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Abstract 

We present an improved computational model for performing 
geometric analogy. The model combines two previously 
modeled strategies and makes explicit claims about when 
people will use one strategy or the other.  We compare the 
model to human performance on a classic problem set.  The 
model’s strategy shifts, along with working memory load, 
account for most of the variance in human reaction times. 

Keywords: geometric analogy; visual problem-solving; 
structure-mapping 

Introduction 

Visual problem-solving has long been a popular tool for 

evaluating people’s cognitive abilities (Raven, Raven, & 

Court, 1998; Dehaene et al., 2006).  Problem-solving tasks 

frequently involve a sequence of images (e.g., Figure 1). 

Individuals must compare the images, identifying some 

pattern across them.  They must then apply this pattern, 

finding the answer that best completes (or violates) it. 

Visual problem-solving depends on a comparison process 

for identifying commonalities and differences in images. 

We have previously argued that structure mapping (Gentner, 

1983), a theory of analogical comparison, may also explain 

concrete visual comparison in humans (Markman & 

Gentner, 1996; Lovett et al., 2009a; Sagi, Gentner, & 

Lovett, in press). According to structure mapping, people 

compare stimuli by aligning the common relational structure 

in symbolic, qualitative representations. We have posited 

that structure mapping may play a ubiquitous role, 

identifying commonalities and differences and estimating 

similarity. Based on this hypothesis, we have built models 

of three visual problem-solving tasks: geometric analogy 

(Lovett et al., 2009b), Raven’s Progressive Matrices 

(Lovett, Forbus, & Usher, 2010), and the oddity task (Lovett 

& Forbus, 2011a). 

Here, we complement our model of visual comparison 

with a model of visual inference.  Visual inference explains 

how individuals apply a set of differences to one image to 

create a novel image representation.  It plays a key role in 

tasks such as geometric analogy (Figure 1), where 

participants are asked “A is to B as C is to…?”  We show 

how this leads to a new model for geometric analogy.  

Rather than assuming participants always infer the correct 

answer, the model makes explicit claims about when visual 

inference will succeed and when it will fail, requiring a shift 

to an alternate strategy. The model’s strategic shifts 

correlate well with human reaction times on a classic 

geometric analogy problem set (Evans, 1968). 

In the following section, we provide some background on 

the geometric analogy task. We then present our 

computational model, which utilizes two strategies for 

performing the task.  Afterwards, we compare the model 

against human performance and discuss the results.  We 

close with related work and conclusions.     

Background 

Geometric analogy involves comparing images to identify 

differences. However, researchers disagree on which 

comparisons people make. The debate encompasses two 

competing strategies. The first involves inserting each 

possible answer into the analogy to evaluate it. Consider 

Figure 1A.  The strategy proceeds as follows: 

1) Compare A and B to get Δ(A,B), the differences 

between A and B.  Here there is a change from two 

overlapping objects to one object inside the other. 

2) For each possible answer i, compare C to i to get 

Δ(C,i), the differences between C and that answer.  Then, 

perform a second-order comparison: measure the similarity 

of Δ(A,B) to Δ(C,i).  Whichever answer produces the most 

similar set of differences is chosen.  Here answer 3 produces 

an identical set of differences to Δ(A,B), so it is chosen. 

The second strategy solves for the answer directly: 

I) Compare A and B to get Δ(A,B). 

II) Compare A and C to get the corresponding objects.  In 

Figure 1A, the large leftmost shapes correspond, and the 

small rightmost shapes correspond. 

III) Apply the differences in Δ(A,B) to the corresponding 

objects in C to infer D’, a representation of the answer.  

Here the small rectangle in C would move inside of the 

larger shape. Pick the answer most similar to D’. 

Mulholland, Pellegrino, and Glaser (1980) call the first 

strategy infer-infer-compare and the second strategy infer-

map-apply.  However, this assumes that different processes 

are used to compare images in steps 1), 2), and II).  We 

believe structure-mapping can determine differences, 

identify correspondences, and measure similarity. 

