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Abstract

Self-directed information sampling—the ability to collect in-
formation that one expects to be useful—has been shown to
improve the efficiency of concept acquisition for both human
andmachine learners. However, little is known about how peo-
ple decide which information is worth learning about. In this
study, we examine self-directed learning in a relatively complex
rule learning task that gave participants the ability to “design
and test” stimuli they wanted to learn about. On a subset of
trials we recorded participants’ uncertainty about how to clas-
sify the item they had just designed. Analyses of these uncer-
tainty judgments show that people prefer gathering informa-
tion about items that help reĕne one rule at a time (i.e., those
that fall close to a pairwise category “margin”) rather than items
that have the highest overall uncertainty across all relevant hy-
potheses or rules. Our results give new insight into how people
gather information to test currently entertained hypotheses in
complex problem solving tasks.
Keywords: self-directed learning, categorization, active learn-
ing, information search, rule learning

Introduction
A cornerstone ofmany educational philosophies is that people
learn more effectively when they direct or control their own
learning experiences (Bruner, 1961). While there are many
ways that control might inĘuence learning, an important fac-
tor is the ability to actively gather information that one con-
siders potentially useful while avoiding data that is poten-
tially redundant, a behavior referred to as self-directed sam-
pling (Gureckis & Markant, in revision).

One recent study directly examined the interaction of
self-directed information sampling and learning (Markant &
Gureckis, 2010, in revision). In this study, people attempted
to learn simple dichotomous categories of objects that varied
along two perceptual dimensions (circles that differed in size
and the orientation of a central line segment, see Figure 1).
In contrast to traditional categorization training procedures,
we allowed participants to “design” stimuli that they wanted
to learn more about on each trial. Like a child asking their
parent to label an unfamiliar object, self-directed “designing”
or “sampling” allows the learner to focus on information they
want rather than be limited by the Ęow of passive experience.

e major ĕnding from this study was that for simple uni-
dimensional rules, self-directed learners acquired the correct
category rule faster than “passive” participants who were pro-
vided samples from an experimenter-deĕned distribution. In
addition, self-directed learners out-performed a set of “yoked”
learners who viewed the same examples but did not get to
make information sampling decisions themselves (consistent
with studies of causal learning with similar yoked compar-
isons, Lagnado and Sloman, 2004; Sobel and Kushnir, 2006).

How do people make information sampling decisions?
In light of evidence that self-directed sampling can speed
learning, it is important to understand how people decide
what data to collect. Given a potential observation, what in-
formation do people rely on to decide if it will be useful?

One aspect that may help explain a person’s decision to
sample an item is their uncertainty in how to classify it (or
more generally, their uncertainty about the outcome of any
test performed on the item). Intuitively, a self-directed learner
should direct their attention to items that are high in uncer-
tainty while ignoring items that can already be conĕdently
classiĕed or predicted. Consistent with this strategy, the pat-
tern of stimuli sampled by self-directed learners in our pre-
vious study (see Figure 1) revealed that participants system-
atically directed their samples toward the category boundary
as the task progressed. Intuitively, the learner is mostly likely
to be uncertain about these items (e.g., most of the errors in
classiĕcation occur near the category boundary).

In the current study, we examine how subjective uncer-
tainty in how to classify an item can be used to predict whether
or not it is sampled. We begin by presenting three psycholog-
ically motivated proposals for how sampling decisions relate
to judgments of uncertainty, and then test these models in a
new experiment that extends the “self-directed” classiĕcation
learning paradigm used in Markant and Gureckis (2010). Our
results highlight the need formodels of sampling behavior that
go beyond monolithic measures of information value to con-
sider how people collect and use data during the sequential
learning of concepts.

ree models for relating uncertainty and
information sampling decisions

e following sections lay out three possible ways in which
uncertainty might guide information sampling decisions.

Model 1: Sampling to reduce global uncertainty
Prior work on how people gather information has oen fo-
cused on diagnostic reasoning problems in which the learner
is given a set of alternatives (e.g., different diseases) and asked
to sample observable features (e.g., symptoms) in order to
identify the true diagnosis (Nelson, McKenzie, Cottrell, & Se-
jnowski, 2010; Skov & Sherman, 1986; Trope & Bassok, 1982).
From a computational perspective, various authors have pro-
posed sampling norms that attempt to predict information
sampling decisions based on a learner’s representation of the
task (Nelson, 2005; Nelson et al., 2010; Oaksford & Chater,
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Figure 1: A: Abstract stimulus space used in Markant and Gureckis (2010, in review) and which is adapted for the current study. Stimuli were
circles which varied in size and orientation of a central diagonal. In Markant and Gureckis, these objects were assigned to one of two categories
(“A” or “B”). Participants “designed” a stimulus they wanted to learn about using the mouse. Clicking the mouse button reveals the category
membership of the item. B: e pattern of sampling behavior observed by self-directed learners in Markant and Gureckis (2010) across eight
training blocks. Each dot represents a single stimulus which was selected by a participant. In the ĕrst block, participants distributed their
samples widely over the entire stimulus space but then gradually focused their choices on the region surrounding the category boundary.

