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Abstract

Like many other cognitive processes, the perception of music
involves processes and structural considerations that are
highly relational in nature. To date, no physiologically
plausible model has been used to simulate and explain how
infants perceive melodic content. Here we used DORA
(Discovery Of Relations by Analogy; Doumas et al., 2008), a
domain-general symbolic-connectionist model of relational
learning, to simulate melodic perception and categorization
by infants (Chang & Trehub, 1977; Trehub et al, 1984), and
to provide an account of the mechanism for melodic
processing in infants. Given four input semantic features for
each note in the melodic stimuli sequence (two of which
could be internally obtained from the other two via a
comparator), DORA’s performance matched the behavioral
data from the infant studies. Furthermore, the ability of our
model to simulate infants’ behavior is evidence that structured
representations of relational musical properties can be
bootstrapped from unstructured feature representations.

Keywords: Melodic perception; relative pitch; relational
learning; symbolic connectionist; DORA.

Introduction

While there are many defining characteristics of music (e.g.,
harmony, rhythm, timbre, pitch, etc.), one of the most
fundamental and salient aspects is the melody. Indeed,
simple melodies were likely the earliest form of music to
have been created and transmitted, and have been (and still
are) prevalent in all documented cultures past and present
(Sachs, 1943).

Simple melodies consist of discrete units or notes, with
each note characterized by a pitch, or fundamental
frequency. Importantly, there are several ways in which the
pitch sequence of a melody can then be encoded and stored.
The two most well documented forms of encoding are
absolute or relative pitch. Absolute pitch encodes and stores
a melody using the fundamental frequencies of each pitch,
while relative pitch (or intervallic) encodes the melody in
terms of the relations (or specific frequency differences)
between each note. Notably, processing melodies in terms
of the relative pitch information (or intervallic patterns) is
considered to be the strategy most humans use to
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characterize and store familiar melodies (Attneave & Olson,
1971). Another characteristic upon which melodies can be
categorized, however, is according to the contour (general
shape, or sequence of up and down movements in
frequencies from note to note). Given the existence of these
various characteristics, there has been considerable research
and speculation on the extent to which these categorizations
contribute to a listener’s mental representation of a melody,
and how they may interact.

Relative pitch and melodic contour

The properties of relative pitch (or intervallic patterns) are
most commonly used in long term musical storage and
recall (Page, 1994). For example, when listening to the
melody of a song, such as Happy Birthday, what makes the
song immediately recognizable is the unique intervals
between each of the notes in the song. That is, the song is
recognizable whether it initially starts on a low or high note
due to the unique intervallic pattern between all subsequent
notes. There is much evidence on the use of relative pitch
information in adults through both behavioral studies
(Dowling, 1978, 1984, 1988) as well as neuroimaging
studies (Fujioka, Trainor, Ross, Kakigi, & Pantev, 2004;
Trainor, McDonald, & Alain, 2002).

It is worth noting that while a melody with an identical
contour to Happy Birthday, but with a different intervallic
sequence would sound like a completely different tune, it
would still have the same general “shape”, or up and down
pattern. Although the intervallic pattern may be the most
overtly salient feature of a melody, studies have shown that
human adults are also sensitive to absolute pitch and
melodic contour in the short term (Bartlett & Dowling,
1980; Dowling, 1978). And while there is evidence that
infants may also be sensitive to intervallic information
(Trehub, Bull, & Thorpe, 1984), numerous experiments
with infants suggest that they may primarily encode
melodies using contour information (for review, see Trehub,
2001; Trehub, Trainor, & Unyk, 1993).

Even though intervallic and contour properties may
characteristically differ in the type of information they



carry, what is perhaps more important is the fact that the
nature of the information they carry are both fundamentally
relational in nature. That is, this information depends on the
relationship (whether it is the precise intervallic distances or
the general contour shape) between each pitch, and not on
the actual pitch frequencies themselves. And it is within this
capacity that melodic perception can be said to share a
cornerstone property with many higher-level cognitive tasks
(and arguably certain “lower” level processes such as
pattern recognition as well).