Therefore, we instead call the strategies second-order 

comparison and visual inference. 

Sternber (1977) argued that people use visual inference to 

perform geometric analogy. However, Mulholland, 

Pellegrino, and Glaser (1980) found evidence that second-

order comparison was being used.  Bethell-Fox, Lohman, 

and Snow (1984) suggested that individuals may adjust their 

strategy, depending on problem difficulty. Their eye-

tracking data demonstrated that people typically use visual 

inference, solving directly for the answer. However, as 

problems become more difficult, people may abandon this 
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approach, instead trying out each possible answer in the 

analogy. 

One might conclude that people use visual inference when 

problems are easy and second-order comparison when 

problems are relatively difficult.  However, this is not the 

full story. Sternberg (1977) found that participants used 

visual inference on multiple choice problems, where they 

had to consider several possible answers. Mulholland, 

Pellegrino, and Glaser (1980) found that participants used 

second-order comparison on true/false problems, where they 

saw a completed analogy and simply judged whether it was 

correct. The Sternberg problems appear more difficult—at 

the very least, they put more load on working memory, as 

there are multiple answers to consider.  Why, then, would 

people use second-order comparison on the easier 

Mulholland et al. problems? 

We believe the answer lies in the algorithmic complexity 

of the two strategies. In the analysis below, we compute 

each strategy’s complexity by counting the number of 

comparisons necessary to solve a problem. We concede that 

this may be a simplification; for example, second-order 

comparisons may require more time and effort than others. 

However, our model predicts that a common process 

(structure-mapping) is used for all comparisons. Thus the 

number of times this process repeats should provide a 

reasonable approximation of a strategy’s complexity. 

 Consider second-order comparison. If there are n 

possible answers, then the number of comparisons is 1 (A to 

B) + n (C to each answer) + n (Δ(A,B) to Δ(C,n) for each 

answer) = 2n + 1. 

Now consider visual inference. The number is 1 (A to B) 

+ 1 (A to C) + n (D’ to each answer) = n + 2.  However, this 

strategy also requires a non-comparison operation: inferring 

D’ by applying Δ(A,B) to the corresponding objects in C. 

Suppose we have a true/false problem.  Then the number 

of answers n = 1.  The number of comparisons is 3 for both 

strategies. In this case, one might prefer second-order 

comparison, as it doesn’t requiring inferring D’. This 

explains why Mulholland et al. found that participants used 

second-order comparison. 

Suppose we have a multiple-choice problem.  The number 

of answers n > 1.  Now, there will be fewer comparisons for 

visual inference, and this should be the preferred strategy, as 

Sternberg found. However, if a problem is particularly 

A)     B)  

C) D)  

E) F)  

Figure 1: Geometric analogy problems with average response times and percent selecting each answer (Lovett et al., 2009b). 
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complex, participants may be unable to perform the 

inference operation.  In this case, they may fall back on the 

second-order comparison strategy, which requires only 

comparison operations. 

Our model, described below, attempts to solve problems 

via visual inference.  When it fails, either because it cannot 

perform the inference or because the inferred image doesn’t 

match any of the answers, the model reverts to second-order 

comparison. Thus, the model can help explain why some 

problems take longer to solve than others: certain problems 

require a shift from the default visual inference strategy to a 

less efficient second-order comparison strategy. 

Model 

Our model depends on three core processes: perception, 

visual comparison, and visual inference. Below, we describe 

each process and then show how the model combines these 

processes to implement different problem-solving strategies. 

Perception 

Our model uses the CogSketch sketch understanding system 

(Forbus et al., 2011) to generate a qualitative representation 

for each image. Qualitative, or categorical, representations 

are abstract, describing features like relative position (right 

of) or relative orientation (parallel), rather than exact 

numerical sizes and orientations. There is abundant 

psychological evidence that people are sensitive to such 

features (e.g., Huttenlocher, Hedges, & Duncan, 1991; 

Rosielle & Cooper, 2001). 

