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Abstract

Purely statistical models have accounted for infants’ early
ability to segment words out of fluent speech, with
Bayesian models performing best (Goldwater et al. 2009).
Yet these models often incorporate unlikely assumptions,
such as infants having unlimited processing and memory
resources and knowing the full inventory of phonemes in
their native language. Following Pearl, et al. (2011), we
explore the impact of these assumptions on Bayesian learners
by utilizing syllables as the basic unit of representation. We
find a significant “Less is More” effect (Pearl et al 2011;
Newport 1990) where memory and processing constraints
appear to help, rather than hinder, performance. Further,
this effect is more robust than earlier results and we suggest
this is due a relaxing of the assumption of phonemic
knowledge, demonstrating the importance of basic
assumptions such as unit of representation. We argue that
more cognitively plausible assumptions improve our
understanding of language acquisition.
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Introduction

Knowledge of words plays a crucial role in language
acquisition but requires a child to identify words out of
fluent speech. Children seem to accomplish this word
segmentation very early (~7.5 months (Jusczyk & Aslin
1995; Echols et al. 1997; Jusczyk et al., 1993a)), and
therefore many strategies have been proposed for this early
success. One popular explanation for initial language
learning relies purely on distributional information, rather
than language-specific biases. This idea is bolstered by
findings that infants keep track of the statistical regularities
in speech (Saffran et al. 1996), and because languages vary
greatly in their cues to word boundaries which would
weaken the use of language specific knowledge. One very
successful, purely distributional, learning approach uses
Bayesian inference (Goldwater, Griffith & Johnson 2009
(GGJ), Pearl, Goldwater & Steyvers 2011 (PGS)). However,
these Bayesian models incorporate modeling assumptions
that are unlikely to be true. Both have assumed that the
basic unit of representation available to the infant is the
phoneme. We will argue from experimental evidence that
syllables (or syllable-like representations) are a more natural
representation for infants at this stage of acquisition. In
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addition, GGJ conducted an ideal learner analysis, which
assumes unlimited processing and memory resources for the
learner. PGS investigated the impact of this assumption,
finding a limited “Less is More” effect (Newport 1990)
where cognitive resource limitations help, rather than
hinder, some Bayesian learners. We examine the effect of
the phoneme assumption in addition to these cognitive
resource assumptions. We find not only that syllable-based
Bayesian learners can do well at word segmentation but also
a much more robust “Less is More” effect in our
constrained Bayesian learners. This suggests that the unit of
representation for models of language acquisition plays a
crucial role. Here, using more cognitively plausible
assumptions showcases a surprising learning effect, the
“Less is More” effect that has been hypothesized to explain
language acquisition success in children.

The syllables as the representational unit

The first evidence that infants possess categorical
representations of syllabic units appears at 3 months: Eimas
(1999) finds that infants have categorical representations of
syllables whereas infants at this age have no categorical
representation of phonemes. Since word segmentation first
occurs around 7.5 months (Jusczyk & Aslin 1995), it is
likely that infants have robust access to syllables at this age.
In contrast, knowledge of phonemes does not occur until
approximately 10 months (Werker & Tees 1984) making it
unlikely the learner has adult knowledge of their native
language phonemes during the initial stages of word
segmentation.  Although it is possible that word
segmentation and phoneme learning bootstrap from one
another, we consider a more conservative approach which
assumes infants only have access to syllabic information.
While the success of previous statistical word
segmentation models is heartening, how dependent is their
success on the assumption of the phoneme as a
representational unit? With this question in mind, we
modify existing phoneme-based statistical models of word
segmentation that use Bayesian inference (GGJ, PGS) to
operate over syllables. All of our modified Bayesian
learners treat syllables as atomic units in the same way
phonemes are thought of as atomic units. This mimics the
performance of infants who are able to discriminate between
syllables such as /ba/, /bu/, and /lu/, but who are unable to



recognize the phonemic similarity between /ba/ and /bu/
which does not exist between /ba/ and /lu/ (Jusczyk &
Derrah 1987).