Relational processing

The ability to explicitly represent and reason about
relational properties has been proposed as a fundamental
mechanism underlying a wide range of cognitive
phenomenon, including analogy-making (Gentner, 1983;
Gick & Holyoak, 1980; Holyoak & Thagard, 1995),
language (Kim, Pinker, Prince, & Prasada, 1991), detection
of perceptual similarities (Medin, Goldstone, & Gentner,
1993), and the application of rules in novel situations
(Lovett & Anderson, 2005). Given that melodic processing
appears to require extracting relational information from
melodies, it is reasonable to assume that the same
mechanisms used in other relational tasks might also operate
when processing musical information. That is, common to
both of the main approaches used by adults and infants
(intervallic and contour) to encode melodic information is
that the underlying structure of the melody is represented as
the relations between the individual notes. The strength of
relational reasoning is in the ability to reason about the roles
that objects play rather than the literal features of those
objects (see Doumas, Hummel, & Sandhofer, 2008).
Similarly, the ability to recognize a melody (or it’s shape)
rests on appreciating the relationship between the pitches,
and not the specific frequencies of each note. To evaluate
the similarity between relational reasoning and music
processing, we modeled melodic perception using a neurally
plausible domain-general model of relational cognition.

The LISA/DORA models
LISA (Learning and Inference with Schemas and Analogies;
Hummel & Holyoak, 1997, 2003) is a symbolic-

connectionist model of analogy and relational reasoning.
DORA (Discovery Of Relations by Analogy; Doumas et al.,
2008) is an extension of LISA that learns structured (i.c.,
symbolic) representations of relations from unstructured
inputs. That is, DORA provides an account of how the
structured relational representations LISA uses to perform
relational reasoning can be learned from examples. At
present, DORA accounts for over 30 phenomena from the
literature on relational learning, and cognitive development,
and as it learns representations of relations it develops into
LISA and can simulate the additional 40+ phenomena in
relational thinking for which LISA accounts for (e.g.,
Doumas et al., 2008). In the following, we provide a very
brief description of the LISA/DORA models (for full
details, see Hummel & Holyoak, 1997, 2003; Doumas et al.,
2008).
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LISAese Representations In LISA (and DORA after it has
gone through learning), relational structures are represented
by a hierarchy of distributed and localist codes (see Figure
1). At the bottom, “semantic” units (small circles in Figure
1) represent the features of objects and roles in a distributed
fashion. At the next level, these distributed representations
are connected to localist units (POs) representing individual
predicates (or roles) and objects (triangles and larger circles
in Figure 1). Localist role-binding units (RBs; rectangles in
Figure 1) link object and role units into specific role-filler
bindings. At the top of the hierarchy, localist P units (ovals
in Figure 1) link RBs into whole relational propositions.

Relational structures (or propositions) are divided into
two mutually exclusive sets: a driver and recipient(s). In
LISA/DORA, the sequence of firing events is controlled by
the driver. Specifically, one (or at most three) proposition(s)
in the driver become(s) active (i.e., enter working memory).
When a proposition enters working memory, role-filler
bindings must be represented dynamically on the units that
maintain role-filler independence (i.e., POs and semantic
units) to allow for reusability of units and preservation of
similarity across different bindings (Hummel & Holyoak,
1997). In LISA, binding information is carried by synchrony
of firing (with roles firing simultaneously with their fillers).
In DORA, binding information is carried by systematic
asynchrony of firing, with bound role-filler pairs firing in
direct sequence (for details, see Doumas et al., 2008)."

chase(dog,
cat)

P unit

RB unit chaser+dog chased+cat

PO unit chaser chased cat

semantics

O

Figure 1. LISA/DORA representation of the proposition,
chase (dog, cat).

Relational Learning In broadest strokes, DORA learns
structured representations by comparing objects to isolate
their shared properties and to represent these shared
properties as explicit structures. More specifically, DORA
starts with simple feature-vector representations of objects
(i.e., a node connected to set of features describing that
object; large and small circles from Figure 1). When DORA
compares one object to another, corresponding elements
(i.e., shared features) of the two representations fire
simultaneously. Any semantic features common to both

! Asynchrony-based binding allows role and filler to be coded
by the same pool of semantic units, which allows DORA to learn
representations of relations from representations of objects
(Doumas et al., 2008).



objects receive twice as much input and thus become
roughly twice as active as features connected to one but not
the other. By recruiting a new PO unit and learning
connections between that unit and active semantics via
Hebbian learning (wherein the strength of connections is a
function of the units’ activation), DORA learns stronger
connections between the new PO unit and more active
semantic units. The new PO thus becomes an explicit
representation of the featural overlap of the compared
objects and can act as a single place predicate, taking other
object representations as arguments to form role-filler pairs
(see Doumas et al., 2008). Applied iteratively, this process
allows DORA to learn structured explicit single-place
predicate representations of any properties compared objects
may share. Comparison also allows DORA to learn
representations of multi-place relations by linking sets of
constituent role-filler pairs into relational structures (i.e., to
learn the chases relation by linking together representations
of the roles chaser and chased; see Doumas et al., 2008 for
details).

