, in) to F-algebra (B,). Thatis, hoin = o F(h),
and the uniquely specified & for each such B is denoted cata 3
(i.e., h = cata PB). In Diagram 1, replace o with in and h with
cata 3 for a commutative diagram indicating a catamorphism.
Hence the importance of initial algebras to the systematic-
ity of recursive capacities: every algebra (process) factors
through an initial algebra in a category Alg(F) that has one.
Duals: F-algebra, initial algebra, and catamorphism have
dual constructs called F-coalgebra, final coalgebra, and
anamorphism (respectively), which we shall also use.

Systematicity: List-related capacities

Returning to the example raised as a problem for classical
theory: a common task is to select the smallest or largest item
in a collection. Systematicity, in this case, means that if one
has the capacity to distinguish the relative sizes of items, and
one has the capacity to identify the smallest item in a list, then
one also has the capacity to identify the largest item in a list.
(Notation: 14 is the identity morphism for A; |, is a constant
function returning v.) List-related capacities are constructed
from the functor F4 : S—A XS, f—= 11+ 1Iax f. (0:x—y
means ¢(x) =y.) The algebras are the pairs (S,[ly, f]). An
initial algebra for lists is the pair (L,[empty, cons]), where
L is a set of lists, and [empry, cons] : 1+ A x L — L is the
list-constructing morphism, consisting of the constant func-
tion empty : 1 — L for constructing the empty list [], and
the function cons : A x L — L;(a,l) — a -1 for constructing
the list with element a € A prepended (-) to list [€ L. Here
1 +A x L is the disjoint union of a 1-element set with the
cartesian product of A and L. If, for example, A is the natu-
ral numbers N, then L is the set of all finite natural number
lists. Catamorphisms from this initial algebra have the form
JoldL|l,, f] : L — S, where foldL|l,, f] :

[]—v
(aal) HfOIdL[If(V,u)ale)
The catamorphism for identifying the smallest number is

JoldL[1.,min], where min : (x,y) — x, if x <y, else y returns
the smaller of two items, indicated in commutative diagram

| NxL [empty, cons) L
114 1y X foldL[les ,min] \L lﬁ)ldL[l&,min]
1+NxN - N
[loo,min]

@)
E.g., foldL[le,min]([2,1,3]) = min(2,min(1,min(3,))) = 1.
By replacing min in Diagram 2 with max : (x,y) — x, if x >
yelsey, and e with 0 (or, —oo for lists of integers or reals),
we have the catamorphism that corresponds to identifying
the largest number. For example, foldL[ly,max]([2,1,3]) =

871

max(2,max(1,max(3,0))) = 3. Since the two computations
have the morphism [empty, cons] as the common component,
this arrangement accounts for systematicity with respect to
these capacities. Since the catamorphisms are uniquely de-
termined, we have an account of systematicity without further
(ad hoc) assumptions.

Systematicity: language-related capacities

In this domain, we use an artificial grammar (for arithmetic
expressions) to illustrate our explanation for systematicity
with regard to language-related capacities. Artificial gram-
mars are often used, because their forms are more easily
adapted to the question at hand. Up to this point, we have ad-
dressed systematicity with respect to inference, e.g., why the
capacity to infer the smallest list item is systematically related
to the capacity to infer the largest list item—systematicity
of inference. This aspect of systematicity assumes that the
cognitive system also has the capacity to systematically rep-
resent the entities from which such inferences are made—
systematicity of representation. Here, we also provide a cat-
egory theory explanation for systematicity of representation,
using the closely related, dual notion of an F-coalgebra.

Arithmetic expressions: systematicity of inference

The example in this section is based on Hutton (1998), but
adapted to model cognitive capacity for evaluating numer-
ical expressions. The category of F-algebras that includes
language-related capacities is constructed from the functor
Fp :S—A4+SxS,f— 1a+ fxf. The F-algebras for
the category Alg(Fy) are the pairs (S,[f,g]), where [f,g] :
A+SxS—S, f:A— Sisaunary function,and g: Sx S — S
is a binary function. An initial algebra in this category is
(T, [leaf ,branch]), where T is the set of trees of type A,
[leaf ,branch] : A+T xT — T, leaf : A — T;a — (a) re-
turns a tree consisting of a single leaf a € A, and branch :
TxT — T;(l,r) — (l,r) returns a tree consisting of a left
branch / and a right branch », where [, € T. For exam-
ple, a binary tree of numbers ((1), ((2),(3))) has a leaf 1 as
its left branch, and a tree, with left leaf 2 and a right leaf
3, as its right branch. A catamorphism from initial alge-
bra (T, [leaf ,branch]) to an arbitrary F-algebra (S, [f,g]) in
Alg(Fy) is the recursive function foldT (i.e., fold for trees),
defined as follows. The (higher-order) function foldT takes a
unary function f : A — S and a binary function g : S xS — S
and returns the recursive function foldT [f,g] : T — S, where