Utilizing syllables alleviates the learning problem
somewhat because it reduces the number of potential
boundary positions (e.g., a baby has three syllables but five
phonemes). However, a potential sparse data problem then
surfaces: A model operating over English phonemes must
track statistics over approximately 40 units; a model
operating over English syllables must track statistics over
approximately 4000 units, while using less data than a
phoneme-based model since there are fewer syllable tokens
than phoneme tokens. This increases the statistical difficulty
of the task tremendously. Additionally, because syllables are
treated as atomic, almost all phonotactic information about
English is lost in the model. Although previous work (e.g.
Gambell & Yang 2006) shows that heuristic syllable-based
models can perform quite well, it is unclear a priori whether
a distributional learner with phonemes or syllables will
produce better results for Bayesian word segmentation, due
to the tradeoffs just mentioned.

In changing our unit of representation, we attempt to
create a more psychologically faithful model of word
segmentation. To foreshadow our results, we show that
successful Bayesian word segmentation does not depend on
the phoneme assumption. Moreover, by utilizing a more
cognitively plausible unit of representation, we find a much
more robust “Less is More” effect. The success of our
models demonstrates the effectiveness of this purely
statistical approach. Replicating and extending results from
PGS concerning the surprising utility of processing
constraints for Bayesian word segmentation. This suggests
that the task of word segmentation may be structured to be
more easily learned with strong memory limitations, such as
those that infants have. Moreover, Bayesian models may be
on the right track with respect to the kind of strategies
infants are using during early word segmentation, since the
learners demonstrate this “Less is More” behavior, and
infants are thought to as well. In addition, the fact that this
pattern of results was only hinted at by the phoneme-based
models of PGS means that the unit of representation for
models of language acquisition has a strong, non-trivial
effect on the results found.

Methods

Corpus

We test our syllable-based models using English child-
directed speech from the Pearl-Brent corpus (CHILDES:
MacWhinney, 2000). This modification of the Brent corpus
contains 100 hours of child-directed speech from 16 mother-
child pairs. We restrict ourselves, however, to child-directed
utterances before 9 months of age, leaving 28,391 utterances
(3.4 words per utterance, 10.4 phonemes per utterance, 4.2
syllables per utterance, on average).

While there are many ways to syllabify a corpus
automatically, we opted for a two-stage approach. First,
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where we have human judgments of syllabification we used
them; second, when not, we automatically syllabify our
corpus in a language-independent way. We take human
judgments of syllabification from the MRC Psycholinguistic
Database (Wilson 1988), but not all words in the Pearl-
Brent corpus have syllabifications in the MRC dictionary.
To solve this problem we used the Maximum-Onset
Principle to syllabify all remaining words. This principle
states that the onset of any syllable should be as large as
possible while still remaining a valid word-initial cluster.
We use this principle out of convenience for the kind of
syllabification that infants might possess. Given a lack of
experimental evidence as to the exact nature of infant
syllabification, this representation is likely only an
approximation. Approximately 25% of lexical items were
syllabified automatically. Only 3.6% of human judgments
on our items differ from automatic syllabification. Each
unique syllable is then treated as a single, indivisible unit
losing all sub-syllabic phonetic (and phonotactic)
information.

Models

Bayesian models are well suited to questions of language
acquisition because they explicitly distinguish between the
learner’s pre-existing beliefs (prior) and how the learner

evaluates incoming data (likelihood), using Bayes’ theorem:

P(h|d) < P(d|R)P(h)