CogSketch performs sketch understanding, rather than 

full vision. It requires users to draw separate line drawings 

of each object in a visual scene (e.g., the rectangle and 

triangle in image A of Figure 1A). Given these objects, 

CogSketch automatically computes spatial relations between 

objects and attributes for individual objects.  

Our model takes the process a step further. It can 

automatically segment an object into edges and build an 

edge-level representation, describing qualitative spatial 

relations between the edges.  Alternatively, it can group 

several objects together based on similarity to build a group-

level representation. See Lovett and Forbus (2011b) for 

details on this process, as well as the full vocabulary of 

qualitative terms at the edge, object, and group levels. 

Visual Comparison 

We model visual comparison using the Structure-Mapping 

Engine (SME) (Falkenhainer, Forbus, & Gentner, 1989), a 

computational model based on Genter’s (1983) structure-

mapping theory. Given two cases described in predicate 

calculus, it computes a mapping between them by aligning 

their common relational structure.  SME is biased to prefer 

aligning deep structure.  For example, at the edge level, a 

first-order relation might indicate that there is a convex 

corner between two edges.  A second-order relation might 

indicate that two convex corners are adjacent.  These 

higher-order relations, which take other relations as their 

arguments, receive priority during mapping. 

SME computes up to 3 mappings between the compared 

cases.  Each mapping contains: A) a similarity score based 

on the breadth and depth of aligned structure; B) 

correspondences between the entities and expressions in the 

two cases; and C) candidate inferences (CIs), inferences 

based on expressions in one case that failed to align with the 

other.  For example, consider the A/B comparison in Figure 

1A. A forward CI (A->B) would indicate that the two shapes 

no longer partially overlap.  A backward CI (B->A) would 

indicate that one shape no longer contains the other.  CIs are 

useful for identifying differences between the cases. 

The model compares two images via the following steps: 

 1)  Compare the qualitative image representations 

using SME. This produces a mapping indicating the 

corresponding objects, commonalities, and differences. 

2)  For each pair of corresponding objects, compare 

the objects’ shapes to identify a shape transformation.  This 

is done by comparing the objects’ edge-level representations 

to get corresponding edges, and then using those 

correspondences to compute a transformation, such as a 

rotation or reflection (see Lovett & Forbus, 2011b).  

Sometimes there are multiple valid transformations.  For 

example, in Figure 1C, there is both a rotation and a 

reflection between the ‘B’ shapes. In such cases, the model 

picks the simplest transformation, according to the 

following rankings: identity, reflection, rotation.  Objects 

can also change scale, becoming larger or smaller. 

3)  Compute the similarity between images. This is 

primarily based on SME’s similarity score, but it is updated 

according to the shape comparisons: if two objects are 

identical, the images will be rated more similar. 

4)  Compute a qualitative, structural representation of 

the differences between the images. This describes 

differences of the following types: 

A) Spatial relation addition/removals, based on the CIs. 

B) Reversals of spatial relations.  This is a special case of 

A) where two objects swap places in a relation. In Figure 

1D, the dot and triangle swap places in an above relation. 

C) Object additions/removals, where objects are added or 

removed between images (e.g., Figure 1B). 

D) Object transformations, where there is a shape 

transformation between corresponding objects.  

Visual Inference 

The visual inference operation applies a set of differences to 

an image to produce a novel image representation.  In 

geometric analogy, the A/B differences are applied to C to 

produce D’, a representation of the answer image. Consider 

Figure 1A.  Inference proceeds as follows: 

1)  Compare image A to image C to get the 

corresponding objects. 

2)  Apply the A/B differences to the corresponding 

objects in C to produce a new qualitative representation: 

A) Add or remove spatial relations. 

B) Reverse the arguments of spatial relations. 

C) Add or remove objects.  If an object is added, create a 

new object in CogSketch, basing it off some existing object.  
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If an object is removed, remove any spatial relations 

referring to that object. 

D) For all other objects, apply the appropriate shape 

transformation to the object in C to create a new object for 

D’. This might mean leaving the shape unchanged 

(identity), rotating it, reflecting it, scaling it, etc. 

