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Abstract

The Chinese Room argument describes a thought experiment
that suggests that for symbols to become meaningful, they
must be grounded in perceptual experiences. Embodied
cognition theorists frequently use this argument to claim that
cognition requires perceptual simulation. We shed light on the
symbol grounding problem by arguing that the structure of
natural language provides language users with cues that allow
them to bootstrap meaning from non-grounded symbolic co-
occurrences, such that the statistical linguistic structure can
bootstrap meaning with minimal grounding. Two studies
show that co-occurrences of both Chinese and Arabic city
names can reliably predict their longitude and latitude in
China and in the Middle East. Using the statistical linguistic
technique Latent Semantic Analysis, similarity ratings were
obtained for Chinese city names (Study 1) and for Arabic city
names (Study 2). Multidimensional scaling (MDS)
coordinates of these similarity ratings correlated with the
actual longitude and latitude of these cities, showing that
cities that are located together share similar semantic
contexts. These results suggest that the Chinese Room
argument might be substituted with a Chinese Route
argument: statistical linguistic frequencies of word co-
occurrences provide language users with implicit cues about
how to form perceptual representations.
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Chinese Room Argument

A monolingual English speaker sits in a room; all he has is a
Chinese newspaper. Even though there is a wealth of
Chinese language at his disposal, few would argue that he
understands Chinese. In fact, even if he can successfully
find a specific Chinese word, e.g., _E##, in his newspaper,
and the collocations of that word, say, 4L, and 75, there
is little evidence he knows the meaning of those words. This
Chinese room argument has been used by Searle (1980) to
illustrate the symbol grounding problem in cognition
(Harnad, 1990), which questions a computational account of
meaning acquisition.
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Many cognitive scientists place a strong theoretical
emphasis upon how symbols become grounded (Barsalou,
1999; Glenberg, 1997; Harnad, 1990; Pulvermiiller, 1999;
Searle, 1980). These researchers express an increased
concern regarding symbolic representations of meaning, and
do not endorse analogies between computational and human
approaches towards deriving meaning (Pecher & Zwaan,
2005; Semin & Smith, 2008). Embodiment theorists state
that meaning cannot lie within arbitrary amodal symbol
systems; instead, meaning extraction continuously involves
the activation of perceptual experiences. Indeed, learning
Chinese as a monolingual English speaker with only a
Chinese-Chinese dictionary would lead to a symbolic
merry-go-round  (Harnard, 1990). @ Computationally
translating symbols into other symbols is however what
computer models do, and computational simulations are
therefore fundamentally different from human cognitive
processes  (Glenberg &  Robertson, 2001). One
computational model of meaning extraction that is
frequently used is latent semantic analysis (LSA; Landauer,
McNamara, Dennis, & Kintsch, 2007). LSA establishes
meaning representation based on co-occurrences of words in
same contexts. The words Beijing and Shanghai therefore
have a high similarity in (computational) meaning.
However, because Beijing is not grounded in perceptual
experiences, it does not have human-like meaning
(Glenberg & Robertson, 2001). For instance, when humans
process the word Beijing they might see a map of China and
are able to ‘see’ the city in the northeast of the country.
Estimating the location of Beijing using a corpus-based
computational model would seem impossible, because of
the Chinese Room argument. If the location of Beijing were
to be estimated using amodal symbol systems, explicit
spatial cues, such as prepositions and cardinal directions are
needed (e.g., Beijing is north of Shanghai). Such spatial
cues would lead to a combinatorial explosion with each city
being added (Beijing is north of Shanghai, Chongqing is
southwest of Beijing, Chonggqing is west of Shanghai, etc.).



Returning to the Chinese room with the monolingual
English speaker described earlier, how could our English
speaker possibly extract geographical locations from
Chinese newspapers without seeing a map of China and
seeing the cities marked on the map? Louwerse and Zwaan
(2009) concluded that language encodes geographical
information. Louwerse and Zwaan took the 50 largest cities
in the United States and computed their co-occurrence
frequencies in the New York Times, Wall Street Journal,
and Los Angeles Post. None of these newspaper corpora
necessarily described the spatial locations of the American
cities. Yet, using LSA, Louwerse and Zwaan (2009) were
able to estimate the longitude and latitude of the 50 cities
using statistical linguistic frequencies for each of the three
corpora (for a detailed description of the method being used,
see below). Moreover, the population size of these cities
could be estimated using frequency in the newspapers. The
computational estimates were on par with human
performance. The findings in this study showed that
statistical linguistic frequencies can be used to estimate the
location and the size of cities. Determining the semantic
associations between cities in a corpus allows for estimating
physical distance between cities. In fact, a heuristic like this
might be used during cognitive map construction (Goldstein
& Gigerenzer, 2002).