The Bayesian learners we use are those of GGJ as well as
the constrained learners of PGS. All learners are based on
the same underlying hierarchical Bayesian models
developed by GGJ. The first of these models assumes
independence between words (a unigram assumption) while
the second assumes words depend only on the word before
them (a bigram assumption). To encode these assumptions
into the model, GGJ use a Dirichlet Process (Ferguson,
1973), which supposes that the observed sequence of words
Wy ... wy, is generated sequentially using a probabilistic
generative process. In the unigram case, the identity of the
ith word is chosen according to:

i-1(w)+aPo(w)
P(w; = wlwy ..w;_y) = % (1)
where nii(w) is the number of times w appears in the
previous i — 1 words, a is a free parameter of the model, and
Py is a base distribution specifying the probability that a
novel word will consist of the phonemes X; ... xp:
PW =% .Xp) = ]'[;-”zlP(xj) 2
In the bigram case, a hierarchical Dirichlet Process (Teh et
al. 2006) is used. This model additionally tracks the
frequencies of two-word sequences and is defined as in:

ni_y (W' w)+BP (W)

- . e ! . —
P(w; =wlw;_; =w',w; ..w;_5) SOV
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bi_1(W)+yPo(w)

P(w; =w) = i1ty

(4)

where n;4(w’,w) is the number of times the bigram (w’,w)
has occurred in the first i — 1 words, b;_;(w) is the number of
times w has occurred as the second word of a bigram, b is
the total number of bigrams, and B and y are free model
parameters.

In both the unigram and bigram case, this generative
model implicitly incorporates preferences for smaller
lexicons by preferring words that appear frequently (due to
(1) and (3)) as well as shorter words in the lexicon (due to
(2) and (4)). The ideal learner based on this model is fit
using Gibbs sampling (Geman & Geman 1984), run over the
entire corpus, sampling every potential word boundary
20,000 times. GGJ found that their bigram ideal learner
performed better than their unigram ideal learner, so we
begin by examining this distinction in our syllable-based
Bayesian learners. In addition, we will consider the
constrained learners that PGS investigated—incorporating
processing and memory constraints.

The Dynamic Programming Maximization (DPM) learner
incorporates a basic processing limitation: linguistic
processing occurs online rather than in batch after a period
of data collection. Thus, the DPM learner processes one
utterance at a time, rather than processing the entire corpus
at once. This learner uses the Viterbi algorithm to converge
on the optimal word segmentation for the current utterance,
conditioned on the utterances seen so far. In all other
aspects, the DPM learner is essentially identical to the Ideal
model: it has perfect memory for previous utterances and
unlimited processing resources.

The Dynamic Programming Sampling (DPS) learner is
similar to the DPM learner in processing utterances
incrementally, but is additionally motivated by the idea that
infants, and human beings in general, are not ideally
rational. This could mean that infants do not always select
the best segmentation. Instead, infants select segmentations
probabilistically. So, they will often choose the best
segmentation but occasionally choose less likely
alternatives, based on the likelihood of the various
segmentation alternatives. To implement this, the DPS
learner uses the Forward algorithm to compute the
likelihood of all possible segmentations and then chooses a
segmentation based on the calculated distribution.

The Decayed Markov Chain Monte Carlo (DMCMC)
learner also processes data incrementally, but uses a
DMCMC algorithm (Marthi et al. 2002) to implement a
memory constraint. This learner is similar to the original
GGJ ideal learner in that it uses Gibbs sampling. However,
the DMCMC learner does not sample all boundaries;
instead, it samples some number s of previous boundaries
using the decayed function b, to select the boundary to
sample, where b, is the number of potential boundary
locations between b and the end of the current utterance a
and d is the decay rate. Thus, the further b is from the end of
the current utterance, the less likely it is to be sampled.
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Additionally, larger values of d indicate a stricter memory
constraint. All our results here use a set, non-optimized
value for d of 1.5, which was chosen to implement a heavy
memory constraint. Having sampled a set of boundaries, the
DMCMC learner can then update its beliefs about those
boundaries and subsequently update its lexicon. Because of
the decay function, the DMCMC’s sampling is biased
towards boundaries in recently seen utterances and thus the
DMCMC learner implements a recency effect.