E) Compute shape attributes for all the newly created 

objects, and add them to the D’ representation. 

Note that D’ contains: a) a qualitative, structural image 

description; and b) a set of concrete, quantitative objects.  

Thus, it contains just enough to support visual comparisons 

between D’ and other images.  However, D’ is not a 

concrete image: the model lacks exact, quantitative 

locations for each object. 

There are several ways that visual inference can fail: 

A) When a spatial relation cannot be added because the 

objects it describes are not found in C (there are no 

corresponding objects). 

B) When a spatial relation cannot be reversed. In Figure 

1D, there is a reversal of above in the A/B differences.  

However, there is no above in C to reverse.   

C) When an object cannot be removed or transformed 

because the object is not found in C. 

 D) When transforming an object doesn’t produce the 

desired effect.  On Figure 1E, the model reflects the ‘B’ 

shape over the x-axis.  However, when it compares the 

result to the original ‘B’ shape, they appear identical (recall 

that identity is ranked before reflection).  The model treats 

this as a failure to transform. 

The model is focused on generation: adding expressions 

to C’s representation to produce D’.  Thus, visual inference 

fails when a spatial relation cannot be added to C or 

reversed in C, but it does not fail when a spatial relation 

cannot be removed from C.  For example, in Figure 1B, the 

A/B differences include removing a rightOf relation. There 

is no such relation in C to be removed.  Visual inference 

succeeds here, whereas it fails in 1D, where there is no 

above relation in C to be reversed. Thus, the model explains 

why 1D is a harder problem (compare the reaction times). 

Geometric Analogy 

Our new geometric analogy model solves problems via two 

strategies: visual inference and second-order comparison.  

For visual inference, the model compares A and B to get 

Δ(A,B), the differences between them.  It applies Δ(A,B) to 

C to get D’, a representation of the answer image. It 

compares D’ to each possible answer. If an answer is 

sufficiently similar, it selects that answer. 

For second-order comparison, the model compares A and 

B to get Δ(A,B).  For each answer i, it compares C and i to 

get Δ(C,i) and then compares Δ(C,i) to Δ(A,B) (again, using 

SME). If an answer’s Δ(C,i) is sufficiently similar to 

Δ(A,B), it selects that answer. 

In each case, an answer is sufficiently close if either a) 

SME detects no differences; or b) the SME similarity score 

lies above a similarity threshold. We use a similarity 

threshold of 0.8 (where 1.0 is a perfect match).  However, a 

sensitivity analysis shows that our results would be the same 

for values ranging from .67 to .87.  If multiple answers tie 

for the best score, this is treated as a failure. 

Note that when SME compares Δ’s for second-order 

comparison, it is possible to find a perfect match even for 

non-identical Δ’s. SME supports tiered identicality 

(Falkenhainer, 1990), where non-identical predicates can 

align when they are members of a common category.  For 

example, in Figure 1D, Δ(A,B) and Δ(C,3) each involve 

reversal of a positional relation (above and rightOf). Thus, 

Figure 1D is not solvable by visual inference, but it is easily 

solvable by second-order comparison.  

 

Strategic Shifts The model first attempts to solve a problem 

via visual inference. This can fail in two ways: either the 

inference operation may fail (Figures 1D, 1E), or D’ may 

fail to match any of the answers.  For example, in Figure 1F, 

the A/B differences show the inner shape being removed.  

The model applies these differences to C to infer an image 

with a large circle, which matches none of the answers. 

If visual inference fails, the model reverts to second-order 

comparison.  When the model utilizes this strategy, it must 

make two other strategic decisions: the comparison mode 

when comparing A to B, and the comparison mode when 

comparing C to each answer i.  The comparison modes are: 

A) Normal: Images are compared as described above. 

B) Reflection: Instead of preferring identity during shape 

comparison, the model prefers reflection. In Figure 1E, the 

C/3 comparison will find a y-axis reflection between the ‘B’ 

shapes, instead of treating them as identical. 

C) Rotation: Instead of preferring identity during shape 

comparison, the model prefers rotation. 