1994). Much of this work has focused on what we will call
“prospective” models (e.g., probability gain, information gain,
etc.) that estimate the expected drop in uncertainty that will
result from making an observation (taking into account all
possible outcomes). While in many contexts these models
make similar predictions, Nelson et al. (2010) designed a di-
agnostic reasoning task which found that participants’ choices
were best ĕt by probability gain, which values a potential ob-
servation according to how much it increases the chance of
classifying an item correctly.

In the context of learning a classiĕcation rule, this approach
is consistent with a preference for sampling items that the
learner is least certain about how to classify. Assume that for
a given stimulus x = (f1...fd) with d observable features the
learner represents the probability that x is a member of each
possible category y in the distribution P (y∣x). We can then
deĕne the least certain measure as:

LC(x) = 1 −max(P (y∣x)) (1)

for all stimuli x. Note that there are alternative norms that
make similar predictions to least certain, such as using the
Shannon entropy of the marginal distribution to calculate un-
certainty (see Settles, 2009 for a review). Regardless of the par-
ticular form, the important property of this approach is that
the most valuable observation is always an item that is con-
sidered equally likely to belong to all possible categories. In
general, choosing items which maximize LC(x) should con-
vey the greatest amount of information to the learner.

Model 2: Isolating individual rule components
through margin sampling
While focusing on items that are the most “globally” uncer-
tain or unpredictable seems intuitively useful, there is reason
to expect that it may not be the sampling strategy humans
use, particularly when learning in complex, multivariate en-
vironments. One natural strategy, not captured by least cer-

tain, might be to decompose a complex task into a series of
simpler problems. For example, when multiple features may
be related to an outcome, a learner might choose to hold one
feature constant while varying the other across multiple sam-
ples (Rottman & Keil, 2012). Such a strategy is related to the
“control of variables” strategy which is essential to scientiĕc
reasoning. Isolating variables oen helps people to more ef-
ĕciently search the space of potential hypotheses (Klahr &
Dunbar, 1988) and is a key part of “learning to learn” about
complex concepts (Kuhn & Dean, 2005). In an experiment
similar to that of Markant and Gureckis (2010), Avrahami et
al. (1997) had participants choose samples to teach a partner
about a single-dimensional rule and found that the “teach-
ers” frequently used a strategy of isolating individual features.
Moreover, their students learned better from this strategy than
when given items that were closest to the category boundary.

We can formalize the strategy of focusing on separate com-
ponents in a sampling model that values uncertainty about
any individual boundary between only two categories. La-
bel margin predicts that the learner will prefer instances for
which the likelihood of any two categories is similar, inde-
pendent of any other categories. For example, when there
are three categories and the marginal distribution is deĕned
as P (y∣x) = (p1, p2, p3):

LM(x) = 1 −min[∣p1 − p2∣, ∣p1 − p3∣, ∣p2 − p3∣] (2)

Critically, label margin does not preferentially select items for
which the learner is globally uncertain. Instead, by this ap-
proach, a learning problem is decomposed into simpler prob-
lems and items are selected which are expected to resolve un-
certainty about the sub-components.

Model 3: Seeking conĕrmation
While the previous two models propose that people search for
uncertain items, previous work on hypothesis testing suggests
that people may prefer items that they already know how to
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Figure 2: Comparing predictions of sampling norms (red = more highly valued choices, blue = less valued choices) Top: For a binary classiĕ-
cation problem, a new observation in stimulus space will correspond to a location on the probability judgment scale, where the lemost point
reĘects conĕdence that the observation will be classiĕed “A” and the rightmost point reĘects conĕdence it will be classiĕed “B”. For the binary
problem, the predictions of least certain and label margin are identical. Bottom: In a ternary classiĕcation problem, an item in stimulus space
will correspond to a location in the 3-category simplex depending on the learner’s uncertainty. Here the predictions of least certain and label
margin diverge, allowing us to test which of the two models better account for sampling behavior.

classify. For example, people have a well-documented bias to-
ward seeking positive evidence of the hypothesis they are con-
sidering (Klayman & Ha, 1989; Wason, 1960), a strategy that
in certain conditions is aligned with the goals of maximizing
uncertainty reduction (Austerweil & Griffiths, 2011; Navarro
& Perfors, 2011; Nelson & Movellan, 2001). To quantify this
strategy, we deĕne the most certain measure as:

MC(x) =max(P (y∣x)) (3)

e predictions of this model directly contrast those of least
certain, with the highest value assigned to items that can al-
ready be classiĕed with conĕdence. One may also think of the
most certain measure as instantiating conĕrmation bias—it
shows a preference for items for which the learner has a strong
prediction about the category label.