In addition to comparing our syllable-based learners
against the original phoneme-based learners, we also
compare our learners against other syllable-based learners.
The first baseline is the Transitional Probability (TP) model
based on Gambell & Yang (2006), which calculates TPs
over syllables and places boundaries at all local minima.
Our second baseline is a “Syllable=Word” learner which
simply assumes that all syllables are words (a strategy that
can be wvery useful in languages containing many
monosyllabic words, like English).

Results

We measure our results in terms of precision, recall and F-
score, where precision is defined as (5) and recall is defined
as (6):

. . # t
Precision = —°= (5)
# guessed
# t
Recall = 2= (6)
# actual
F-score is the harmonic mean of the two:
F — score = 2xPrecisionxRecall (7)

Precision+Recall

Precision and recall are considered jointly, through the
harmonic mean, because it is possible for learners to
succeed on one measure while failing on the other. For
instance, a learner that posits only a single boundary scores
100% on precision if that boundary is correct. In
comparison, the same learner will have just over 0% recall.
Similarly, a learner could posit boundaries at every position,
producing a 100% recall with very low precision because
many of the boundaries were false. As the F-score balances
these two measures, a high F-score indicates the learner is
succeeding at both precision and recall. We can make these
measurements over individual word tokens, word
boundaries, and lexical items.

In order to prevent overfitting, we train each learner on
90% of the corpus and then test the learner on the remaining
10%. This train-test validation was done five times for each
learner. Given the probabilistic nature of our learners, all

! All DMCMC learners sample s=20,000 boundaries per
utterance. According to PGS, this works out to approximately 89%
less processing than the original ideal learner in GGJ, which
samples every boundary 20,000 times.



results presented here are averaged over the five iterations to
ensure the validity of each learner’s performance.

Table 1 shows the F-score for word tokens over all of the
syllable-based learners. First, we observe that, in all cases,
the Bayesian bigram learners outperform their unigram
equivalents. In the unigram case, all constrained learners
(DPM, DPS, DMCMC) significantly outperform the ideal
learner; in contrast, in the bigram case this is true for the
DMCMC learners only. This indicates that constrained
learning helps generally if statistics cannot be tracked across
words. However, if bigram statistics can be tracked, a
memory constraint is only beneficial for the DMCMC
strategy. Additionally, all learners outperform the TP
baseline learner and all bigram learners outperform the Syl
= Word baseline.

inherent in word bigrams, in addition to TPs. These word
bigrams may help supplement the sparseness of the TP data.

A desired behavior for all learners is undersegmentation
since children are known to undersegment the input they
receive (Peters 1983). All of our Bayesian learners exhibit
this behavior. This can be seen by comparing the values of
boundary precision and recall. High boundary precision
(indicating the boundaries are often correct) but low recall
(indicating not enough boundaries are put in) indicates
general undersegmentation, whereas high boundary recall
(indicating a lot of boundaries are put in) but low boundary
precision (indicating the boundaries are not often correct)
indicates oversegmentation. Although this trend of
undersegmentation exists for both unigram and bigram
learners, we present data only on our bigram learners since
the results are qualitatively similar. Table 3 shows the

Unigram Bigram
Ideal 53.12 77.06
DPM 58.76 75.08
DPS 63.68 77.77
DMCMC 55.12 86.26
TP 43.98
Syl=Word 72.41

Table 1. Word token F-scores across all syllable-based

boundary precision and recall for all Bayesian bigram and
comparison learners. The Syl=Word baseline learner tends
to oversegment, so although it performs much better than
the TP learner and the Bayesian unigram learners, its error
pattern does not match what we expect from infants. In
contrast, all of our Bayesian learners are producing more
undersegmentations than oversegmentations. Table 4
presents sample segmentation errors from the Ideal and

DMCMC bigram learners.

