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Abstract 

Purely statistical models have accounted for infants’ early 

ability to segment words out of fluent speech, with 

Bayesian models performing best (Goldwater et al. 2009). 

Yet these models often incorporate unlikely assumptions, 

such as infants having unlimited processing and memory 

resources and knowing the full inventory of phonemes in 

their native language. Following Pearl, et al. (2011), we 

explore the impact of these assumptions on Bayesian learners 

by utilizing syllables as the basic unit of representation. We 

find a significant ―Less is More‖ effect (Pearl et al 2011; 

Newport 1990) where memory and processing constraints 

appear to help, rather than hinder, performance. Further, 

this effect is more robust than earlier results and we suggest 

this is due a relaxing of the assumption of phonemic 

knowledge, demonstrating the importance of basic 

assumptions such as unit of representation. We argue that 

more cognitively plausible assumptions improve our 

understanding of language acquisition. 
Keywords: language acquisition; Bayesian modeling; 

cognitively plausible learning; less is more; statistical 
learning; word segmentation 

Introduction 

   Knowledge of words plays a crucial role in language 

acquisition but requires a child to identify words out of 

fluent speech. Children seem to accomplish this word 

segmentation very early (~7.5 months (Jusczyk & Aslin 

1995; Echols et al. 1997; Jusczyk et al., 1993a)), and 

therefore many strategies have been proposed for this early 

success. One popular explanation for initial language 

learning relies purely on distributional information, rather 

than language-specific biases. This idea is bolstered by 

findings that infants keep track of the statistical regularities 

in speech (Saffran et al. 1996), and because languages vary 

greatly in their cues to word boundaries which would 

weaken the use of language specific knowledge. One very 

successful, purely distributional, learning approach uses 

Bayesian inference (Goldwater, Griffith & Johnson 2009 

(GGJ), Pearl, Goldwater & Steyvers 2011 (PGS)). However, 

these Bayesian models incorporate modeling assumptions 

that are unlikely to be true. Both have assumed that the 

basic unit of representation available to the infant is the 

phoneme. We will argue from experimental evidence that 

syllables (or syllable-like representations) are a more natural 

representation for infants at this stage of acquisition. In 

addition, GGJ conducted an ideal learner analysis, which 

assumes unlimited processing and memory resources for the 

learner. PGS investigated the impact of this assumption, 

finding a limited ―Less is More‖ effect (Newport 1990) 

where cognitive resource limitations help, rather than 

hinder, some Bayesian learners. We examine the effect of 

the phoneme assumption in addition to these cognitive 

resource assumptions. We find not only that syllable-based 

Bayesian learners can do well at word segmentation but also 

a much more robust ―Less is More‖ effect in our 

constrained Bayesian learners. This suggests that the unit of 

representation for models of language acquisition plays a 

crucial role. Here, using more cognitively plausible 

assumptions showcases a surprising learning effect, the 

―Less is More‖ effect that has been hypothesized to explain 

language acquisition success in children. 

The syllables as the representational unit 

The first evidence that infants possess categorical 

representations of syllabic units appears at 3 months: Eimas 

(1999) finds that infants have categorical representations of 

syllables whereas infants at this age have no categorical 

representation of phonemes. Since word segmentation first 

occurs around 7.5 months (Jusczyk & Aslin 1995), it is 

likely that infants have robust access to syllables at this age. 

In contrast, knowledge of phonemes does not occur until 

approximately 10 months (Werker & Tees 1984) making it 

unlikely the learner has adult knowledge of their native 

language phonemes during the initial stages of word 

segmentation. Although it is possible that word 

segmentation and phoneme learning bootstrap from one 

another, we consider a more conservative approach which 

assumes infants only have access to syllabic information. 

   While the success of previous statistical word 

segmentation models is heartening, how dependent is their 

success on the assumption of the phoneme as a 

representational unit? With this question in mind, we 

modify existing phoneme-based statistical models of word 

segmentation that use Bayesian inference (GGJ, PGS) to 

operate over syllables. All of our modified Bayesian 

learners treat syllables as atomic units in the same way 

phonemes are thought of as atomic units. This mimics the 

performance of infants who are able to discriminate between 

syllables such as /ba/, /bu/, and /lu/, but who are unable to 
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recognize the phonemic similarity between /ba/ and /bu/ 

which does not exist between /ba/ and /lu/ (Jusczyk & 

Derrah 1987). 