Harnad (1990) suggested that ungrounded symbolic
representations can inherit meaning from grounded words
related to them; we similarly propose that with minimal
grounding of some symbols, the meaning of all symbols can
be bootstrapped. If language encodes geographical
information, we will be at least one step closer towards a
bootstrapping solution. That is, the vacuum of the Chinese
room now becomes an opportunity for a Chinese route: with
very limited symbol grounding, the native speaker of
English can bootstrap the geography of China.

Latent Semantic Analysis

To test the possibility of a Chinese Route Argument, i.e., the
Chinese language encodes geographical locations in China,
we used LSA on a sample of texts segmented into
paragraphs as input. Mathematical transformations created a
large term-document matrix from the input. For example, if
there are m terms in n paragraphs, a matrix of 4
(fixG(G)XL(i,j))mxn 1is obtained. The value of f; is a function
of the integer that represents the number of times term i
appears in document j, L(i, j) is a local weighting of term i
in document j, and G(j) is the global weighting for term j.
Such a weighting function is used to differentially treat
terms and documents to reflect knowledge that is beyond the
collection of the documents. As in most LSA studies
(Dumais, 2007; Martin & Berry, 2007), we used natural log
as the local weight and log entropy as the global weight in
the current analyses. The large matrix of 4 has, however,
much redundant information. Singular Value
Decomposition decomposes the matrix 4 into three matrices
A =UZV’; where U is an m by m square matrix and V is an n
by n square matrix, with £ being an m by n diagonal matrix
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with singular values on the diagonal. Removing dimensions
corresponding to smaller singular values and keeping the
dimensions corresponding to larger singular values reduces
the representation of each word to a low dimensional vector.
Although the new representation for the words (the reduced
U matrix) is no longer orthogonal, each word now becomes
a weighted vector on 300 dimensions, with only the most
important dimensions that correspond to larger singular
values being kept. The number of dimensions can be
determined ad hoc, but we followed the trend set by most
LSA studies and used 300 factors (Landauer & Dumais,
1997). The semantic relationship between words can be
estimated by taking the cosine between two vectors. With
LSA the semantic relatedness is not only determined by the
relation between words, but also by the words that
accompany a word (Landauer & Dumais, 1997).

Two studies each tested two hypotheses: 1) Cities that are
located together are debated together. That is, cities that are
in close geographical proximity are also in close proximity
in the text, so that language structure itself provides cues to
derive perceptual-semantic information. 2) Cities that are
populated more are debated more. That is, larger cities are
talked about more, so that city word frequency provides
cues about the importance of the city. In Study 1 we tested
these hypotheses with city names in China in a Chinese text
corpus, in Study 2 with city names in the Middle East in an
Arabic corpus.

Study 1: China

In Study 1 we used a Chinese corpus collected online,
consisting of 4 of the most popular classic fiction books, 29
popular modern fiction books, 26 history books, 49
philosophy books, 34 economy books, 15 politics books,
and 8 military books. These books provided 86MB of text in
14768 documents (paragraphs) and 47,226 word types. In
terms of text size, 33.4% texts are in history, 24.6% in
philosophy, 10.4% in economics, 9.3% in modern fiction,
9.3% in politics, 7% in military and 6% in classic fiction.
Note that the texts did not explicitly describe geographical
relations between Chinese cities, and that the corpus was
very heterogeneous.

The standard procedure was used when creating the LSA
space, whereby each word was a weighted vector on 300
dimensions. The 50 largest cities in China were selected,
and their latitude and longitude were determined using
census data. All cities had a population size of more than
one million (M = 2,393,188, SD = 2,340,707.88) (Table 1).

Cosine values were computed for each of the city pairs.
Two cities resulted in cosine errors and were removed from
the analysis, resulting in a 48 x 48 cosine matrix. This
matrix was submitted to an MDS analysis using the
ALSCAL algorithm. A Euclidean distance measure
transformed the semantic similarities into dissimilarities,
such that the higher the value, the longer the distance.
Default MDS criteria were used with an S-stress
convergence of .001, a minimum stress value of .005, and a
maximum of 30 iterations.



We chose a low-dimensionality to rule out over-fitting the
data. The fitting on a two-dimensional scale was moderate,
with a Stress value = .33 and an R’ = .59. The LSA
estimated coordinates of the 48 cities were compared with
the actual coordinates of the cities.