Mapping For the purpose of analogical mapping,
LISA/DORA learns mapping connections between units
coactive of the same type in the driver and recipient (e.g.,
between PO units in the driver and PO units in the
recipient). These connections grow whenever corresponding
units in the driver and recipient are active simultaneously.
They permit LISA to learn the correspondences between
matching structures in separate analogs. They also permit
correspondences learned early in mapping to influence the
correspondences learned later.

Methods

In this section we describe two infant studies (Chang &
Trehub, 1977; Trehub et al., 1984), followed by the details
and outcomes of DORA’s simulation.

Task 1 description

In an experiment by Chang and Trehub (1977), infants (4.5
to 6 months of age) were tested on their ability to recognize
melodies based on either the absolute pitch frequencies or
relational properties extracted from these pitches. This
between-group experiment was conducted with a set of 15
habituating trials, followed by four novel dishabituation
trials, while the infants’ heart rates were monitored
throughout to determine their expectation and recognition
levels for the novel stimuli. The habituation stimuli
consisted of randomly constructed six note melodic patterns.
The dishabituation stimuli varied depending on which of
two groups the infants were in.

Crucially, in the “transposed” group, the novel test
stimulus consisted of the same melody transposed to a
different key. The novel melody retained the relational
information between the individual notes (intervallic
sequence), but none of the featural information (specific
frequencies) of the individual notes. In the control group,
the novel melody was a scrambled version of the original
melody. The individual notes’ featural characteristics (pitch
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frequencies) were retained, while the relational
characteristics between the notes were not. Thus, comparing
performance between the “transposed” and control groups
would indicate whether infants were processing the
melodies based on the individual frequencies, or extracting
the relational information between notes.

(a)

DRIVER

(b)

RECIPIENT

Figures 2. a) The note sequences in the driver and recipient
are compared with each other. b) After mapping notes in the
sequence, DORA learns a new PO unit from the featural
overlap of the mapped notes. S, are semantic units, and R
are random units (only two each are shown here).

Simulation 1

To simulate the training portion of the study, we created a
“melody” consisting of 6 object PO units—one PO for each
note (see Figure 2a). Each note PO unit was attached to four
random semantic units (chosen from a pool of 100 features),
one semantic indicating the note’s place in the stimuli
sequence (1-6), one semantic describing the note’s specific
frequency (between fl and f24), one semantic for whether
the note was higher or lower than the previous note (the first
PO in the sequence was not connected to such a semantic),
and one semantic describing the note’s distance (i.e.,
frequency difference) from the previous note. The
information the semantic units carried was based on features
which infants have been shown to be capable of extracting
from melodies to greater or lesser extents. For instance,
infants have been shown to be sensitive to sequential order
(Thorpe & Trehub, 1989; Thorpe, Trehub, Morrongiello, &
Bull, 1988), are sensitive to and can discriminate absolute
pitch information under certain conditions (Lynch, Eilers,
Oller, & Urbano, 1990; Trehub, Cohen, Thorpe, &
Morrongiello, 1986), can process contour information
(Trehub et al., 1984; Trehub et al., 1993), and are also
sensitive to intervallic differences (Schellenberg & Trehub,
1996a, 1996b). Importantly, the semantic values specifying
frequency direction and frequency difference can be
generated from the raw frequency values using the
comparator mechanism described in Doumas et al. (2008)
and adopted from the JIM model of object recognition
(Hummel & Biederman, 1992). Finally, each PO was
attached to an RB unit, and all the RBs attached to a single
P unit, representing that the notes all belonged to a single
sequence.