Empirically distinguishing these alternatives
Given these various approaches, a key question is if they are
distinguishable based on empirical data. e predictions of
each model are shown for a binary classiĕcation problem (like
the task used inMarkant andGureckis, 2010) in the top row of
Figure 2. Each heatmap describes the value assigned to a po-
tential observation depending on the learner’s uncertainty in
how to classify it. For example, an item that can be conĕdently
classiĕed (e.g., p(y∣x) = (1,0)) would be assigned a high value
by most certain and a low value by least certain. Note that for
the binary classiĕcation problem, least certain and label mar-
gin make identical predictions about how items will be val-
ued (i.e., items close to the center of the space are preferred),
making it impossible to separately test these models. How-
ever, an interesting observation made by Settles (2009) is that
the predictions of these models strongly diverge when consid-
ering more complex categorization tasks. For example, in a
ternary classiĕcation task (see bottom row of Figure 2), label
margin assigns themaximum value to any items for which one

category is highly unlikely but the learner is uncertain about
the other two (shown in Figure 2 by the high predicted value
along the radial axes of the simplex, including the midpoints
of each edge). In short, this model predicts that samples are
likely to be allocated close to any boundary (i.e., “margin”) be-
tween two categories. In contrast, least certain predicts sam-
pling close to the junction of the category boundaries, where
all three classes are likely.

Overview of the current study
e design of our experiment capitalizes on the distinction
described in the previous section by extending the paradigm
used in Markant and Gureckis (2010) to a ternary classiĕca-
tion problem. In the experiment participants collect data by
sampling new instances and receiving feedback about their
category membership. As shown above, using the ternary
classiĕcation problem allows us to separate the predictions of
the three sampling models, two of which were confounded
in our previous design. In order to obtain an estimate of the
learner’s uncertainty at any point in time, on a subset of sam-
pling trials participants report how likely they believe the in-
stance they created will belong to each of the three categories
(before receiving feedback). e goal of our analysis is to use
these subjective judgments to test which model provides the
best account of their sampling decisions.

Experiment
Participants Fiy-seven undergraduates at New York University
participated in the study for course credit. e experiment was run
on standard Macintosh computers in a single 1-hour session.

Stimuli Stimuli were deĕned by a two-dimensional continuous-
valued feature space corresponding to the size (radius) of a circle and
the angle of a central diameter. ese feature values were mapped
to a limited range of orientations and sizes on the display. Orienta-
tion could vary over only  degrees, ensuring that a full rotation of
the stimulus was not possible. e two halves of the central diame-
ter were given different colors, further reducing the perceptual sim-
ilarity of stimuli at the two extremes of the orientation dimension.
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Figure 3: Top: Probability judgments were entered by clicking on
a scale for each of the three categories (CH, CH, and CH). Bot-
tom: Probability judgments were displayed alongside the category
label during feedback.

e minimum radius and orientation were randomized so that the
boundary between the categories corresponded to a unique bound-
ary in perceptual space for each participant. A total of 256 stimuli
were sampled from a uniform grid over the feature space and used as
test items for all participants, presented in random order.

e category label associated with each stimulus was deterministi-
cally deĕned by a conjunctive, ternary classiĕcation rule of the form
shown in Figure 2. In addition to the structure that is shown, three
more rules were created through different rotations (, , and 
degrees) of the same boundaries in stimulus space. Each participant
was randomly assigned to one of the four rules.
Procedure Participants were instructed that the stimuli in the
experiment were television “loop antennas” and that each unique
antenna received one of three channels (CH, CH, or CH). eir
goal was to learn the difference between the three types of antennas
so that they could correctly classify new antennas during the test
blocks. Participants were told that the experiment would end when
they correctly classiĕed  consecutive test items. If a participant
failed to reach that goal the experiment ended aer  blocks or at
the end of an hour (whichever occurred ĕrst).

Training Trials. Participants “designed” antennas by adjusting the
size and orientation and receiving feedback about which channel was
received. ey were instructed that they should design antennas they
thought were useful and that would help them to predict the TV
channel for other designs they had not yet tested.

