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Abstract 

The Chinese Room argument describes a thought experiment 
that suggests that for symbols to become meaningful, they 
must be grounded in perceptual experiences. Embodied 
cognition theorists frequently use this argument to claim that 
cognition requires perceptual simulation. We shed light on the 
symbol grounding problem by arguing that the structure of 
natural language provides language users with cues that allow 
them to bootstrap meaning from non-grounded symbolic co-
occurrences, such that the statistical linguistic structure can 
bootstrap meaning with minimal grounding. Two studies 
show that co-occurrences of both Chinese and Arabic city 
names can reliably predict their longitude and latitude in 
China and in the Middle East. Using the statistical linguistic 
technique Latent Semantic Analysis, similarity ratings were 
obtained for Chinese city names (Study 1) and for Arabic city 
names (Study 2).  Multidimensional scaling (MDS) 
coordinates of these similarity ratings correlated with the 
actual longitude and latitude of these cities, showing that 
cities that are located together share similar semantic 
contexts. These results suggest that the Chinese Room 
argument might be substituted with a Chinese Route 
argument: statistical linguistic frequencies of word co-
occurrences provide language users with implicit cues about 
how to form perceptual representations. 

Keywords: symbol grounding problem; geography; spatial 
cognition; latent semantic analysis; symbolic cognition; 
embodied cognition 

Chinese Room Argument 
A monolingual English speaker sits in a room; all he has is a 
Chinese newspaper. Even though there is a wealth of 
Chinese language at his disposal, few would argue that he 
understands Chinese. In fact, even if he can successfully 
find a specific Chinese word, e.g., 上海, in his newspaper, 
and the collocations of that word, say, 北京, and 香港, there 
is little evidence he knows the meaning of those words. This 
Chinese room argument has been used by Searle (1980) to 
illustrate the symbol grounding problem in cognition 
(Harnad, 1990), which questions a computational account of 
meaning acquisition. 

Many cognitive scientists place a strong theoretical 
emphasis upon how symbols become grounded (Barsalou, 
1999; Glenberg, 1997; Harnad, 1990; Pulvermüller, 1999; 
Searle, 1980). These researchers express an increased 
concern regarding symbolic representations of meaning, and 
do not endorse analogies between computational and human 
approaches towards deriving meaning (Pecher & Zwaan, 
2005; Semin & Smith, 2008). Embodiment theorists state 
that meaning cannot lie within arbitrary amodal symbol 
systems; instead, meaning extraction continuously involves 
the activation of perceptual experiences. Indeed, learning 
Chinese as a monolingual English speaker with only a 
Chinese-Chinese dictionary would lead to a symbolic 
merry-go-round (Harnard, 1990). Computationally 
translating symbols into other symbols is however what 
computer models do, and computational simulations are 
therefore fundamentally different from human cognitive 
processes (Glenberg & Robertson, 2001). One 
computational model of meaning extraction that is 
frequently used is latent semantic analysis (LSA; Landauer, 
McNamara, Dennis, & Kintsch, 2007). LSA establishes 
meaning representation based on co-occurrences of words in 
same contexts. The words Beijing and Shanghai	
    therefore 
have a high similarity in (computational) meaning. 
However, because Beijing is not grounded in perceptual 
experiences, it does not have human-like meaning 
(Glenberg & Robertson, 2001). For instance, when humans 
process the word Beijing they might see a map of China and 
are able to ‘see’ the city in the northeast of the country. 
Estimating the location of Beijing using a corpus-based 
computational model would seem impossible, because of 
the Chinese Room argument. If the location of Beijing were 
to be estimated using amodal symbol systems, explicit 
spatial cues, such as prepositions and cardinal directions are 
needed (e.g., Beijing  is north of Shanghai). Such spatial 
cues would lead to a combinatorial explosion with each city 
being added (Beijing is north of Shanghai, Chongqing is 
southwest of Beijing,  Chongqing is west of Shanghai, etc.).  
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Returning to the Chinese room with the monolingual 
English speaker described earlier, how could our English 
speaker possibly extract geographical locations from 
Chinese newspapers without seeing a map of China and 
seeing the cities marked on the map? Louwerse and Zwaan 
(2009) concluded that language encodes geographical 
information. Louwerse and Zwaan took the 50 largest cities 
in the United States and computed their co-occurrence 
frequencies in the New York Times, Wall Street Journal, 
and Los Angeles Post. None of these newspaper corpora 
necessarily described the spatial locations of the American 
cities. Yet, using LSA, Louwerse and Zwaan (2009) were 
able to estimate the longitude and latitude of the 50 cities 
using statistical linguistic frequencies for each of the three 
corpora (for a detailed description of the method being used, 
see below). Moreover, the population size of these cities 
could be estimated using frequency in the newspapers. The 
computational estimates were on par with human 
performance. The findings in this study showed that 
statistical linguistic frequencies can be used to estimate the 
location and the size of cities. Determining the semantic 
associations between cities in a corpus allows for estimating 
physical distance between cities. In fact, a heuristic like this 
might be used during cognitive map construction (Goldstein 
& Gigerenzer, 2002).  