D) Alternate: The model looks for an alternate mapping 

between the images.  In Figure 1F, an alternate A/B 

mapping aligns the small triangle in A with the large 

triangle in B. 

The model only considers an alternate mapping when 

SME finds more than one mapping between the images.  It 

only considers the Reflection/Rotation modes when the 

images each contain a single object, allowing the model to 

focus on different ways of comparing that one object. 

The model independently varies the mapping mode for 

A/B and C/i comparisons, beginning with Normal for each.  

It terminates when it identifies a sufficient answer. If no 

such answer is found, it picks the highest-scoring answer. 

Experiment 

We evaluated our model on 20 geometric analogy problems 

from Evans (1968). We recreated each problem in 

PowerPoint and then imported the problems into 

CogSketch. This required us to manually segment each 

problem into images (image A, image B, etc) and segment 

each image into objects (each object was drawn as a 

separate shape in PowerPoint). Beyond this, the model 

automatically segmented each object into edges and 

generated representations at the edge and object levels—this 

problem set did not contain any groups of objects. 
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 Our prior behavioral study (Lovett et al., 2009b) provides 

data on human performance which our simulation models, 

so we summarize it next.  

Behavioral Study 

The Evans problems were shown to 34 adult participants. 

They were given a description of the geometric analogy task 

followed by two simple example problems (without 

feedback) before they saw the 20 problems. Both the 

ordering of the problems and the ordering of the five 

possible answers were randomized across participants.1 

Before each problem, participants clicked on a fixation 

point in the screen’s center to indicate readiness. After the 

problem was presented, participants clicked on the picture 

that best completed the analogy. Participants were instructed 

to be as quick as possible without sacrificing accuracy.  The 

two measures of interest were the answer chosen and the 

reaction time, i.e., the time taken to solve the problem. 

 

Results The results show a high degree of consistency 

across participants. All participants chose the same answer 

for 9 of the 20 problems, while over 90% chose the same 

answer for 7 additional problems. The greatest disagreement 

was on Figure 1F, where only 56% chose the same answer. 

Henceforth, we refer to the answer chosen by the majority 

as the preferred answer.  In reporting and analyzing reaction 

times (including Figure 1), we consider only responses with 

the preferred answer, filtering out minority responses. 

Simulation & Analysis 

The model chose the preferred answer on all 20 problems. 

This indicates that our approach—qualitative representation, 

comparison via structure mapping, and visual inference—is 

sufficient for matching human performance on the task.  

We next asked whether people take longer to solve 

problems where our model must make a strategy shift.  We 

coded each problem for three factors: Alt-Strategy, Alt-

Mapping, and Alt-Transform. Alt-Strategy indicates that our 

model reverts to second-order comparison to solve the 

problem. Alt-Mapping indicates that it uses the Alternate 

image mapping mode.  Alt-Transform indicates that it uses 

the Reflection or Rotation mapping modes. We group these 

mapping modes together, as our model uses the same 

mechanism for computing both transformation types. 

We also coded each problem for working memory load.  

Previous research has shown that geometric analogy 

problems get harder as either the number of elements or the 

number of transformations increases (Mulholland, 

Pellegrino, & Glaser, 1980; Bethell-Fox, Lohman, & Snow, 

1984). Mulholland et al. found that this effect was non-

linear: there was a higher cost when the numbers of both 

                                                           
1 Due to experimenter error, some participants received the same 

random orderings. As many as five received one ordering, but on 

average only 1.5 received the same ordering. When we randomly 

selected one instance of each ordering, the participant number 

dropped to 22, and the pattern of results remained the same. 

elements and transformations increased. They suggested this 

was because at some point the problem exceeds people’s 

working memory capacity, requiring a shift in strategy. 

We coded for working memory load by counting the 

number of elements in Δ(A,B), the differences between 

images A and B.  This is a key representation for both visual 

inference and second-order comparison. Because 

Mulholland et al. found a non-linear effect of working 

memory, we discounted the first two elements. Thus, if 

Δ(A,B) was one or two, the WM Load was coded as zero.   