The loadings of the 48 cities on the two dimensions
generated by the MDS analysis correlated with the longitude
and latitude of the cities, latitude — dimension 1, » = .64, p <
.001, n = 48; longitude — dimension 2, r = .33, p = .02, n =
48.

To do justice to the geometry of the 2D variables, we used
bi-dimensional regression analyses to compare the
computational estimates with the actual coordinates of the
50 cities. Tobler (1964) and Friedman & Kohler (2004)
introduced bi-dimensional regressions in order to compute
the mapping of any two planes under consideration.
Whereas in a uni-dimensional regression each data point is
shifted by intercept and slope, each actual and predicted

value of the dependent variable are presented by a point in
space, whereby vectors represent intercept and slope.

A bi-dimensional regression yielded a significant
correlation between the LSA estimates and the actual city
coordinates, » = .57, p < .001, n = 48. This result supported
the hypothesis that Chinese cities that are located together in
China are debated together in the Chinese language.

The question can be raised whether the bi-dimensional
regressions not always yield significant correlations. To
answer this question we conducted 1000 Monte Carlo
simulations on the 48 x and y pairs. The average bi-
dimensional regression of these simulations yielded no
significant result, average r = .13 (SD = .06), p = .37, n =
48.

In addition, we tested the hypothesis that cities that are
populated more are debated more by comparing the
frequency of the 50 cities in the Chinese corpus with their
actual population size. A Pearson correlation was
significant, » = .47, p <.001, n = 50.

Table 1: Chinese Cities

City Lat. Long. Dim.1 Dim.2

LiE 31.23 121.40 -0.38 -1.42
= 39.93 116.40 -0.13 -1.24
G 29.57 106.50 -1.07 0.81
(g3 34.27 108.90 -0.92 1.28
% 30.58 114.20 -1.25 -0.93
R #R 30.67 104.00 -1.24 0.45
xiE 39.13 117.20 0.28 -1.26
TERH 41.80 123.40 1.96 -0.64
AR 45.75 126.60 1.36 -0.19
[Fa5 32.05 118.70 -0.47 -1.48
TN 23.12 113.20 -0.63 -1.31
KR 37.87 112.50 0.16 1.40
K& 43.87 125.30 1.98 -0.55
AFE 38.05 114.40 1.63 0.07
K 28.20 112.90 -1.30 -0.30
] 36.67 117.00 0.86 -0.91
KiE 38.92 121.60 0.56 -0.89
B 43 .85 126.50 1.70 0.11
ma 28.68 115.80 -1.02 -0.94
SSAN 34.75 113.60 1.25 0.28
Wk 22.32 114.10 -0.04 1.73
AL 30.25 120.10 -0.92 -1.18
HE 36.07 120.30 1.03 -0.23
FEW 39.62 118.10 0.37 1.53

City Lat. Long. Dim.1 Dim.2

TN 31.30 120.60 -0.83 -1.34
=k 23.37 116.60 -1.04 -0.69
ESp 23.54 116.30 1.05 -0.17
E 36.05 103.60 -0.68 1.06
&he 31.85 117.20 -0.27 1.40
LIt 41.87 123.80 1.28 -0.50
W PH 34.68 112.40 0.83 1.32
HRH 36.58 114.40 0.88 1.09
w3k 40.60 110.00 -0.98 0.68
Uk 22.27 114.10 -0.68 0.64
TN 34.27 117.10 -0.84 -1.31
I 22.53 114.10 -0.74 -0.01
2 26.08 119.30 -1.09 -0.99
T8 31.58 120.30 -0.35 1.57
Herd 32.63 116.90 -1.16 0.46
Bt kA 26.58 106.70 -1.27 -0.57
#2721 41.12 122.90 1.61 -0.55
RE 38.87 115.40 -0.17 0.99
JBH 34.37 108.70 -0.01 1.42
EEBA 25.05 102.70 0.01 -0.83
N 40.08 113.30 0.66 0.86
xiZ 41.33 123.70 1.82 -0.30
#eAL 33.95 116.70 -0.75 1.08
Pl 31.78 119.90 -1.06 0.50

Study 2: Middle East

In order to determine whether the findings could be
generalized beyond China and the Chinese language, we



used a different language (Arabic) and a different geography
(the Middle East) in the second study.

An LSA space was created using an Arabic corpus
collected online, consisting of books and news on history
(49%), fiction (42%), politics (3%), philosophy (2%),
economy (1%) and other unknown types of texts (3%). The
total size of the corpus was 71.8 MB, including 27,937
paragraphs and 147,535 word types. Again, the texts did not
specifically discuss the geography of the Middle East.
Instead, the corpus covered many topics and was, again,
very heterogeneous in nature.