Each trial began with the presentation of a randomly generated
antenna. Participants then adjusted the size and orientation by
moving the mouse from le to right while holding either the ‘Z’ or
‘X’ key, respectively. Only one dimension could be changed at a
time, but participants could make any number of changes and were
self-paced. When the stimulus was the desired size and orientation,
they pressed the mouse button to reveal the channel received,
displayed above the stimulus for 4 seconds.

Probability judgments. Half of the training trials in each block
were randomly selected to include probability judgments. On
these trials, aer participants had designed an antenna but before
the category label was shown, they judged the likelihood that the
antenna would receive each of the three channels using a sequence
of rating scales (shown in Figure 3). e three scales were presented
independently such that only one was visible at a time. When
each scale appeared, the participant clicked on a location in the
scale according to their belief that the antenna they had designed
would receive that channel. A response was required for each scale,
and there was no time limit for entering the response. e initial
position of the mouse cursor within each scale was randomized,
allowing us to record whether responses were inĘuenced by the
starting position. Aer probability judgments were recorded,
they were displayed alongside the category label for the same
duration as in regular training trials. is allowed the participant to
evaluate the accuracy of their prediction given the true category label.

Test Trials. Each block of  training trials was followed by  test trials.
On each test trial, a single itemwas presented in the center of the dis-
play and the participant classiĕed the item according to the channel
they believed it wasmost likely to receive. A response was required to
complete the trial, and participants responded at their own pace. No
feedback was provided on individual test trials. At the end of each
block participants were told their accuracy during the block they just
completed, as well as the number of consecutive correct responses.

Results
ree participants were excluded from analysis for failing to
complete the task, leavingN = 54. irty-one people reached
the goal of correctly classifying  items in a row. However,
there were a number of additional people who achieved sim-
ilarly high rates of accuracy. For each subject we computed a
moving average of their classiĕcation accuracy with a window
of  blocks, and found  people for whom this average ex-
ceeded 83% at any point in the experiment (i.e., they correctly
classiĕed  of  items within any three consecutive blocks).

Probability judgments. On half of participants’ sampling
trials they judged how likely the stimulus they selected be-
longed to each of the three categories, resulting in three val-
ues between  and . In order to verify that participants were
not simply responding based on the position of the cursor,
for each rating we measured the difference between the initial
(random) position and the participant’s response. One partic-
ipant was excluded from further analysis because the major-
ity of their ratings (82%) did not change by more than 0.01%
from the initial values (for the remaining subjects, the aver-
age proportion of samples that met the same condition was
M = 0.04, SD = 0.05).
Fitting the alternative sampling models. Our ĕrst goal was
to assess the overall ĕt of the three sampling models to each
participant’s full set of probability judgments. For each model
we computed the normalizing constant necessary to deĕne the
probability density function. Each triplet of ratings was nor-
malized so that they summed to one. We then calculated the
log-likelihood of each judgment made by a participant and
summed across all trials to get an overall score for eachmodel.

Classifying participants according to the model with the
highest log-likelihood, we found that 3 people were best-ĕt by
least certain, 25 people were best-ĕt by label margin, and the
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Figure 4: A: Probability judgments are plotted using the 3-category simplex for participants best-ĕt by each of the three models (see Figure 2
for reference). Each point represents a single judgment aer normalization. B: Each judgment was classiĕed according to the model assigning
it the highest likelihood, effectively dividing the probability space into three regions. Participants were divided into two groups based on the
number blocks they required to complete the task (“fast” and “slow”), and the relative frequency of sampling in each region is shown at right.

remaining 25 people were best-ĕt by most certain. Judgments
made by participants, separated by the best-ĕtting model, are
plotted using the 3-category simplex in Figure 4A, with each
point a single sample chosen by a participant. A higher density
of points reĘects an increased tendency (as a group) to sam-
ple stimuli in a given region of probability space. Upon visual
inspection, the overall pattern for each group corresponds to
the predictions of the best-ĕtting model (Figure 2).

Relating sampling decisions to learning efficiency. Wenext
tested whether a participant’s overall success at learning the
target concept was related to the sampling behavior reĘected
in their probability judgments. Our approach was to divide
participants into two groups based on the number of blocks
they required to complete the task. We performed a median
split on the number of blocks (median = 16) to create a group
of “fast” (N = 26) and “slow” (N = 27) learners. With re-
spect to overall model ĕts, however, there was no difference in
the proportion of participants best ĕt by each model between
groups (fast learners: NLC = 1, NLM = 12, NMC = 13; slow
learners: NLC = 2, NLM = 13, NMC = 12).

