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Abstract
Human concept learning is particularly impressive in two re-
spects: the internal structure of concepts can be representation-
ally rich, and yet the very same concepts can also be learned
from just a few examples. Several decades of research have
dramatically advanced our understanding of these two aspects
of concepts. While the richness and speed of concept learn-
ing are most often studied in isolation, the power of human
concepts may be best explained through their synthesis. This
paper presents a large-scale empirical study of one-shot con-
cept learning, suggesting that rich generative knowledge in the
form of a motor program can be induced from just a single
example of a novel concept. Participants were asked to draw
novel handwritten characters given a reference form, and we
recorded the motor data used for production. Multiple drawers
of the same character not only produced visually similar draw-
ings, but they also showed a striking correspondence in their
strokes, as measured by their number, shape, order, and direc-
tion. This suggests that participants can infer a rich motor-
based concept from a single example. We also show that the
motor programs induced by individual subjects provide a pow-
erful basis for one-shot classification, yielding far higher accu-
racy than state-of-the-art pattern recognition methods based on
just the visual form.
Keywords: concept learning; one-shot learning; structured
representations; program induction

The power of human thought derives from the power of
our concepts. With the concept “car,” we can classify or even
imagine new instances, infer missing or occluded parts, parse
an object into its main components (wheels, windows, etc.),
reason about a familiar thing in an unfamiliar situation (a car
underwater), and even create new compositions of concepts (a
car-plane). These abilities to generalize flexibly, to go beyond
the data given, suggest that human concepts must be represen-
tationally rich. Yet it is remarkable how little data is required
to learn a new concept. From just one or a handful of exam-
ples, a child can learn a new word and use it appropriately
(Carey & Bartlett, 1978; Markman, 1989; Bloom, 2000; Xu
& Tenenbaum, 2007). Likewise, after seeing a single “Seg-
way” or “iPad,” an adult can grasp the meaning of the word,
an ability called “one-shot learning.” A central challenge is
thus to explain these two remarkable capacities: what kinds of
representations can support such flexible generalizations, and
what kinds of learning mechanisms can acquire a new con-
cept so quickly? The greater puzzle is putting them together:
how can such flexible representations be learned from only
one or a few examples?

Over the last couple of decades, the cognitive science of
concepts has divided into different traditions, focused largely
on either the richness of concepts or on learning from sparse
data. In contrast to the simple representations popular in
early cognitive models (e.g., prototypes; Rosch, Simpson, &
Miller, 1976) or conventional machine learning (e.g., sup-
port vector machines), one tradition has worked to develop

more structured representations that can generalize in deeper
and more flexible ways. Concepts have been characterized
in terms of “intuitive theories,” which are mental explana-
tions that underly a concept (e.g., Murphy & Medin, 1985),
or “structural description” models, which are compositional
representations based on parts and relations (e.g., Winston,
1975; Hummel & Biederman, 1992). In the latter framework,
the concept “Segway” might be represented as two wheels
connected by a platform, which supports a motor, etc. Most
recently, research in AI and cognitive science has empha-
sized rich generative representations. Concepts like “house”
can vary in both the number and configuration of their parts
(windows, doors, balconies, etc.), much like the variable syn-
tactic structure of language. This has lead researchers to
model objects and scenes using generative grammars (Wang
et al., 2006; Savova, Jakel, & Tenenbaum, 2009; Zhu, Chen,
& Yuille, 2009) or programs (Stuhlmuller, Tenenbaum, &
Goodman, 2010).

A different tradition has focused more on rapid learning
and less on conceptual richness. People can acquire a concept
from as little as one positive example, contrasting with early
work in psychology and standard machine learning that has
focused on learning from many positive and negative exam-
ples. Bayesian analyses have shown how one-shot learning
can be explained with appropriately constrained hypothesis
spaces and priors (Shepard, 1987; Tenenbaum & Griffiths,
2001), but where do these constraints come from? For sim-
ple prototype-based representations of concepts, rapid gen-
eralization can occur by just sharpening particular dimen-
sions or features, as described in theories of attentional learn-
ing (Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson,
2002) and overhypotheses in hierarchical Bayesian models
(Kemp, Perfors, & Tenenbaum, 2007). From this perspective,
prior experience with various object concepts may highlight
the most relevant dimensions for whole classes of concepts,
like the “shape bias” in learning object names (as opposed to
a “color” or “material bias”). It is also possible to learn new
features over the course of learning the concepts (Schyns,
Goldstone, & Thibaut, 1998), and recent work has combined
dimensional sharpening with sophisticated methods for fea-
ture learning (Salakhutdinov, Tenenbaum, & Torralba, 2011).