models. Constrained Bayesian learners that significantly Boundary Precision Boundary Recall
outperform their ideal counterpart (p<.05) are in bold. Ideal 96.50 80.45
DPM 96.49 76.21
Syl-U Phon-U  |Syl-B Phon-B DPS 95.78 79.72
Ideal 53.1 54.8 77.1 71.5 DMCMC 94.11 91.57
DPM 58.8 65.9 75.1 69.4 TP 90.00 53.14
DPS 63.7 58.5 77.8 39.8 Syl = Word 76.26 100
DMCMC [55.1 67.8 86.3 73.0

Table 2. Token F-scores for syllable-based (Syl) vs.
phoneme-based (Phon) models, comparing Unigram (U) and
bigram (B) learners. Learners in bold outperform their
baseline counterparts.

Clearly our syllable-based learners perform well, but are
syllables a better unit of representation than phonemes for
this task? Table 2 compares our syllable-based learners with
the original phoneme-based models of PGS. We see that in
the unigram case, phoneme-based learners outperform their
syllable-based counterparts, except in the case of the DPS
learner. In the bigram case, however, all syllable-based
models outperform their phoneme-based equivalents. This
suggests that the bigram assumption is crucial to a syllable-
based learner. We speculate that this is due to an additional
source of information that the bigram learner has access to.
In particular, because the unigram learner assumes that
words are independent of one another, the TPs between
syllables are the only source of boundary information.
Because there are roughly 4000 syllables, there will often be
cases where a problem of sparse data arises. In contrast, the
bigram learner has access to the boundary information

Table 3. Boundary precision and recall for all bigram
Bayesian and comparison learners.

Bigram Ideal Bigram DMCMC
putit away put it away
lloveyou I love you

Let’ssee what that feltlike Let’s see what that feltlike

If youdon 1 like it Ifyou don’t like it
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Table 4. Example output from Bigram Ideal and DMCMC
learners. Undersegmentation is marked in italics.

To explain the difference between our ideal and
constrained learner results, we can examine the token and
lexicon item recall scores, as shown in Table 5. We observe
that both the DMCMC learners identify fewer word types
than their ideal learner counterparts, as shown by their
comparatively low lexicon recall scores. The token recall
score for the DMCMC learners, however, is higher than
their ideal learner counterparts. Since this requires the
DMCMC learners to identify more word tokens from a
smaller stock of lexical items, it can be inferred that these




DMCMC learners are identifying more frequently occurring
words than the ideal learners.

Token Recall Lexicon Recall
Uni-ldeal 44.96 73.44
Uni-DMCMC 48.09 68.9
Bi-ldeal 72.47 79.69
Bi-DMCMC 85.43 76.84

Table 5. Token and lexicon recall for the Ideal and
DMCMC learners. Lower lexicon recall with higher token
recall implies that the DMCMC learners identify more
frequently occurring words.

Discussion

Our results support two broad findings. First, we find that
memory-constrained learners outperform their “ideal”
equivalents, which we take as support for the “Less is More”
hypothesis (Newport 1990). In particular, limited cognitive
resources, rather than hurting learner, seem to help word
segmentation. Second, because this effect was obscured in
the phoneme-based learners of PGS, we argue that the unit
of representation posited by a model of language acquisition
has a crucial impact on the results found. In particular,
making more cognitively plausible assumptions may yield
answers to the puzzling behaviors we observe—namely, that
children, who are more cognitively limited than adults,
nonetheless are far more successful at language acquisition.
What exactly is causing the “Less is More” effect here?
Perhaps it is due to the properties of online vs. batch
unsupervised probabilistic learning algorithms. Liang &
Klein (2009) show that for unsupervised models using
Expectation-Maximization, online models not only
converge more quickly than batch models, but, also in cases
as varied as word segmentation, part-of-speech induction
and document classification, can actually outperform their
batch equivalents. However, this explanation fails to
account for our results in two ways: (a) the most direct
online equivalent of our batch model (the DPM learner)
actually performs worse than the Ideal model, and (b) this
does not explain the performance boost caused by sub-
optimal segmentation (the DPS learner).