We ran a linear regression to identify the effect of the 

above factors on human reaction times.  Table 1 shows the 

results. Overall, this model achieves an R2 of .95 (.93 

adjusted), meaning it explains almost all the variance in 

human reaction times. The grayed cells indicate which 

factors made a significant contribution to the model (p < 

.01). The intercept of 6.4 indicates that the easiest problems 

took around 6.4 s, while the various factors increased the 

time to complete a problem. 

Note that with correlations, extreme values can result in 

an overestimation of the explained variance (the R2 value).  

In this case, participants took far longer to solve the two 

problems requiring the Alt-Mapping shift (e.g., Figure 1F). 

If we remove these data points and rerun the analysis, Alt-

Mapping ceases to be a factor, and  R2 drops to .80 (.76 

adjusted). Thus, even discounting these difficult problems, 

the regression explains most of the variance in performance. 

Table 1. Linear model for human reaction times on 

geometric analogy (grayed cells are significant factors). 

Intercept 
WM 

Load 

Alt-

Strategy 

Alt-

Transform 

Alt-

Mapping 

6.4 s 5.7 s 4.4 s - 0.7 s 10.5 s 

 

The only factor that did not contribute significantly was 

Alt-Transform. Alt-Transform refers to problems like 

Figure 1E, where the model must switch to a Reflection 

mode to identify a reflection between the identical ‘B’ 

shapes. The analysis suggests there is no increased cost for 

Alt-Transform problems.  However, this does not mean such 

problems are easy; they are difficult in that the model must 

make the Alt-Strategy shift to solve them, changing to 

second-order comparison.  Once this strategy shift has been 

made, there is no additional cost for the Alt-Transform shift. 

Related Work 

Evans’ ANALOGY (1968) was the first computational 

model of analogy. A ground-breaking system, it solved the 

same 20 geometric analogy problems as our model using 

second-order comparison. However, its brute-force 

comparison processes do not align well with human 

cognition (see Lovett et al., 2009b for a discussion). 

Our own previous model (Lovett et al., 2009b) also 

solved problems via second-order comparison.  The present 

approach builds on that model by implementing visual 

inference as a complementary strategy. The previous model 

explained .56 of the human variance on the Evans problems, 
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whereas the current model explains .95 of the variance. 

However, the previous analysis did not consider multiple 

factors or filter out reaction times for minority responses. 

Several other approaches have utilized visual inference 

strategies, but these suffer from important limitations.  

Some (Schwering et al., 2009; O’Donoghue, Bohan, & 

Keane, 2006) use hand-coded symbolic inputs, rather than 

automatically generating representations.  This means the 

models are unable to reason about quantitative spatial 

information, e.g., shape transformations. Others (Ragni, 

Schleipen, & Steffenhagen, 2007) are unclear on their 

comparison processes. Finally, because these models have 

not been systematically evaluated on a pre-existing problem 

set, it is unclear how well they match human performance. 

Conclusions 

We believe our model is the first to combine two established 

problem-solving strategies: visual inference and second-

order comparison. Beyond utilizing both strategies, the 

model makes explicit claims about when people will 

abandon visual inference and fall back on second-order 

comparison. Our analysis shows that these claims help 

explain human reaction times on the 20 Evans problems: 

people take longer to solve problems where the model 

reverts to second-order comparison, and they take even 

longer when the model must find an alternate mapping. 

Importantly, our two problem-solving strategies are not 

unique to geometric analogy. We recently (Lovett & Forbus, 

in prep) integrated these strategies into a new model of 

Raven’s Progressive Matrices, a more complex task that is 

popularly used to evaluate general intelligence. As that 

model and the present model show, successful problem-

solving requires flexibly moving between different 

comparison strategies. These models, along with our oddity 

task model (Lovett & Forbus, 2011a), also demonstrate the 

utility of structural alignment across qualitative 

representations. In the future, we plan to evaluate the 

generality of our approach on new problem-solving tasks.  
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