   Utilizing syllables alleviates the learning problem 

somewhat because it reduces the number of potential 

boundary positions (e.g., a baby has three syllables but five 

phonemes). However, a potential sparse data problem then 

surfaces: A model operating over English phonemes must 

track statistics over approximately 40 units; a model 

operating over English syllables must track statistics over 

approximately 4000 units, while using less data than a 

phoneme-based model since there are fewer syllable tokens 

than phoneme tokens. This increases the statistical difficulty 

of the task tremendously. Additionally, because syllables are 

treated as atomic, almost all phonotactic information about 

English is lost in the model. Although previous work (e.g. 

Gambell & Yang 2006) shows that heuristic syllable-based 

models can perform quite well, it is unclear a priori whether 

a distributional learner with phonemes or syllables will 

produce better results for Bayesian word segmentation, due 

to the tradeoffs just mentioned. 

   In changing our unit of representation, we attempt to 

create a more psychologically faithful model of word 

segmentation. To foreshadow our results, we show that 

successful Bayesian word segmentation does not depend on 

the phoneme assumption. Moreover, by utilizing a more 

cognitively plausible unit of representation, we find a much 

more robust ―Less is More‖ effect. The success of our 

models demonstrates the effectiveness of this purely 

statistical approach. Replicating and extending results from 

PGS concerning the surprising utility of processing 

constraints for Bayesian word segmentation. This suggests 

that the task of word segmentation may be structured to be 

more easily learned with strong memory limitations, such as 

those that infants have. Moreover, Bayesian models may be 

on the right track with respect to the kind of strategies 

infants are using during early word segmentation, since the 

learners demonstrate this ―Less is More‖ behavior, and 

infants are thought to as well. In addition, the fact that this 

pattern of results was only hinted at by the phoneme-based 

models of PGS means that the unit of representation for 

models of language acquisition has a strong, non-trivial 

effect on the results found. 

Methods 

Corpus 

We test our syllable-based models using English child- 

directed speech from the Pearl-Brent corpus (CHILDES: 

MacWhinney, 2000). This modification of the Brent corpus 

contains 100 hours of child-directed speech from 16 mother- 

child pairs. We restrict ourselves, however, to child-directed 

utterances before 9 months of age, leaving 28,391 utterances 

(3.4 words per utterance, 10.4 phonemes per utterance, 4.2 

syllables per utterance, on average). 

   While there are many ways to syllabify a corpus 

automatically, we opted for a two-stage approach. First, 

where we have human judgments of syllabification we used 

them; second, when not, we automatically syllabify our 

corpus in a language-independent way. We take human 

judgments of syllabification from the MRC Psycholinguistic 

Database (Wilson 1988), but not all words in the Pearl- 

Brent corpus have syllabifications in the MRC dictionary. 

To solve this problem we used the Maximum-Onset 

Principle to syllabify all remaining words. This principle 

states that the onset of any syllable should be as large as 

possible while still remaining a valid word-initial cluster. 

We use this principle out of convenience for the kind of 

syllabification that infants might possess. Given a lack of 

experimental evidence as to the exact nature of infant 

syllabification, this representation is likely only an 

approximation. Approximately 25% of lexical items were 

syllabified automatically. Only 3.6% of human judgments 

on our items differ from automatic syllabification.  Each 

unique syllable is then treated as a single, indivisible unit 

losing all sub-syllabic phonetic (and phonotactic) 

information. 