(a) — f(a)
(I,r) = g(foldT [f,g](l).foldT [f,g](r))
and T is a set of trees of type A, indicated in diagram

[leaf ,branch]

A+TxT T
La-+foldT [f g xfoldT [f,g] l lfoldT [f.8]
A+SxS S

3)

Suppose participants are given arithmetic expressions in-
volving a particular operator, say, addition, e.g., (1 +2)+
(2+3), which they are required to evaluate. Given that partic-
ipants can correctly evaluate such expressions, there is a host
of other capacities that are also afforded provided that they
have some other basic knowledge. For example, given knowl-
edge of another binary operator, say, subtraction, participants
can also evaluate the related expression (4 —2) — (2 —1) as
1. The specific catamorphism for the addition case is given
by replacing A in Diagram 3 with the set of numbers N, f
with identity morphism 1y, and g with addition 4. For the
case of subtraction, the binary operator (+) for addition is
replaced with (—) in Diagram 3. Hence, the second task is
computed as foldT [1y, (—)]. The universal construction com-
mon to these two capacities is the morphism [leaf, branch].
So, the explanation for systematicity is essentially the same
as the explanations we provided for list- and number-related
capacities, albeit based on a different underlying functor—
the capacities for evaluating expressions involving addition
and subtraction contain [leaf , branch| as the common factor.

Arithmetic expr.: systematicity of representation

Evaluating trees is an example of systematicity of inference
(Fodor & Pylyshyn, 1988; Aizawa, 2003; Phillips & Wil-
son, 2011). However, such expressions are not given to the
cognitive system in tree-form. Typically, such trees are as-
sumed to be constructed from an input (list of characters) by
another process. The input may take on several different for-
mats: e.g., numeric/symbolic, as in “1+(2+3)”, or word form,
as in one plus (two plus three), which correspond to the same
tree. Again, these two forms are systematically related: one
has the capacity to represent the expression “1+(2+3)” if and
only if one has the capacity to represent the expression one
plus (two plus three) assuming, of course, a person knows
that one, two and three denote the same things as 1, 2 and
3 (respectively), and plus denotes the same thing as +. This
form of systematicity is called systematicity of representation
(Fodor & Pylyshyn, 1988; Aizawa, 2003; Phillips & Wilson,
2011). In this section, we show how systematicity of repre-
sentation is addressed using coalgebras.

Constructing trees from lists is achieved by a dual construc-
tion called an F-coalgebra (Hutton, 1998). The explanation
for systematicity in this case proceeds in a “dual” manner:
i.e., every morphism in a category of F-coalgebras with a ter-
minal (dual to initial) object, called a final coalgebra (dual to
initial algebra) is composed of a unique anamorphism (dual
to catamorphism) and a common final coalgebra.

Final coalgebras derive from their dual definitions of initial
algebras in the category of F-algebras Alg(F4) on the func-
tor Fy : Set — Set;S — A+ S XS, f— 14+ f x f. A final
coalgebra in this category is (7, (p() — finleaf,fmbranch)),
where conditional p(y — fimleaf ,fmbranch consists of a con-
dition 1A% T — Bool that tests whether r € T is a leaf (i.e.,
t = {a),a € A), or a branch (i.e., t = (I,r),l,r € T), and as-
sociates functions finleaf : T — A, {a) + a, for retrieving a
value from a leaf, and finbranch : T — T x T,(L,r) — (I,r),

872

for retrieving a pair of left and right subtrees from a branch.
The dual category CoAlg(F4) has F-coalgebras (S,(p —
f,8)) as objects, and F-coalgebra homomorphisms as mor-
phisms. The anamorphism associated with this final coalge-
bra is called unfoldT (i.e., unfold for trees), defined recur-
sively as unfoldT (p — f,g): S— T

s = (f(s))
s = (unfoldT p? (py 0 g(s)), unfoldT p? (p20g(s))

where p? abbreviates (p — f,g). The final coalgebra and
anamorphism are indicated in commutative diagram

if p(s)
—p(s)

p—f.8

A+SxS

unfoldTp?\L \LIA ~+unfoldT p?xunfoldT p?