Harnad (1990) suggested that ungrounded symbolic 
representations can inherit meaning from grounded words 
related to them; we similarly propose that with minimal 
grounding of some symbols, the meaning of all symbols can 
be bootstrapped. If language encodes geographical 
information, we will be at least one step closer towards a 
bootstrapping solution. That is, the vacuum of the Chinese 
room now becomes an opportunity for a Chinese route: with 
very limited symbol grounding, the native speaker of 
English can bootstrap the geography of China.  

Latent Semantic Analysis 
To test the possibility of a Chinese Route Argument, i.e., the 
Chinese language encodes geographical locations in China, 
we used LSA on a sample of texts segmented into 
paragraphs as input. Mathematical transformations created a 
large term-document matrix from the input. For example, if 
there are m terms in n paragraphs, a matrix of A = 
(fijxG(j)xL(i,j))mxn  is obtained. The value of fij is a function 
of the integer that represents the number of times term i 
appears in document j, L(i; j) is a local weighting of term i 
in document j, and G(j) is the global weighting for term j. 
Such a weighting function is used to differentially treat 
terms and documents to reflect knowledge that is beyond the 
collection of the documents. As in most LSA studies 
(Dumais, 2007; Martin & Berry, 2007), we used natural log 
as the local weight and log entropy as the global weight in 
the current analyses. The large matrix of A has, however, 
much redundant information. Singular Value 
Decomposition decomposes the matrix A into three matrices 
A =UΣV’; where U is an m by m square matrix and V is an n 
by n square matrix, with Σ being an m by n diagonal matrix 

with singular values on the diagonal. Removing dimensions 
corresponding to smaller singular values and keeping the 
dimensions corresponding to larger singular values reduces 
the representation of each word to a low dimensional vector. 
Although the new representation for the words (the reduced 
U matrix) is no longer orthogonal, each word now becomes 
a weighted vector on 300 dimensions, with only the most 
important dimensions that correspond to larger singular 
values being kept. The number of dimensions can be 
determined ad hoc, but we followed the trend set by most 
LSA studies and used 300 factors (Landauer & Dumais, 
1997). The semantic relationship between words can be 
estimated by taking the cosine between two vectors. With 
LSA the semantic relatedness is not only determined by the 
relation between words, but also by the words that 
accompany a word (Landauer & Dumais, 1997).  

Two studies each tested two hypotheses: 1) Cities that are 
located together are debated together. That is, cities that are 
in close geographical proximity are also in close proximity 
in the text, so that language structure itself provides cues to 
derive perceptual-semantic information. 2) Cities that are 
populated more are debated more. That is, larger cities are 
talked about more, so that city word frequency provides 
cues about the importance of the city. In Study 1 we tested 
these hypotheses with city names in China in a Chinese text 
corpus, in Study 2 with city names in the Middle East in an 
Arabic corpus. 