Models 

Bayesian models are well suited to questions of language 

acquisition because they explicitly distinguish between the 

learner’s pre-existing beliefs (prior) and how the learner 

evaluates incoming data (likelihood), using Bayes’ theorem: 

 

 ( | )   ( | ) ( ) 

 

   The Bayesian learners we use are those of GGJ as well as 

the constrained learners of PGS. All learners are based on 

the same underlying hierarchical Bayesian models 

developed by GGJ. The first of these models assumes 

independence between words (a unigram assumption) while 

the second assumes words depend only on the word before 

them (a bigram assumption). To encode these assumptions 

into the model, GGJ use a Dirichlet Process (Ferguson, 

1973), which supposes that the observed sequence of words 

w1 … wn is generated sequentially using a probabilistic 

generative process. In the unigram case, the identity of the 

ith word is chosen according to: 
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where ni-1(w) is the number of times w appears in the 

previous i – 1 words, α is a free parameter of the model, and 

P0 is a base distribution specifying the probability that a 

novel word will consist of the phonemes x1 … xm: 
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In the bigram case, a hierarchical Dirichlet Process (Teh et 

al. 2006) is used. This model additionally tracks the 

frequencies of two-word sequences and is defined as in: 
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where ni-1(w’,w) is the number of times the bigram (w’,w) 

has occurred in the first i – 1 words, bi-1(w) is the number of 

times w has occurred as the second word of a bigram, bi-1 is 

the total number of bigrams, and β and γ are free model 

parameters. 

   In both the unigram and bigram case, this generative 

model implicitly incorporates preferences for smaller 

lexicons by preferring words that appear frequently (due to 

(1) and (3)) as well as shorter words in the lexicon (due to 

(2) and (4)). The ideal learner based on this model is fit 

using Gibbs sampling (Geman & Geman 1984), run over the 

entire corpus, sampling every potential word boundary 

20,000 times. GGJ found that their bigram ideal learner 

performed better than their unigram ideal learner, so we 

begin by examining this distinction in our syllable-based 

Bayesian learners. In addition, we will consider the 

constrained learners that PGS investigated—incorporating 

processing and memory constraints. 

   The Dynamic Programming Maximization (DPM) learner 

incorporates a basic processing limitation: linguistic 

processing occurs online rather than in batch after a period 

of data collection. Thus, the DPM learner processes one 

utterance at a time, rather than processing the entire corpus 

at once. This learner uses the Viterbi algorithm to converge 

on the optimal word segmentation for the current utterance, 

conditioned on the utterances seen so far. In all other 

aspects, the DPM learner is essentially identical to the Ideal 

model: it has perfect memory for previous utterances and 

unlimited processing resources. 

   The Dynamic Programming Sampling (DPS) learner is 

similar to the DPM learner in processing utterances 

incrementally, but is additionally motivated by the idea that 

infants, and human beings in general, are not ideally 

rational. This could mean that infants do not always select 

the best segmentation. Instead, infants select segmentations 

probabilistically. So, they will often choose the best 

segmentation but occasionally choose less likely 

alternatives, based on the likelihood of the various 

segmentation alternatives. To implement this, the DPS 

learner uses the Forward algorithm to compute the 

likelihood of all possible segmentations and then chooses a 

segmentation based on the calculated distribution. 

   The Decayed Markov Chain Monte Carlo (DMCMC) 

learner also processes data incrementally, but uses a 

DMCMC algorithm (Marthi et al. 2002) to implement a 

memory constraint. This learner is similar to the original 

GGJ ideal learner in that it uses Gibbs sampling. However, 

the DMCMC learner does not sample all boundaries; 

instead, it samples some number s of previous boundaries 

using the decayed function ba
-d

 to select the boundary to 

sample, where ba is the number of potential boundary 

locations between b and the end of the current utterance a 

and d is the decay rate. Thus, the further b is from the end of 

the current utterance, the less likely it is to be sampled. 

Additionally, larger values of d indicate a stricter memory 

constraint. All our results here use a set, non-optimized 

value for d of 1.5, which was chosen to implement a heavy 

memory constraint. Having sampled a set of boundaries, the 

DMCMC learner can then update its beliefs about those 

boundaries and subsequently update its lexicon.
1 

Because of 

the decay function, the DMCMC’s sampling is biased 

towards boundaries in recently seen utterances and thus the 

DMCMC learner implements a recency effect. 

   In addition to comparing our syllable-based learners 

against the original phoneme-based learners, we also 

compare our learners against other syllable-based learners. 