Despite these different avenues of progress, we are still far
from a satisfying unified account. The models that explain
how people learn to perform one-shot learning are restricted
to the simplest prototype- or feature-based representations;
they have not been developed for more sophisticated repre-
sentations of concepts such as structural descriptions, gram-
mars, or programs. There are also reasons to suspect that
these richer representations would be difficult if not impos-
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sible to learn from very sparse data. In linguistics, for in-
stance, grammar induction is typically studied in the limit as
the number of examples goes to infinity; why should we ex-
pect learning a grammar that describes instances of houses, or
cars, to be possible from just one example? Theoretical argu-
ments (e.g., the bias/variance tradeoff; Geman, Bienenstock,
& Doursat, 1992) imply that representationally rich concepts
should generally require more data to learn, not less. The
work of Winston (1975) and Lovett, Dehghani, and Forbus
(2007) might be the closest to human-level concept learning,
where they learned relational schemata for simplified notions
of “arches,” “houses,” “stoves,” and “fireplaces” from short
sequences of examples. But a fully human-like, one-shot
learning ability was beyond their scope.

Even with these gaps in our understanding, we believe that
the power of human concepts will be best explained by bring-
ing these two traditions together. By doing so, we hope to ex-
plore the extent to which people can learn representationally
rich concepts from very sparse data, and we also hope to ex-
plain this ability in computational terms. These are the long-
term goals of our work. Here we take a first step with a large-
scale empirical study of one-shot concept learning, using a
domain of handwritten characters from the world’s alphabets
(see Figure 1). These objects are not nearly as complex as
many object concepts such as “house,” “dog,” or “Segway,”
but they still offer a vast number of novel, high-dimensional,
and cognitively natural categories with important relational
structure. They are much richer than the highly oversimpli-
fied artificial stimuli used in previous laboratory studies of
one-shot learning (Feldman, 1997; Kemp & Jern, 2009). Yet
characters are still simple enough for us to hope that tractable
computational models can represent all the structure people
see in them – unlike natural images.

What is the right structural representation for these simple
visual concepts? The generative process for any handwrit-
ten character is a motor program, which is a set of instruc-
tions, in the mind of the drawer, that can be sent to the mo-
tor effectors such as an arm or a hand. These programs are
complex compositions of pen strokes (the “parts” or the “sub-
routines” of the program), which might vary in their number,
order, and style across drawers. Despite these various de-
grees of freedom, human drawing is noted for its regularity,
which has been likened to a “grammar of action” (Goodnow
& Levine, 1973). Thus it seems fruitful to explore a genera-
tive approach based on motor programs, especially since peo-
ple have the generative capacity for drawing. There are also
well-developed, feature-based alternatives from psychology
(Grainger, Rey, & Dufau, 2008) and machine learning, espe-
cially “deep learning” models which have achieved some of
the best results on handwritten digit classification (0, 1, 2, ...,
9) (e.g., Salakhutdinov & Hinton, 2009). Thus it will be im-
portant to compare multiple computational approaches, with
the goal of better understanding the psychological processes
and also improving one-shot learning in machines.

To begin exploring these questions, we ran a large-scale

Figure 1: The top row shows example characters from our dataset,
in the original printed form. Below are three example drawings from
participants.

online study where participants drew novel character con-
cepts after seeing just a single example. We refer to this
task as “one-shot category production,” drawing inspiration
from numerous studies that have used the generation of cat-
egory exemplars as a window into conceptual representation
(e.g., Battig & Montague, 1969; Rosch et al., 1976; Feld-
man, 1997). We see one-shot category production as a spe-
cial case of “one-shot learning,” which includes classification
and other types of generalization from just one example. Our
large-scale study produced about 32,000 images of charac-
ters across a set of 1,600 concepts, and the on-line drawing
trajectories were recorded for each image. From the produc-
tion data, we analyzed the extent to which people can infer
a robust motor program representation from a single exam-
ple. We also compared humans and multiple computational
approaches on a one-shot classification task, using methods
based on either the motor data or just the visual forms.

Category production experiment
The 1,600 character concepts were collected from 50 alpha-
bets, including current or historic scripts (e.g., Bengali, San-
skrit, and Tagalog) and invented scripts for purposes like sci-fi
novels. The characters were taken from www.omniglot.com
in printed fonts, and several originals and their subsequently
drawn images are shown in Fig. 1. This dataset was pre-
viously used to compare models of one-shot classification
(Lake, Salakhutdinov, Gross, & Tenenbaum, 2011).