We allowed DORA to compare each note sequence to the
previously experienced note sequence, map the two
sequences, and learn new predicate POs using the
predication learning algorithm described above. The
sequence of firing of the PO units in the driver was the same
as the order of the notes in the melodic sequence (i.e., the
first note in the sequence fired first, the second note second,
and so on). More specifically, DORA represented the
current note sequence in the driver and the previous note
sequence in the recipient (see Figure 2a). Next DORA
attempted to map the sequences. Finally, DORA learned
new PO units using these mappings (Figure 2b). DORA
stored the results of learning in memory.

In previous studies, DORA has successfully been used to
simulate frontal lobe maturation by adjusting the level of
lateral inhibition between units in the recipient (e.g.,
Doumas, Morrison, & Richland, 2009, 2010; Morrison,
Doumas, & Richland, 2006, 2011). Reflecting the fact that
we are simulating infants we used a highly reduced lateral
inhibition parameter of 0.5.

After training, DORA’s LTM consisted of the 15
sequences of notes it had learned during training. In
addition, we created 50 additional sequences of between 2
and 8 notes to serve as distractors in memory (following the
assumption that other melodic sequences may have been
learned by the infant). In each distracter note sequence each
PO from the same sequence was attached to a single RB unit
with all RBs from the same sequence attached to a single P
unit, indicating all the notes belonged to a single sequence
(as with the training items). Each PO was attached to 4
random features as well as one semantic indicating the note
and another semantic indicating the interval (frequency
difference) from the previous note.

To simulate the test, we created two melodies, each
consisting of 6 PO units, each representing a single note.
Each note PO unit was attached to four random semantics,
one semantic unit describing the note’s place in the
sequence (1-6), one semantic describing the frequency, one
describing frequency difference from the previous note, and
another describing the direction of the difference (just as for
the melodies created in the training condition). Additionally,
as originally conducted by Chang and Trehub (1977), we
created a transposed melody that consisted of the same
sequence of notes as the training melodies, but in a different
key. The control melody consisted of the exact same POs
used in training, but in a scrambled order.

We put the test melody (transposed or control) in the
driver, and allowed DORA to attempt to retrieve an item
from LTM, and attempt to map it to the melody in the
driver. If DORA successfully mapped the new melody to
one of the sequences it had learned during training, this
implied that DORA recognized the new melody. Otherwise,
DORA was taken to be surprised by the new melody.

We ran 200 simulations (100 transposed and 100 control),
each consisting of 15 training and one test trial (the exact
same number of training and test trials used in the original
study). DORA’s performance was a close qualitative match
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to the data from Chang and Trehub’s (1977) study. Just like
infants in the transposed condition, when presented with
transposed melodies, DORA was much more frequently
unsurprised (77 of 100 trials). On the other hand, for control
melodies, DORA was unsurprised much less frequently (31
of 100 trials). These results indicate, that DORA, like the
infants in the original study, could detect and extract
regularity in melodic sequences, and generalize that
regularity to novel keys.

Task 2 description

For the second simulation, we used a study by Trehub, Bull,
and Thorpe (1984). This study was conducted on infants 8
to 11 months of age, and used a broader range of melodic
stimuli to examine the extent to which infants process
intervallic, contour, octave transpositions, and range
information from melodies. Although the first task (Chang
& Trehub, 1977) demonstrated that infants used relational
information to categorize melodies, the design did not
specifically differentiate between intervallic and contour
relations (it is possible that infants could have used either
strategy to categorize the melodies).
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Figure 3. Three types of transformations applied to test
melodies in Trehub, Bull, & Thorpe (1984).

Although a similar paradigm to Chang and Trehub’s
(1977) study was used by Trehub et al. (1984), the two
studies differed in two important aspects. First, the training
and testing methodology was different. Whereas the first
experiment used a habituation/dishabituation training
paradigm and monitored heart-rate during testing, the
second experiment used a training procedure that habituated
infants to a melodic pattern and also trained them to respond
with head turns to melodies that differed in melodic contour
and range. Infants were then tested for subsequent
discriminations of novel stimuli by monitoring head turns.
Secondly, although training and testing stimuli also
consisted of six note melodic patterns, several additional
melodic properties were examined Trehub et al.’s testing
condition. In addition to the transposed melody (as used in
Chang and Trehub, 1977), the testing conditions included
contour preserving and contour violating conditions in
order to test for octave and frequency range sensitivity. The
contour preserving condition (see Figure 3) allowed the
researchers to test whether infants categorize melodies
based on intervallic or contour properties. That is, it was