The first baseline is the Transitional Probability (TP) model 

based on Gambell & Yang (2006), which calculates TPs 

over syllables and places boundaries at all local minima. 

Our second baseline is a ―Syllable=Word” learner which 

simply assumes that all syllables are words (a strategy that 

can be very useful in languages containing many 

monosyllabic words, like English). 

Results 

We measure our results in terms of precision, recall and F- 

score, where precision is defined as (5) and recall is defined 

as (6): 

 

          
         

         
     (5) 

 

       
         

        
     (6) 

 

F-score is the harmonic mean of the two: 

 

        
                  

                
    (7) 

 

   Precision and recall are considered jointly, through the 

harmonic mean, because it is possible for learners to 

succeed on one measure while failing on the other. For 

instance, a learner that posits only a single boundary scores 

100% on precision if that boundary is correct. In 

comparison, the same learner will have just over 0% recall. 

Similarly, a learner could posit boundaries at every position, 

producing a 100% recall with very low precision because 

many of the boundaries were false. As the F-score balances 

these two measures, a high F-score indicates the learner is 

succeeding at both precision and recall. We can make these 

measurements over individual word tokens, word 

boundaries, and lexical items. 

 In order to prevent overfitting, we train each learner on 

90% of the corpus and then test the learner on the remaining 

10%. This train-test validation was done five times for each 

learner. Given the probabilistic nature of our learners, all 

                                                           
1 All DMCMC learners sample s=20,000 boundaries per 

utterance. According to PGS, this works out to approximately 89% 

less processing than the original ideal learner in GGJ, which 

samples every boundary 20,000 times. 
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results presented here are averaged over the five iterations to 

ensure the validity of each learner’s performance. 

   Table 1 shows the F-score for word tokens over all of the 

syllable-based learners. First, we observe that, in all cases, 

the Bayesian bigram learners outperform their unigram 

equivalents. In the unigram case, all constrained learners 

(DPM, DPS, DMCMC) significantly outperform the ideal 

learner; in contrast, in the bigram case this is true for the 

DMCMC learners only. This indicates that constrained 

learning helps generally if statistics cannot be tracked across 

words. However, if bigram statistics can be tracked, a 

memory constraint is only beneficial for the DMCMC 

strategy. Additionally, all learners outperform the TP 

baseline learner and all bigram learners outperform the Syl 

= Word baseline. 

 

 Unigram Bigram 

Ideal 53.12 77.06 

DPM 58.76 75.08 

DPS 63.68 77.77 

DMCMC 55.12 86.26 

TP 43.98  

Syl=Word 72.41  

 

Table 1. Word token F-scores across all syllable-based 

models. Constrained Bayesian learners that significantly 

outperform their ideal counterpart (p<.05) are in bold. 

 

 Syl-U Phon-U Syl-B Phon-B 

Ideal 53.1 54.8 77.1 71.5 

DPM 58.8 65.9 75.1 69.4 

DPS 63.7 58.5 77.8 39.8 

DMCMC 55.1 67.8 86.3 73.0 

 

Table 2. Token F-scores for syllable-based (Syl) vs. 

phoneme-based (Phon) models, comparing Unigram (U) and 

bigram (B) learners. Learners in bold outperform their 

baseline counterparts. 

 

   Clearly our syllable-based learners perform well, but are 

syllables a better unit of representation than phonemes for 

this task? Table 2 compares our syllable-based learners with 

the original phoneme-based models of PGS. We see that in 

the unigram case, phoneme-based learners outperform their 

syllable-based counterparts, except in the case of the DPS 

learner. In the bigram case, however, all syllable-based 

models outperform their phoneme-based equivalents. This 

suggests that the bigram assumption is crucial to a syllable- 

based learner. We speculate that this is due to an additional 

source of information that the bigram learner has access to. 

In particular, because the unigram learner assumes that 

words are independent of one another, the TPs between 

syllables are the only source of boundary information. 

Because there are roughly 4000 syllables, there will often be 

cases where a problem of sparse data arises. In contrast, the 

bigram learner has access to the boundary information 

inherent in word bigrams, in addition to TPs. These word 

bigrams may help supplement the sparseness of the TP data. 