Similar to the previous analysis, 50 of the largest cities
across the Arabic speaking countries in the Middle East
were selected (M = 1,304,154, SD = 1,451,579). These cities
were located in Egypt, Iraq, Jordan, Kuwait, Lebanon,
Oman, Syria, United Arab Emirates, and Yemen (Table 2).

Some countries were not included because the Arabic
notation of cities for those countries was unavailable (Saudi
Arabia, Ethiopia, Eritrea, Somalia, Djibouti).

As in the Chinese analysis, geographical location
(longitude and latitude) as well as population size for these
50 cities were determined. A 50 x 50 cosine matrix was
submitted to an MDS ALSCAL analysis, and the MDS
coordinates were compared with the actual coordinates.

Again, the fitting on a two-dimensional scale was
moderate, with Stress = .35, R’ =.69. The LSA estimated

coordinates of the 50 cities were compared with the actual
coordinates of the cities.

The loadings of the 50 cities on the two dimensions
generated by the MDS analysis correlated with the longitude
and latitude of the cities, latitude — dimension 1, » = 41, p <
.001, n = 50; longitude — dimension 2, » = .57, p <.001, n =
50.

A bi-dimensional regression also yielded a significant
correlation between the LSA estimates and the actual city
coordinates (r = .53, p < .001, n = 50). These results again
supported the hypothesis that cities in the Middle East that
share geographical context, share textual context (cities that
are located together are debated together).

As in Study 1, we ran 1000 Monte Carlo simulations to
rule out the possibility that the significant bi-dimensional
regressions could be obtained from an accidental pairing of
the estimates. The average regression coefficient again ruled
out that the findings could be obtained by chance, average
=13 (SD =.07), p = .37, n=50.

Finally, as before, we compared the frequency of the 50
cities in the Arabic corpus with their actual population size.
A Pearson correlation was significant (» = .61, p <.001, n =
50), providing evidence for the hypothesis that cities in the
Middle East that have a higher population, are talked about
more frequently.

Table 2: Middle Eastern Cities

Lat. Long. Diml. Dim.2
Ulog 35.67 51.43 0.2169 1.5093
Alary 33.33 44.44 0.6485 -1.2606
oall 24.65 46.77 -0.9637 -0.9586
EAEN 21.50 39.17 -1.1027 -0.7991
Jaasall 36.34  43.14 1.007 -1.0505
2gde 36.27 59.57 -0.2017 1.0937
Jis 34.53 69.17 1.2753 -0.0876
Syom 33.89 35.50 -0.6608 -0.9994
5 _nanll 30.53 47.82 0.0922 -1.4058
s 36.23 37.17 -1.2136 -0.7176
Olgiual 32.68 51.68 -0.4703 1.6961
Gulied 33.50 36.32 -0.7743 -1.0202
z s 35.80 50.97 0.2241 1.2555
EUY 21.43 39.82 -1.0349 -0.7787
o8 38.08 46.30 -0.9509 0.7826
Dl 29.63 52.57 -0.8681 0.8734
dl 36.18 44.01 1.2833 -0.3946
Oles 31.95 35.93 -0.5422 -1.022
4l 24.48 39.59 -0.7522 -1.0729
BIEY 31.28 48.72 0.1934 1.3174
2 34.65 50.95 -0.1317 1.2444
aleall 26.43 50.10 -1.1988 -0.7561
Uaea 34.73 36.72 -1.3472 -0.7446
A8 8 35.47 44.39 1.0518 -1.1014
aaill 32.00 44.34 1.0731 -1.0775

Lat. Long. Dim. 1 Dim. 2
aliile S 34.38 47.06 -0.075 2.0242
Aledd) 35.56 4543 1.0587 -1.0911
4 37.53 45.00 0.3161 1.2087
Ol 29.50 60.83 0.4181 1.1594
sy 37.30 49.63 0.3014 1.2215
castdal) 21.26 40.38 -1.044 -0.7242
BB 30.30 57.08 -0.04 2.0397
Bles 35.15 36.73 -1.3177 -0.7392
RN 32.48 44.43 1.034 -0.7171
ol 5 28.39 36.57 -1.1946 -0.7448
ISEBY 32.61 44.03 1.0672 -1.0522
Olaer 34.77 48.58 -0.0679 2.01
5 jlenll 31.84 47.15 1.0166 -0.8805
s )5l 32.07 36.10 1.0995 -0.6294
i) 34.08 49.70 0.578 0.9256
4l pall 31.99 4493 0.973 -0.9436
Lapdia uped 18.31 42.73 -0.9944 -0.6579
A 31.92 54.37 -0.0563 1.81
o 26.37 43.97 -1.1197 -0.2557
dua)l 38.25 48.30 -0.0501 2.002
4 sn 33.74 44.65 1.1115 -0.6968
wlee i 27.25 56.25 0.6984 0.9249
<l a 34.35 62.18 1.2645 -0.043
B 35.54 51.20 1.233 0.0334
4aaul 35.54 35.78 -1.0628 -0.7091
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General Discussion