While overall model ĕts provide a measure of each partic-
ipant’s sampling behavior in general, inspection of the data
showed that most subjects had relatively mixed strategies. For
example, a participant best-ĕt bymost certainmay have made
a number of judgments consistent with label margin. Given
this heterogeneity, we classiĕed individual probability judg-
ments according to the model that assigned it the highest like-
lihood, effectively dividing the probability space into three re-
gions corresponding to each model (Figure 4B). Multinomial
logistic regression was used to test for differences between the
relative frequency with which fast and slow learners sampled
in each of the three regions. Overall frequency differed signif-
icantly between the two groups (χ2 = 24.7, df = 2, p < .001).
Post-hoc tests showed that fast learners sampled somewhat
more frequently in the label margin region (t(51) = 1.68,
p = .09) and less frequently in the least certain region over-
all (t(51) = −1.91, p = 0.06), suggesting that this pattern of
sampling was related to success in the task.

Discussion
eories of rational information acquisition propose that the
decision to make an observation is related to the amount of
information it conveys (Nelson, 2005; Oaksford & Chater,
1994). Sampling norms such as probability gain prospectively
evaluate the change in uncertainty that is expected to occur
following an observation, and a rational learner should choose
the data that maximizes that measure. Our results illustrate
the relative inadequacy of these models when applied to even
a basic rule learning task. Very few of our participants were
best ĕt assuming they preferentially selected observations they
were least certain about. In addition, the heterogeneity of par-
ticipants’ sampling strategies is a noteworthy ĕnding. For ex-
ample, about 20% of samples in the ĕrst 4 blocks were “conĕr-
matory” (i.e., data that the learner could already classify with
relative conĕdence), and overall there was no difference in
the frequency of this kind of sampling between fast and slow
learners. Conĕrmatory sampling could serve a number of
purposes, including helping to organize the representation of
a rule in mind (Mathy & Feldman, 2009) or to facilitate com-
parisons between successive observations, but further work is
required to understand its exact role in this task.
Margin sampling vs. information maximization A second
way in which participants’ behavior diverged from the “ra-
tional” prediction was their preference for samples that fell
along the category margins over items that offered informa-
tion about all three categories (i.e., those located at the junc-
tion of the boundaries). From the perspective of an ideal ob-
server (i.e., a model that can represent the full set of possible
hypotheses and use Bayesian inference to update its beliefs),
the most efficient strategy is to maximize the amount of infor-
mation contained in each observation. Sampling at the cate-
gory margins should only decrease the efficiency of learning
since it will tend to rule out a smaller number of hypotheses,
which raises the question of why this kind of behavior was so
common in our task.

In our discussion wemotivated themargin samplingmodel
by noting that people might decompose a complex prob-
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lem into simpler pieces. e use of such a strategy may re-
Ęect a participant’s limited ability to simultaneously represent
all possible alternatives and to remember prior observations.
us, margin sampling may reĘect an adaptation whereby
people isolate individual components to learn in succession.
Separately testing the role of different features is an important
part of scientiĕc thinking in general (Klahr & Dunbar, 1988;
Kuhn & Dean, 2005), particularly when intervention is nec-
essary to remove the effect of confounding variables. Impor-
tantly, our results do not reveal the particular cognitive pro-
cesses underlying participants’ decisions, but merely provide
a descriptive account of their overall behavior. Nonetheless,
they provide a useful constraint for theories of information
sampling, particularly when applied to more complex tasks
that involve sequential learning and memory demands.

Measuring subjective uncertainty. It is important to con-
sider that the probability judgments we collected provide an
incomplete picture of participants’ uncertainty over the course
of the task. Although we found some evidence that fast and
slow learners differed in the kinds of samples they collected,
because uncertainty judgments were assessed on only half
of sampling trials it is difficult to draw strong conclusions
about the impact of those samples on classiĕcation accuracy.
Moreover, we cannot be sure that the judgments reported by
participants accurately reĘected their subjective belief since
there were no costs for failing to report accurately1. ese is-
sues arise whenever considering sampling models based on a
learner’s subjective uncertainty rather than objectivemeasures
of value such as information gain, and as such present an im-
portant challenge to be addressed in future work.

Conclusion
Past accounts of information sampling have suggested that a
single normative model might account for people’s decisions
across many learning problems, and that people tend to seek
out data that lead to the greatest reduction in uncertainty. In
contrast, we found little evidence of a single sampling norm
that was consistently applied across individuals. Instead, par-
ticipants’ sampling choices seem to reĘect ongoing aspects of
constructive problem solving. Our approach highlights the
need for theories of self-directed learning to move beyond in-
dividualmeasures of information value to capture interactions
with task demands and cognitive constraints.
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