   A desired behavior for all learners is undersegmentation 

since children are known to undersegment the input they 

receive (Peters 1983). All of our Bayesian learners exhibit 

this behavior. This can be seen by comparing the values of 

boundary precision and recall. High boundary precision 

(indicating the boundaries are often correct) but low recall 

(indicating not enough boundaries are put in) indicates 

general undersegmentation, whereas high boundary recall 

(indicating a lot of boundaries are put in) but low boundary 

precision (indicating the boundaries are not often correct) 

indicates oversegmentation. Although this trend of 

undersegmentation exists for both unigram and bigram 

learners, we present data only on our bigram learners since 

the results are qualitatively similar. Table 3 shows the 

boundary precision and recall for all Bayesian bigram and 

comparison learners. The Syl=Word baseline learner tends 

to oversegment, so although it performs much better than 

the TP learner and the Bayesian unigram learners, its error 

pattern does not match what we expect from infants. In 

contrast, all of our Bayesian learners are producing more 

undersegmentations than oversegmentations. Table 4 

presents sample segmentation errors from the Ideal and 

DMCMC bigram learners. 

 

 Boundary Precision Boundary Recall 

Ideal 96.50 80.45 

DPM 96.49 76.21 

DPS 95.78 79.72 

DMCMC 94.11 91.57 

TP 90.00 53.14 

Syl = Word 76.26 100 

 

Table 3. Boundary precision and recall for all bigram 

Bayesian and comparison learners. 

 

Bigram Ideal Bigram DMCMC 

putit away put it away 

Iloveyou I love you 

Let’ssee what that feltlike Let’s see what that feltlike 

If youdon’t like it Ifyou don’t like it 

 

Table 4. Example output from Bigram Ideal and DMCMC 

learners. Undersegmentation is marked in italics. 

 

   To explain the difference between our ideal and 

constrained learner results, we can examine the token and 

lexicon item recall scores, as shown in Table 5. We observe 

that both the DMCMC learners identify fewer word types 

than their ideal learner counterparts, as shown by their 

comparatively low lexicon recall scores. The token recall 

score for the DMCMC learners, however, is higher than 

their ideal learner counterparts. Since this requires the 

DMCMC learners to identify more word tokens from a 

smaller stock of lexical items, it can be inferred that these 
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DMCMC learners are identifying more frequently occurring 

words than the ideal learners. 

 

 Token Recall Lexicon Recall 

Uni-Ideal 44.96 73.44 

Uni-DMCMC 48.09 68.9 

Bi-Ideal 72.47 79.69 

Bi-DMCMC 85.43 76.84 

 

Table 5. Token and lexicon recall for the Ideal and 

DMCMC learners. Lower lexicon recall with higher token 

recall implies that the DMCMC learners identify more 

frequently occurring words. 

 

Discussion 

Our results support two broad findings. First, we find that 

memory-constrained learners outperform their ―ideal” 
equivalents, which we take as support for the ―Less is More” 
hypothesis (Newport 1990). In particular, limited cognitive 

resources, rather than hurting learner, seem to help word 

segmentation. Second, because this effect was obscured in 

the phoneme-based learners of PGS, we argue that the unit 

of representation posited by a model of language acquisition 

has a crucial impact on the results found. In particular, 

making more cognitively plausible assumptions may yield 

answers to the puzzling behaviors we observe—namely, that 

children, who are more cognitively limited than adults, 

nonetheless are far more successful at language acquisition. 

 What exactly is causing the ―Less is More” effect here? 

Perhaps it is due to the properties of online vs. batch 

unsupervised probabilistic learning algorithms. Liang & 

Klein (2009) show that for unsupervised models using 

Expectation-Maximization, online models not only 

converge more quickly than batch models, but, also in cases 

as varied as word segmentation, part-of-speech induction 

and document classification, can actually outperform their 

batch equivalents. However, this explanation fails to 

account for our results in two ways: (a) the most direct 

online equivalent of our batch model (the DPM learner) 

actually performs worse than the Ideal model, and (b) this 

does not explain the performance boost caused by sub- 

optimal segmentation (the DPS learner). 