This study showed that statistical linguistic frequencies
can be used to estimate the location and population size of
cities. In the first study we estimated the location and size of
cities in China using Chinese text, in the second the location
and size of cities in the Middle East using Arabic texts.
These findings show that the results reported by Louwerse,
Cai, Hu, Ventura, & Jeuniaux (2006) for France, those
reported by Louwerse and Zwaan (2009) for the United
States, and by Louwerse and Benesh (in press) for (the
fictional) Middle Earth can be extended to China and the
Middle East. Moreover, the current study has demonstrated
that geographical locations are not only encoded in English
(Louwerse et al., 2006; Louwerse & Benesh, in press;
Louwerse & Zwaan, 2009), but also in Chinese and Arabic.

There are several questions that should be addressed with
regards to the findings reported in this study. First, we
should address the question whether the findings reported in
this study should be attributed to LSA or to statistical
linguistic frequencies. Louwerse and Zwaan (2009)
addressed this question by demonstrating that geographical
locations of cities in the United States could be predicted
using higher-order co-occurrences (using LSA), but also by
first-order co-occurrences. Louwerse (2011), however,
pointed out that for first-order co-occurrences a corpus
needs to be approximately 25,000 times larger than a corpus
that is the appropriate size for an LSA analysis. A second
question concerns the explicit spatial cues potentially
present in the corpus. After all, the argument could be made
that the Chinese and Arabic corpora we used for our
semantic spaces consisted of explicit spatial cues (e.g.,
cardinal directions, prepositions) that explained our findings
rather than implicit semantic relationships. This seems
extremely unlikely for two reasons. First, the LSA algorithm
shows minimal sensitivity to explicit cues because it uses
higher-order co-occurrences (see Landauer, McNamara,
Dennis, & Kintsch, 2007). Secondly, the corpora were so
diverse in nature that the results can better be explained by
statistical linguistic frequencies than by the specifics of the
texts.

We began this paper with the Chinese Room Argument,
which suggests that meaning cannot be extracted from
symbols unless a referent is perceptually activated (Searle,
1980). Even though this study did not compare the
computational results with experimental data (see Louwerse
and Zwaan, 2009 and Louwerse and Benesh, in press, for
such a comparison), it does provide some insight in the
Chinese Room argument. The current study puts forward
that, with minimal grounding of some symbols (city names),
the meaning of all symbols (city names) can be
bootstrapped, because of the organization of the symbolic
network. The language system has many built-in regularities
that are utilized during cognitive processing (Louwerse,
2011; Louwerse & Jeuniaux, 2010). To illustrate this
further, the current study has shown that if a language user
knows the location of the city Z&K7%, and knows only
that the other Chinese words are Chinese city names, the
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language user can bootstrap the geographical locations of
these other cities on a country map of China. Moreover,
they can make estimates about the size of each city, because
frequency correlates with population size.

Obviously, we do not deny the essence of the symbol
grounding problem: the language user must ground at least
one symbol and must also have partial meaning with regards
to the other words (i.e., know that they are city names).
Moreover, the geographical estimates are relative estimates,
rather than a specific longitude and latitude. However,
findings like these do challenge an extreme view of symbol
grounding that dismisses the possibility of statistical
linguistic frequencies playing a significant role in cognition.
Experimental evidence has shown that statistical linguistic
frequencies often explain experimental findings better than
perceptual simulations account do (Louwerse, 2008;
Louwerse, 2011), yet whether humans rely more on
statistical linguistic frequencies or perceptual simulations
depends on at least the cognitive task and the stimulus
(Louwerse & Jeuniaux, 2010). We therefore advocate the
pursuit of a unified account in which both statistical
linguistic frequencies and perceptual simulation help
establishing meaning. In line of this research agenda, this
study has shown that with minimal grounding the symbolic
vacuum of the Chinese Room can become a guiding
Chinese route.
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