p<>%ﬁnleaf.fmbranch A+TxT

“)
Diagram 4 indicates the general form of the anamorphism
from which we specify a particular p? (i.e., p — f,g) for our
domain of arithmetic expressions. That is, we need to define
the test function p : L — Bool, where Bool = {True,False}
that determines whether an expression indicates a simple
(value) or complex expression, and associated functions f :
L— N and g: L — L x L for transforming simple and complex
expressions into numbers and expression pairs (respectively).
Specifications of f and g (in Diagram 4) are obtained from
case analysis. Examples of simple expressions, which indi-
cate values, are: “1”, “(2)”, and “((3))”, i.e., any well-formed
expression that does not contain the “+” character. A complex
expression is any well-formed expression that is not simple.
So, p is the function isVal : [— “+” ¢ [. Since f is associ-
ated with p(l) being true, we require a function to convert
a string into a (internal) representation for the correspond-
ing number, i.e., f is the function str2num : L — N. Finally,
we need a function g for complex expressions. Examples of
complex expressions include: “1+2”, “1+(2+3)”, “(1+2)+3”,
“(1+2)+(3+4)”, and so on. The purpose of g is to split an ex-
pression into two subexpressions, one corresponding to the
left branch of the tree, and the other to the right branch.
That is, g must split the expression at the topmost opera-
tor into two subexpressions containing the strings before and
after the “+” symbol, after stripping off the outer brackets.
Identifying the split point is also determined by case analy-
sis: Basically, the split point is the first instance of “+” in
the absence of an unmatched right bracket). So, one sim-
ply maintains a counter, starting from 0 (i.e., no unmatched
brackets, or top level), which is incremented/decremented on
every occurrence of a left/right bracket, when read from left
to right. So, g is the function split : L — L x L. Thus, the
function for parsing expressions into trees is the anamorphism
unfoldT (isVal — str2num, split).
Systematicity of representation (in this example, construct-
ing trees) is obtained in the same way as systematicity of in-
ference (“destructing” trees). To represent the same tree from

the expressions in word form, one simply replaces the argu-
ment isVal — str2num, split as appropriate. For example, the
function str2num is replaced with, say, word2num which con-
verts numbers in word form (e.g., “one”, “two”, etc.) to their
corresponding internal representation of number. In any case,
the resulting anamorphism factors through the same universal
morphism, i.e., p(y — fmleaf ,fmbranch from Diagram 4.

Given initial algebra in : F(A) — A in a category Alg(F),
the corresponding final coalgebra fin : A — F(A) is guaran-
teed to exist, because F/(A) 2 A, so in has as inverse fin. Thus,
further (ad hoc) assumptions are not required to guarantee
a correspondence between expressions and evaluations since
they are indivisibly bound by the (final) initial (co)algebra.
By contrast, classical theory assumes that the processes for
constructing syntactically compositional representations and
the processes for systematically transforming those represen-
tations correspond (Phillips & Wilson, 2011).

Discussion

Our explanation in regard to recursive domains employs the
same category theory construct (i.e. universal construction)
as our previous explanations for (quasi-)systematicity in re-
gard to non-recursive domains (Phillips & Wilson, 2010,
2011), albeit with different kinds of functors: here, for re-
cursive domains, the universal constructions involved endo-
functors (i.e., where the domain and codomain are the same
category), whereas for non-recursive domains, the universal
constructions involved adjoint functors (which are reciprocat-
ing, though not necessarily inverse, functorial maps between
categories that are not necessarily the same. Every composi-
tion of left and right adjoints is an endofunctor, but not every
endofunctor can be decomposed into a pair of adjoint func-
tors. So, having some (primitive) form of systematicity over
a recursive domain does not imply having systematicity for
non-recursive domains. Nor, for that matter, does having the
systematicity property for one recursive domain (e.g., num-
bers) imply the having the systematicity property for another
recursive domain (e.g., lists), when the universal construc-
tions involve functors not related by a natural isomorphism
(Manes & Arbib, 1986)—this distinction also applies to non-
recursive domains. This functorial distinction has implica-
tions for comparative and developmental psychology (dis-
cussed later).