assumed that if infants recognized only the transposed
condition and not the contour-preserving condition, then
that would be taken as evidence that they processed the
melodies based on intervals. On the other hand, if they
recognized both, the most parsimonious explanation would
be that they were processing the melodies based on contour
alone. Additionally, the octave change conditions tested
whether infants’ were also sensitive to larger changes in
intervallic patterns. Crucially, it was found that infants did
not discriminate either the transposition or contour
preserving melodies, but discriminated the octave change
melodies.” In summary, Trehub et al. found that infants
could categorize melodies by contour properties, but were
also sensitive to the magnitude of the contour, and therefore
could discriminate larger intervals (outside of the general
original range) from the smaller intervals of melodies that
occurred within the original melodic range.

Simulation 2

Although there were methodological differences between
Task 1 and 2, we simulated Trehub et al. (1984) using the
same basic procedure as in Simulation 1. Fundamentally,
Task 2 used the same approach by exposing infants to a
standard melody and then subsequently observing how they
would perceive and categorize novel test stimuli.
Accordingly, we created a set of training patterns and
trained the model as in Simulation 1.

To test the model, we created transposition melodies just
as in Simulation 1. In addition, we created two kinds of
contour preserving melodies. Close contour preserving
melodies were similar to the training melodies, but with
frequencies within 2 units of the training trials. So for
example, if the first three notes of the training stimulus
were: frequency?2, frequency6, frequency8, the first three
notes of the test pattern would be frequency2 =2,
frequency6 +2, frequency8 +2 (under the constraint that the
direction of the note was maintained across training and test
patterns—e.g., if the second note of the training melody was
higher than the first, the second note of the test melody was
also higher than the first). Similarly, the far contour
preserving melodies were created in exactly the same
manner, but with each note +6 from the original.

The results followed the same qualitative pattern observed
in Trehub et al. (1984). As in the previous simulation,
DORA  successfully matched transposed melodies.
Importantly, DORA also successfully matched close
contour preserving melodies the majority of the time (74 of
100 trials), and was surprised on far contour preserving
melodies more frequently (63 of 100 trials). In other words,
like the infants in Trehub et al.’s study, DORA was
sensitive to contour preservation, but under conditions when
the contour was preserved but coupled with large changes in

% There was no evidence that infants processed octave shifts as
musical pitches with closely related harmonic properties (as adults
generally do), but rather that they only processed them as large
shifts in frequency (see Trehub et al., 1984).
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frequency, DORA was more likely to categorize the melody
as being different or produce a surprise reaction.

Discussion

To our awareness, this is the first time a general model of
relational cognition has been used to simulate melodic
perception, and the results subsequently compared to
existing behavioral data from infants.> We view these first
steps as a very simple beginning, and hope to expand the
complexity of the model and the range of future simulations.

The results of both simulations were a good match to their
behavioral counterparts, and supported our hypothesis that
relational processing might play an important role in music
perception. In the first simulation, DORA performed similar
to infants in extracting the relational properties of
transposed melodies, and also in failing to recognize the
scrambled melody. In the second simulation, both DORA
and infants categorized the melodies based primarily on
relational information of the melodic contours. Furthermore,
DORA'’s ability to discriminate large contour distortions
(far contour) in Simulation 2 suggests that infants may be
sensitive to certain intervallic properties.

While these simulations provide insights into some of the
mechanisms that infants may use when categorizing music,
we hope to determine through future studies, when and how
children begin to learn the more typically defining feature of
melodies: the intervallic sequences, or relative pitch
relations between notes. Crucially, this study corroborates
existing evidence that infants as young as four months are
sensitive to relational features of music and appear to reason
about these relational features in a structure sensitive
manner (i.e., generalizing relational properties to novel
inputs). Another important question that future simulations
and studies should attempt to answer is whether this
widespread ability to discriminate intervallic sequences in
adults is innate, or in fact a learned ability.

Lastly, DORA is currently the only model that learns
complex structured relations and that can subsequently
“grow up” to reason like an adult (Doumas & Hummel,
2005). Accordingly, we hope to determine through future
simulations whether DORA can perhaps also grow up to
“appreciate” (or even compose) music like an adult.
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