Study 1: China 
In Study 1 we used a Chinese corpus collected online, 
consisting of 4 of the most popular classic fiction books, 29 
popular modern fiction books, 26 history books, 49 
philosophy books, 34 economy books, 15 politics books, 
and 8 military books. These books provided 86MB of text in 
14768 documents (paragraphs) and 47,226 word types. In 
terms of text size, 33.4% texts are in history, 24.6% in 
philosophy, 10.4% in economics, 9.3% in modern fiction, 
9.3% in politics, 7% in military and 6% in classic fiction. 
Note that the texts did not explicitly describe geographical 
relations between Chinese cities, and that the corpus was 
very heterogeneous. 

The standard procedure was used when creating the LSA 
space, whereby each word was a weighted vector on 300 
dimensions. The 50 largest cities in China were selected, 
and their latitude and longitude were determined using 
census data. All cities had a population size of more than 
one million (M = 2,393,188, SD = 2,340,707.88) (Table 1). 

Cosine values were computed for each of the city pairs. 
Two cities resulted in cosine errors and were removed from 
the analysis, resulting in a 48 x 48 cosine matrix. This 
matrix was submitted to an MDS analysis using the 
ALSCAL algorithm. A Euclidean distance measure 
transformed the semantic similarities into dissimilarities, 
such that the higher the value, the longer the distance. 
Default MDS criteria were used with an S-stress 
convergence of .001, a minimum stress value of .005, and a 
maximum of 30 iterations.  

696



We chose a low-dimensionality to rule out over-fitting the 
data. The fitting on a two-dimensional scale was moderate, 
with a Stress value = .33 and an R2 = .59. The LSA 
estimated coordinates of the 48 cities were compared with 
the actual coordinates of the cities.  

The loadings of the 48 cities on the two dimensions 
generated by the MDS analysis correlated with the longitude 
and latitude of the cities, latitude – dimension 1, r = .64, p < 
.001, n = 48; longitude – dimension 2, r = .33, p = .02, n = 
48. 

To do justice to the geometry of the 2D variables, we used 
bi-dimensional regression analyses to compare the 
computational estimates with the actual coordinates of the 
50 cities. Tobler (1964) and Friedman & Kohler (2004) 
introduced bi-dimensional regressions in order to compute 
the mapping of any two planes under consideration. 
Whereas in a uni-dimensional regression each data point is 
shifted by intercept and slope, each actual and predicted 

value of the dependent variable are presented by a point in 
space, whereby vectors represent intercept and slope. 

A bi-dimensional regression yielded a significant 
correlation between the LSA estimates and the actual city 
coordinates, r = .57, p < .001, n = 48. This result supported 
the hypothesis that Chinese cities that are located together in 
China are debated together in the Chinese language. 

The question can be raised whether the bi-dimensional 
regressions not always yield significant correlations. To 
answer this question we conducted 1000 Monte Carlo 
simulations on the 48 x and y pairs. The average bi-
dimensional regression of these simulations yielded no 
significant result, average r = .13 (SD = .06), p = .37, n = 
48. 

In addition, we tested the hypothesis that cities that are 
populated more are debated more by comparing the 
frequency of the 50 cities in the Chinese corpus with their 
actual population size. A Pearson correlation was 
significant, r = .47, p < .001, n = 50. 

 
 