Limitations

Our theory may be incomplete at two points: one point is
where competence meets performance, such as when sup-
posed systematically related capacities span memory or cog-
nitive complexity limits. The other point is where systematic
cognition meets non-systematic cognition: not all cognition is
regarded as systematic; idioms (e.g., John kicked the bucket—
i.e., he died—is not systematic with Mary kicked the bucket
[with her foot]) are a paradigm (Fodor & Pylyshyn, 1988).
We discuss our theory in the context of both cases.
Competence versus performance: In the case of lists where
the morphism f is not associative (e.g., subtraction), comput-

873

ing with a right-fold version of list fold means keeping all
list items in memory (if presented once only), so systematic-
ity would not extend beyond lists of more than a few items.
Such cases are generally not regarded as evidence against the
systematicity property—human cognition is ceferis paribus
(e.g., memory requirements being the same) largely system-
atic (see McLaughlin, 2009). Nonetheless, a more complete
theory will address both aspects of cognition. Category the-
ory may also provide independent principles for performance,
since cognitive development-related limits in children were
identified with the arity of the (co)product underlying the
task (Phillips, Wilson, & Halford, 2009): e.g., the ability of
children older than the median age of five years to perform
transitive inference and class inclusion in the more difficult
condition versus children younger than five was related to
(co)product arity, i.e., binary versus unary (co)products. Note
that here, too, the difference in “complexity” of the endofunc-
tors for number (no/unary product of functors, not given), list
(binary product of constant and identity functors) and tree
(binary product of two identity functors). However, perfor-
mance related differences are beyond the scope of our theory
as it currently stands.

Systematic versus non-systematic cognition: Category the-
ory also provides a principled means for joining two cognitive
(sub)systems via (co)products of categories, where one cate-
gory models systematic cognitive capacity and the other non-
systematic capacity, and (say) the coproduct category models
both. However, as Aizawa (2003) explains, the required ex-
planatory standard for hybrid theories is higher, because one
must also explain why/when component theories are invoked.
A possible reason is efficiency. A primitive form of addition
is supported (systematically) by the category of F-algebras
that included number-related capacities via foldN (not pre-
sented here), where the number of iterations is proportional
to the size of the addends. The time needed to add numbers
can be reduced by memorizing the addition table for small
numbers, which is what children are taught to do. However,
addition via memorized associations is not a systematic pro-
cess: one can memorize part of a table without memorizing
the other part; this is an analog of the phrase-book example
in language (Fodor & Pylyshyn, 1988). Utility may drive the
cognitive system to employ a faster, but non-systematic pro-
cess, but it is also outside the scope of our current theory.

Perspective

At the core of our category theory explanation for system-
atic recursive capacity is a special pair of dual constructions:
an (final) initial (co)algebra in a category of (co)algebras on
a polynomial functor . Although one can reverse the di-
rection of any collection of arrows to form a dual, such du-
als may not exist in the category of interest (e.g., some cate-
gories have initial objects but no final objects). Yet, for cat-
egories of (co)algebras on a polynomial functor (final) initial
(co)algebras are guaranteed to exist (Manes & Arbib, 1986),
and an initial algebra in : F(A) — A is guaranteed to have an
inverse fin : A — F(A), because the component objects are

isomorphic (i.e., A = F(A)), which constitutes a final coalge-
bra for the domains we have investigated. So, the systematic
relationship between representation and inference is guaran-
teed without further (ad hoc) assumptions, in contrast to the
classical explanation where the link between the two is just
assumed (Phillips & Wilson, 2011). Notice that this dual rela-
tionship between systematicity of representation and system-
aticity of inference is more general (and more useful) than an
inverse. In the arithmetic expressions example, lists were rep-
resented as trees (systematicity of representation), but trees
were evaluated as numbers (systematicity of inference). This
form of duality goes beyond the simple inverse relationship
between sentence recognition and generation found in pars-
ing/production rules in a classical approach to language.