   Perhaps the answer lies in the kinds of words these models 

identify. We find, as in table 5, that our ideal bigram learner 

segments 72.5% of the words in the input, building a 

lexicon that contains 80% of the actual word-types it 

encounters. Yet we find that a learner with memory 

constraints (the DMCMC learner) can successfully segment 

85% of the words in the input, although this makes up only 

76.8% of the word-types encountered. This suggests that 

while an ideal learner identifies more lexical items, the 

memory-constrained learner identifies more frequent lexical 

items. Not only is this true in both the unigram and bigram 

syllable-based learners, but it is also true of the equivalent 

phoneme-based learners of PGS. The robustness of this 

phenomenon suggests that, irrespective of the 

representational unit, memory-constrained learners are 

biased towards identifying more commonly occurring units, 

a potentially useful bias in language acquisition. 

   In effect, this strategy in word segmentation may help in 

learning the important things. Although this has been 

hypothesized by the literature on ―Less is More” in artificial 

language learning (Kersten & Earles 2001; Cochran et al. 

1999), we are unaware of experimental support for why 

constrained processing helps in real language acquisition. 

The fact that we can help to explain, from a computational 

perspective, why ―Less is More” is beneficial highlights a 

very major contribution computational modeling can make 

to developmental research more generally. 

   For our claim regarding the impact of the unit of 

representation, we can compare the syllable-based learner 

results with those of phoneme-based learners. Table 2 

highlights a number of crucial distinctions. First, and most 

basically, syllable-based learners perform well, and in the 

bigram case better than phoneme-based learners. This 

suggests that the tradeoff between number of potential 

boundaries and number of potential transitional probabilities 

works out in favor of the syllable-based learner. This 

underscores the utility of a Bayesian inference strategy for 

the initial stages of word segmentation – without access to 

phonotactics, stress, acoustic cues, or innate linguistic 

knowledge, a learner can be very successful at segmenting 

words from fluent speech. 

 Still, there is a major difference in the performance of the 

sub-optimal (DPS) learner – the syllable-based DPS learner 

has comparable performance to the Ideal learner while its 

phoneme-based equivalent suffers greatly. We speculate that 

this is due to the number of potential segmentations the 

phoneme-based learner considers, compared to the syllable- 

based learner since the DPS learner chooses a segmentation 

probabilistically, the phoneme-based learner may be more 

easily led astray in the initial stages of segmentation, and 

never recover. In addition, we also notice a strengthening of 

the ―Less is More” effect in the syllable-based learner, 

compared to its phoneme-based counterpart (Ideal vs. 

DMCMC). By making more realistic assumptions about the 

learner’s unit of representation, we also create a learner that 

exhibits the kind of behavior that infants show. This 

highlights one benefit of pursuing more cognitively 

plausible computational models, as opposed to models that 

are more idealized. 

   In that vein, there are a number of areas where we could 

improve the existing syllable-based Bayesian learners. First, 

some segmental cue information is likely available to 

infants such as phonotactics or articulatory cues. Similarly, 

suprasegmental cues such as primary stress are known to 

affect infant word segmentation (Jusczyk et al. 1999) and 

there is evidence that stressed and unstressed syllables are 

represented separately in infants (Pelucchi, Hay, & Saffran 

2009). Finally, the exact form which infants use to represent 

syllables is unclear. While it is our view that syllabification 

must be learned by infants, we make no attempt here to 
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explain by what means this occurs. When one looks cross- 

linguistically, languages treat syllabification in very 

different ways. In addition, languages vary significantly on 

the number of syllable types they have – languages such as 

English number their unique syllables in the thousands, 

while some languages, like Japanese, have very few unique 

syllables. To ensure that our pattern of results is truly 

representative of word segmentation generally and not just 

in English, syllable-based word segmentation models must 

be tested across multiple languages. 

   In conclusion, this study highlights the benefits of using 

empirical research from psychology to inform decisions on 

how to model language acquisition: not only can we identify 

the strategies that are likely to be used by children, but we 

may also discover potential explanations for existing, 

sometimes puzzling, observations about child language 

acquisition, as with the ―Less is More” hypothesis. 
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