Table 1: Chinese Cities 
 

City Lat. Long. Dim.1 Dim.2  City Lat. Long. Dim.1 Dim.2 
上海 31.23 121.40 -0.38 -1.42  苏州 31.30 120.60 -0.83 -1.34 
北京 39.93 116.40 -0.13 -1.24  汕头 23.37 116.60 -1.04 -0.69 
重庆 29.57 106.50 -1.07 0.81  荣成 23.54 116.30 1.05 -0.17 
西安 34.27 108.90 -0.92 1.28  兰州 36.05 103.60 -0.68 1.06 
武汉 30.58 114.20 -1.25 -0.93  合肥 31.85 117.20 -0.27 1.40 
成都 30.67 104.00 -1.24 0.45  抚顺 41.87 123.80 1.28 -0.50 
天津 39.13 117.20 0.28 -1.26  洛阳 34.68 112.40 0.83 1.32 
沈阳 41.80 123.40 1.96 -0.64  邯郸 36.58 114.40 0.88 1.09 
哈尔滨 45.75 126.60 1.36 -0.19  包头 40.60 110.00 -0.98 0.68 
南京 32.05 118.70 -0.47 -1.48  香港 22.27 114.10 -0.68 0.64 
广州 23.12 113.20 -0.63 -1.31  苏州 34.27 117.10 -0.84 -1.31 
太原 37.87 112.50 0.16 1.40  深圳 22.53 114.10 -0.74 -0.01 
长春 43.87 125.30 1.98 -0.55  福州 26.08 119.30 -1.09 -0.99 
石家庄 38.05 114.40 1.63 0.07  无锡 31.58 120.30 -0.35 1.57 
长沙 28.20 112.90 -1.30 -0.30  淮南 32.63 116.90 -1.16 0.46 
济南 36.67 117.00 0.86 -0.91  贵阳 26.58 106.70 -1.27 -0.57 
大连 38.92 121.60 0.56 -0.89  鞍山 41.12 122.90 1.61 -0.55 
吉林 43.85 126.50 1.70 0.11  保定 38.87 115.40 -0.17 0.99 
南昌 28.68 115.80 -1.02 -0.94  咸阳 34.37 108.70 -0.01 1.42 
郑州 34.75 113.60 1.25 0.28  昆明 25.05 102.70 0.01 -0.83 
九龙 22.32 114.10 -0.04 1.73  大同 40.08 113.30 0.66 0.86 
杭州 30.25 120.10 -0.92 -1.18  本溪 41.33 123.70 1.82 -0.30 
青岛 36.07 120.30 1.03 -0.23  淮北 33.95 116.70 -0.75 1.08 
唐山 39.62 118.10 0.37 1.53  常州 31.78 119.90 -1.06 0.50 
 
 
 
 
 

 
 

Study 2: Middle East 
In order to determine whether the findings could be 

generalized beyond China and the Chinese language, we 
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used a different language (Arabic) and a different geography 
(the Middle East) in the second study.  

An LSA space was created using an Arabic corpus 
collected online, consisting of books and news on history 
(49%), fiction (42%), politics (3%), philosophy (2%), 
economy (1%) and other unknown types of texts (3%). The 
total size of the corpus was 71.8 MB, including 27,937 
paragraphs and 147,535 word types. Again, the texts did not 
specifically discuss the geography of the Middle East. 
Instead, the corpus covered many topics and was, again, 
very heterogeneous in nature. 

Similar to the previous analysis, 50 of the largest cities 
across the Arabic speaking countries in the Middle East 
were selected (M = 1,304,154, SD = 1,451,579). These cities 
were located in Egypt, Iraq, Jordan, Kuwait, Lebanon, 
Oman, Syria, United Arab Emirates, and Yemen (Table 2).  

Some countries were not included because the Arabic 
notation of cities for those countries was unavailable (Saudi 
Arabia, Ethiopia, Eritrea, Somalia, Djibouti). 

As in the Chinese analysis, geographical location 
(longitude and latitude) as well as population size for these 
50 cities were determined. A 50 x 50 cosine matrix was 
submitted to an MDS ALSCAL analysis, and the MDS 
coordinates were compared with the actual coordinates. 

Again, the fitting on a two-dimensional scale was 
moderate, with Stress = .35, R2 =.69. The LSA estimated 

coordinates of the 50 cities were compared with the actual 
coordinates of the cities. 

The loadings of the 50 cities on the two dimensions 
generated by the MDS analysis correlated with the longitude  
and latitude of the cities, latitude – dimension 1, r = .41, p < 
.001, n = 50; longitude – dimension 2, r = .57, p < .001, n = 
50.  

A bi-dimensional regression also yielded a significant 
correlation between the LSA estimates and the actual city 
coordinates (r = .53, p < .001, n = 50). These results again 
supported the hypothesis that cities in the Middle East that 
share geographical context, share textual context (cities that 
are located together are debated together). 