The capacity for recursion has been a contentious issue
in the broader interests of cognitive science, which includes
comparative and developmental psychology. Some argue that
recursion is specific to humans and depends on language
(Hauser, Chomsky, & Fitch, 2002); more particularly, a fully
inductive (recursive) basis for number is specific to adults
and distinct from infants’ non-inductive basis (Rips, Bloom-
field, & Asmuth, 2008). In contrast, others claim a human
language-like capacity for recursion in songbirds (Gentner,
Fenn, Margoliash, & Nusbaum, 2006) (but, see Corballis,
2007), and that adult understanding of number (in its fully
induced form) is founded on a more primitive infant con-
ception (Carey, 2009). See also Gelman and Butterworth
(2005), for a review of the debate over the link between num-
ber and language. Our category theory treatment of recur-
sive cognitive capacities provides a different perspective on
this issue: specifically, the particular systematic capacities
for recursion depend on the underlying functor, not a gen-
eral capacity for recursion, as such. In particular, one can
have a basic recursive capacity for number without having
a full-blown capacity for language, because the functor un-
derlying recursive number-related capacities does not pro-
vide a systematic basis for recursive language-related capac-
ities, though by our account language-related recursive ca-
pacities afford number-related recursive capacities. Analysis
of the songbird evidence (Gentner et al., 2006) for supposed
center-embedded recursion suggested that these birds were
using a simple counting strategy (Corballis, 2007), which ac-
cords with our F-(co)algebraic basis for recursion in cogni-
tion, where simple counting involves a fold for numbers, not
trees. Thus, other species (and infants) can have elementary
recursive capacities without a full-blown capacity for number
and language as available in adult humans.

The classicist’s approach to cognitive architecture is funda-
mentally limited not in advocating syntax, but in placing syn-
tax at the foundation of their theory. Given the often ad hoc
and idiosyncratic choices that go into programming language
design, computer scientists in recent decades have turned to
category theory for a deeper syntax-free understanding of the
principles of computation. Cognitive science, as couched
within the framework of computationalism, can likewise do

874

better than lay foundations on the shifting sands of syntax.

Acknowledgments

This work was supported by a Japanese Society for the Pro-
motion of Science Grant-in-aid (22300092).

References

Aizawa, K. (2003). The systematicity arguments. New York:
Kluwer Academic.

Carey, S. (2009). The origins of concepts. New York, NY:
Oxford University Press.

Corballis, M. C. (2007). Recursion, language, and starlings.
Cognitive Science, 31, 697-704.

Fodor, J. A. (1975). The language of thought. New York,
NY: Crowell.

Fodor, J. A., & McLaughlin, B. P. (1990). Connectionism and
the problem of systematicity: Why Smolensky’s solution
doesn’t work. Cognition, 35, 183-204.

Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and
cognitive architecture: A critical analysis. Cognition, 28,
3-71.

Gelman, R., & Butterworth, B. (2005). Number and lan-
guage: how are they related? Trends in Cognitive Sciences,
9(1), 6-10.

Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum,
H. C. (2006). Recursive syntactic pattern learning by song-
birds. Nature, 440(7088), 1204—-1207.

Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The
faculty of language: what is it, who has it, and how did it
evolve? Science, 298(5598), 1569-1579.

Hutton, G. (1998). Fold and unfold for program semantics. In
Proceedings of the 3rd ACM SIGPLAN International Con-
ference on Functional Programming.

Manes, E. G., & Arbib, M. A. (1986). Algebraic approaches
to program semantics. New York, NY: Springer-Verlag.
McLaughlin, B. P. (2009). Systematicity redux. Synthese,

170, 251-274.

Phillips, S., & Wilson, W. H. (2010). Categorial composition-
ality: A category theory explanation for the systematicity
of human cognition. PLoS Computational Biology, 6(7),
e1000858.

Phillips, S., & Wilson, W. H. (2011). Categorial composi-
tionality II: Universal constructions and a general theory of
(quasi-)systematicity in human cognition. PLoS Computa-
tional Biology, 7(8), €e1002102.

Phillips, S., & Wilson, W. H. (2012). Categorial composition-
ality III: F-(co)algebras and the systematicity of recursive
capacities in human cognition. PLoS ONE, 7(4), €35028.

Phillips, S., Wilson, W. H., & Halford, G. S. (2009). What do
Transitive Inference and Class Inclusion have in common?
Categorical (co)products and cognitive development. PLoS
Computational Biology, 5(12), €1000599.

Rips, L. J., Bloomfield, A., & Asmuth, J. (2008). From nu-
merical concepts to concepts of number. Behavioral and
Brain Sciences, 31(6), 623-687.