Perhaps the answer lies in the kinds of words these models
identify. We find, as in table 5, that our ideal bigram learner
segments 72.5% of the words in the input, building a
lexicon that contains 80% of the actual word-types it
encounters. Yet we find that a learner with memory
constraints (the DMCMC learner) can successfully segment
85% of the words in the input, although this makes up only
76.8% of the word-types encountered. This suggests that
while an ideal learner identifies more lexical items, the
memory-constrained learner identifies more frequent lexical
items. Not only is this true in both the unigram and bigram
syllable-based learners, but it is also true of the equivalent
phoneme-based learners of PGS. The robustness of this
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phenomenon  suggests that, irrespective of the
representational unit, memory-constrained learners are
biased towards identifying more commonly occurring units,
a potentially useful bias in language acquisition.

In effect, this strategy in word segmentation may help in
learning the important things. Although this has been
hypothesized by the literature on “Less is More” in artificial
language learning (Kersten & Earles 2001; Cochran et al.
1999), we are unaware of experimental support for why
constrained processing helps in real language acquisition.
The fact that we can help to explain, from a computational
perspective, why “Less is More” is beneficial highlights a
very major contribution computational modeling can make
to developmental research more generally.

For our claim regarding the impact of the unit of
representation, we can compare the syllable-based learner
results with those of phoneme-based learners. Table 2
highlights a number of crucial distinctions. First, and most
basically, syllable-based learners perform well, and in the
bigram case better than phoneme-based learners. This
suggests that the tradeoff between number of potential
boundaries and number of potential transitional probabilities
works out in favor of the syllable-based learner. This
underscores the utility of a Bayesian inference strategy for
the initial stages of word segmentation — without access to
phonotactics, stress, acoustic cues, or innate linguistic
knowledge, a learner can be very successful at segmenting
words from fluent speech.

Still, there is a major difference in the performance of the
sub-optimal (DPS) learner — the syllable-based DPS learner
has comparable performance to the Ideal learner while its
phoneme-based equivalent suffers greatly. We speculate that
this is due to the number of potential segmentations the
phoneme-based learner considers, compared to the syllable-
based learner since the DPS learner chooses a segmentation

probabilistically, the phoneme-based learner may be more
easily led astray in the initial stages of segmentation, and
never recover. In addition, we also notice a strengthening of
the “Less is More” effect in the syllable-based learner,
compared to its phoneme-based counterpart (ldeal vs.
DMCMC). By making more realistic assumptions about the
learner’s unit of representation, we also create a learner that
exhibits the kind of behavior that infants show. This
highlights one benefit of pursuing more cognitively
plausible computational models, as opposed to models that
are more idealized.

In that vein, there are a number of areas where we could
improve the existing syllable-based Bayesian learners. First,
some segmental cue information is likely available to
infants such as phonotactics or articulatory cues. Similarly,
suprasegmental cues such as primary stress are known to
affect infant word segmentation (Jusczyk et al. 1999) and
there is evidence that stressed and unstressed syllables are
represented separately in infants (Pelucchi, Hay, & Saffran
2009). Finally, the exact form which infants use to represent
syllables is unclear. While it is our view that syllabification
must be learned by infants, we make no attempt here to



explain by what means this occurs. When one looks cross-
linguistically, languages treat syllabification in very
different ways. In addition, languages vary significantly on
the number of syllable types they have — languages such as
English number their unique syllables in the thousands,
while some languages, like Japanese, have very few unique
syllables. To ensure that our pattern of results is truly
representative of word segmentation generally and not just
in English, syllable-based word segmentation models must
be tested across multiple languages.

In conclusion, this study highlights the benefits of using
empirical research from psychology to inform decisions on
how to model language acquisition: not only can we identify
the strategies that are likely to be used by children, but we
may also discover potential explanations for existing,
sometimes puzzling, observations about child language
acquisition, as with the “Less is More” hypothesis.
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