As in Study 1, we ran 1000 Monte Carlo simulations to 
rule out the possibility that the significant bi-dimensional 
regressions could be obtained from an accidental pairing of 
the estimates. The average regression coefficient again ruled 
out that the findings could be obtained by chance, average r 
=.13 (SD =.07), p = .37, n = 50. 

Finally, as before, we compared the frequency of the 50 
cities in the Arabic corpus with their actual population size. 
A Pearson correlation was significant (r = .61, p < .001, n = 
50), providing evidence for the hypothesis that cities in the 
Middle East that have a higher population, are talked about 
more frequently. 
 

 
Table 2: Middle Eastern Cities 

 
 Lat. Long. Dim1. Dim.2   Lat. Long. Dim. 1 Dim. 2 
 2.0242 0.075- 47.06 34.38 كرمانشاهه  1.5093 0.2169 51.43 35.67 تھهراانن
 1.0911- 1.0587 45.43 35.56 االسلیيمانیية  1.2606- 0.6485 44.44 33.33 بغداادد
 1.2087 0.3161 45.00 37.53 اارروومیيھه  0.9586- 0.9637- 46.77 24.65 االریياضض
 1.1594 0.4181 60.83 29.50 ززااھھھهداانن  0.7991- 1.1027- 39.17 21.50 جدةة
 1.2215 0.3014 49.63 37.30 ررشت  1.0505- 1.007 43.14 36.34 االموصل
 0.7242- 1.044- 40.38 21.26 االطائف  1.0937 0.2017- 59.57 36.27 مشھهد
 2.0397 0.04- 57.08 30.30 كرمانن  0.0876- 1.2753 69.17 34.53 كابل
 0.7392- 1.3177- 36.73 35.15 حماةة  0.9994- 0.6608- 35.50 33.89 بیيرووتت
 0.7171- 1.034 44.43 32.48 االحلة  1.4058- 0.0922 47.82 30.53 االبصرةة
 0.7448- 1.1946- 36.57 28.39 تبوكك  0.7176- 1.2136- 37.17 36.23 حلب
 1.0522- 1.0672 44.03 32.61 كربلاء  1.6961 0.4703- 51.68 32.68 ااصفھهانن
 2.01 0.0679- 48.58 34.77 ھھھهمداانن  1.0202- 0.7743- 36.32 33.50 ددمشق
 0.8805- 1.0166 47.15 31.84 االعماررةة  1.2555 0.2241 50.97 35.80 كرجج
 0.6294- 1.0995 36.10 32.07 االزررقاء  0.7787- 1.0349- 39.82 21.43 مكھه
 0.9256 0.578 49.70 34.08 ااررااكك  0.7826 0.9509- 46.30 38.08 تبریيز
 0.9436- 0.973 44.93 31.99 االدیيواانیية  0.8734 0.8681- 52.57 29.63 شیيراازز
 0.6579- 0.9944- 42.73 18.31 خمیيس مشیيط  0.3946- 1.2833 44.01 36.18 اارربل
 1.81 0.0563- 54.37 31.92 یيزدد  1.022- 0.5422- 35.93 31.95 عمانن
 0.2557- 1.1197- 43.97 26.37 بریيدهه  1.0729- 0.7522- 39.59 24.48 االمدیينھه
 2.002 0.0501- 48.30 38.25 ااررددبیيل  1.3174 0.1934 48.72 31.28 ااھھھهواازز
 0.6968- 1.1115 44.65 33.74 بعقوبة  1.2444 0.1317- 50.95 34.65 قم
 0.9249 0.6984 56.25 27.25 بندررعباسس  0.7561- 1.1988- 50.10 26.43 االدمامم
 0.043- 1.2645 62.18 34.35 ھھھهرااتت  0.7446- 1.3472- 36.72 34.73 حمص
 0.0334 1.233 51.20 35.54 ااسلامم شھهر  1.1014- 1.0518 44.39 35.47 كركوكك
 0.7091- 1.0628- 35.78 35.54 االلاذذقیية  1.0775- 1.0731 44.34 32.00 االنجف
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General Discussion 
This study showed that statistical linguistic frequencies 

can be used to estimate the location and population size of 
cities. In the first study we estimated the location and size of 
cities in China using Chinese text, in the second the location 
and size of cities in the Middle East using Arabic texts. 
These findings show that the results reported by Louwerse, 
Cai, Hu, Ventura, & Jeuniaux (2006) for France, those 
reported by Louwerse and Zwaan (2009) for the United 
States, and by Louwerse and Benesh (in press) for (the 
fictional) Middle Earth can be extended to China and the 
Middle East. Moreover, the current study has demonstrated 
that geographical locations are not only encoded in English 
(Louwerse et al., 2006; Louwerse & Benesh, in press; 
Louwerse & Zwaan, 2009), but also in Chinese and Arabic.  

There are several questions that should be addressed with 
regards to the findings reported in this study. First, we 
should address the question whether the findings reported in 
this study should be attributed to LSA or to statistical 
linguistic frequencies. Louwerse and Zwaan (2009) 
addressed this question by demonstrating that geographical 
locations of cities in the United States could be predicted 
using higher-order co-occurrences (using LSA), but also by 
first-order co-occurrences. Louwerse (2011), however, 
pointed out that for first-order co-occurrences a corpus 
needs to be approximately 25,000 times larger than a corpus 
that is the appropriate size for an LSA analysis. A second 
question concerns the explicit spatial cues potentially 
present in the corpus. After all, the argument could be made 
that the Chinese and Arabic corpora we used for our 
semantic spaces consisted of explicit spatial cues (e.g., 
cardinal directions, prepositions) that explained our findings 
rather than implicit semantic relationships. This seems 
extremely unlikely for two reasons. First, the LSA algorithm 
shows minimal sensitivity to explicit cues because it uses 
higher-order co-occurrences (see Landauer, McNamara, 
Dennis, & Kintsch, 2007). Secondly, the corpora were so 
diverse in nature that the results can better be explained by 
statistical linguistic frequencies than by the specifics of the 
texts. 

We began this paper with the Chinese Room Argument, 
which suggests that meaning cannot be extracted from 
symbols unless a referent is perceptually activated (Searle, 
1980). Even though this study did not compare the 
computational results with experimental data (see Louwerse 
and Zwaan, 2009 and Louwerse and Benesh, in press, for 
such a comparison), it does provide some insight in the 
Chinese Room argument. The current study puts forward 
that, with minimal grounding of some symbols (city names), 
the meaning of all symbols (city names) can be 
bootstrapped, because of the organization of the symbolic 
network. The language system has many built-in regularities 
that are utilized during cognitive processing (Louwerse, 
2011; Louwerse & Jeuniaux, 2010). To illustrate this 
further, the current study has shown that if a language user 
knows the location of the city 乌鲁木齐, and knows only 
that the other Chinese words are Chinese city names, the 

language user can bootstrap the geographical locations of 
these other cities on a country map of China. Moreover, 
they can make estimates about the size of each city, because 
frequency correlates with population size.   

Obviously, we do not deny the essence of the symbol 
grounding problem: the language user must ground at least 
one symbol and must also have partial meaning with regards 
to the other words (i.e., know that they are city names). 
Moreover, the geographical estimates are relative estimates, 
rather than a specific longitude and latitude. However, 
findings like these do challenge an extreme view of symbol 
grounding that dismisses the possibility of statistical 
linguistic frequencies playing a significant role in cognition. 
Experimental evidence has shown that statistical linguistic 
frequencies often explain experimental findings better than 
perceptual simulations account do (Louwerse, 2008; 
Louwerse, 2011), yet whether humans rely more on 
statistical linguistic frequencies or perceptual simulations 
depends on at least the cognitive task and the stimulus 
(Louwerse & Jeuniaux, 2010). We therefore advocate the 
pursuit of a unified account in which both statistical 
linguistic frequencies and perceptual simulation help 
establishing meaning. In line of this research agenda, this 
study has shown that with minimal grounding the symbolic 
vacuum of the Chinese Room can become a guiding 
Chinese route. 

Acknowledgments 
This research was in part supported by grant NSF BCS-
0904909. The usual exculpations apply. 
 

References 
Barsalou, L. W. (1999). Perceptual symbol systems. 

Behavioral and Brain Sciences, 22, 577 660.  
Dumais, S. T. (2007). LSA and information retrieval: 

Getting back to basics. In T. K. Landauer, D. S. 
McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of 
latent semantic analysis. Mahwah, NJ: Erlbaum. 

Friedman, A., & Kohler, B. (2003). Bidimensional 
regression: A method for assessing the configural 
similarity of cognitive maps and other two-dimensional 
data. Psychological Methods, 8, 468–491. 

Glenberg, A. M. (1997). What memory is for: Creating 
meaning in the service of action. Behavioral and Brain 
Sciences, 20, 41-50. 

Glenberg, A. M., & Robertson, D. A. (2000). Symbol 
grounding and meaning: A comparison of high-
dimensional and embodied theories of meaning. Journal 
of Memory & Language, 43, 379-401. 

Goldstein, D. G., & Gigerenzer, G. (2002). Models of 
ecological rationality: The recognition heuristic. 
Psychological Review, 109, 75–90. 

Harnad, S. (1990). The symbol grounding problem. Physica 
D, 42, 335–346. 

Landauer, T. K., & Dumais, S. T. (1997). A solution to 
Plato’s problem: The latent semantic analysis theory of 

699



acquisition, induction, and representation of knowledge. 
Psychological Review, 104, 211-240. 

Landauer, T., McNamara, D. S., Dennis, S., & Kintsch, W. 
(Eds.) (2007). Handbook of latent semantic analysis. 
Mahwah, NJ: Erlbaum. 

Louwerse, M. M. (2008). Embodied relations are encoded in 
language. Psychonomic Bulletin & Review, 15, 838-844. 

Louwerse, M. M. (2011). Symbol interdependency in 
symbolic and embodied cognition. TopiCS in Cognitive 
Science, 3, 273-302.  

Louwerse, M. M. & Benesh, N. (in press). Representing 
spatial structure through maps and language: Lord of the 
Rings encodes the spatial structure of Middle Earth. 
Cognitive Science.  

Louwerse, M. M., Cai, Z., Hu, X., Ventura, M., & Jeuniaux, 
P. (2006). Cognitively inspired natural-language based 
knowledge representations: Further explorations of Latent 
Semantic Analysis. International Journal of Artificial 
Intelligence Tools, 15, 1021-1039. 

Louwerse, M. M., & Jeuniaux, P. (2010). The linguistic and 
embodied nature of conceptual processing. Cognition, 
114, 96-104.  

Louwerse, M.M. & Zwaan, R.A. (2009). Language encodes 
geographical information. Cognitive Science, 33, 51-73. 

Martin, D. I., & Berry, M. W. (2007). Mathematical 

foundations behind latent semantic analysis. In T. K. 
Landauer, D. S. McNamara, S. Dennis, & W. Kintsch 
(Eds.), Handbook of latent semantic analysis. Mahwah, 
NJ: Erlbaum. 

Pecher, D., & Zwaan, R. A. (Eds.) (2005). Grounding 
cognition: The role of perception and action in memory, 
language, and thinking. New York, NY: Cambridge 
University Press. 

Pulvermüller, F. (1999). Words in the brain's language. 
Behavioral and Brain Sciences, 22, 253-270.  

Searle, J.R. (1980). Minds, brains, and programs. 
Behavioral & Brain Sciences, 3, 417- 424. 

Semin, G. R. & Smith, E. R. (Eds.) (2008). Embodied 
grounding: Social, cognitive, affective, and 
neuroscientific approaches. New York, NY: Cambridge 
University Press. 

Tobler, W. R. (1964). Bidimensional regression. 
Geographical Analysis, 26, 187–212. 

 

 
 
 
 

 
 
 

700