The drawing experiment was run through Amazon Me-
chanical Turk, and participants were asked to draw at least
one entire alphabet. For each template image, they were
asked to “draw each character as accurately as you can.” An
alphabet’s printed characters were displayed in rows on a
webpage, with an associated drawing pad below each image.
Participants could draw by holding down a mouse button and
moving the mouse, and we also included “forward,” “back,”
and “clear” buttons. Some participants made minor image ad-
justments with small mouse movements, and we tried to mit-
igate this inconsistency by excluding strokes that were very
short in time and space from the analysis.

The structure of the motor programs
When people perceive a new character, in what sense do they
infer a new concept? While this mental representation might
be just a bundle of features, the concept might also include
richer structure in the space of motor programs. To investi-
gate this possibility, we analyzed how multiple drawers pro-
duced a particular concept during the drawing task. We rea-
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Figure 2: For two concepts (out of the 1600 total), each box shows
the motor data produced by human drawers (left) or simple draw-
ers (right). “Canonical” drawers are in the dotted boxes, and their
distances (Eq. 1) to the other examples are the numbers below each
frame. Stroke color shows correspondence to the canonical, circles
indicate the beginning of each stroke, and numbers inside circles
denote stroke order.

soned that in order to do this task, participants must infer
a novel motor program, which will be reflected in the time
course of drawing. Consistency in the structure of these draw-
ings would provide evidence for two interlinked claims: peo-
ple seem to grasp the same underlying concept from one ex-
ample, and this concept includes a highly structured genera-
tive program. To measure consistency for a particular charac-
ter, we quantitatively analyzed the number, shape, direction,
and order of the parts (strokes) in the motor data.

The number of parts
This analysis (and subsequent ones) used just 20 of the alpha-
bets in the dataset, excluding the six most common as deter-
mined by Google hits. The remaining alphabets were needed
to train the alternative models in the later classification ex-
periment. The simplest statistic to analyze was the number of
parts. For each character, we investigated whether the draw-
ers clustered around a common number of parts (the mode
number across participants). Aggregating across each draw-
ing in the dataset, the histogram in Fig. 3A (red) shows the
absolute difference between the actual number of strokes and
the mode number of strokes from all of the drawings of that
character. Although this distribution is guaranteed to peak at
zero, a strikingly large percentage of drawers used exactly the
modal number (66%). As a control, a null dataset was created
by replacing each number of strokes by a uniform draw (1 to
6 here, but other values are similar). This distribution was not
nearly as peaked around the mode (Fig. 3A blue).

The shape of the parts
The parse of a character into parts (strokes) is at the core of
each drawing. When people look at a new concept, do they
perceive the same parts? This is difficult to analyze, since the
number and length of the strokes can differ between images.
A similarity measure should also be invariant to the order and
direction of the strokes. Despite these challenges, we found
that it was possible to analyze consistency in the shape of the
strokes, and we discuss our method in the section below.

Shape-based distance in motor space. Since most draw-
ers (66%) used the modal number of strokes, we restrict
this and subsequent analyses to only these modal drawings.
With this simplification, the strokes in two images can be
matched in correspondence (one-to-one and onto). Our ap-
proach also matches the sub-structure within two strokes,
finding an alignment between the points in the two trajec-
tories (onto but not one-to-one). Given an optimal matching
at both levels, the overall shape distance is roughly the mean
distance between all of the aligned trajectory points. Before
computing distance, characters were also transformed to be
translation and scale invariant.1 Examples of the distance are
illustrated in Fig. 2, where the number below each drawing is
the distance to the drawing in the dotted box.

The details of the distance measure are as follows.
Consider two drawings S1, ...,Sk and R1, ...,Rk with k
strokes each. Each stroke is a sequence of positions Si =
[Si1, ...,Sin] with arbitrary length, where Sij ∈R2. The over-
all distance between the characters is defined as

min
π

1
k

k∑
i=1

min [dtw(Si,Rπ(i)), dtw(Si,F (Rπ(i)))], (1)

where π(·) is a permutation on the stroke indices 1, ...,k (a
bijective function from the set {1, ...,k} to {1, ...,k}), and the
flip function F (Si) = [Sin, ...,Si1] reverses the stroke direc-
tion to provide direction invariance. The distance dtw(·, ·) be-
tween two trajectories is calculated by Dynamic Time Warp-
ing (DTW; Sakoe & Chiba, 1978), which fits a non-linear
warp such that each point in one trajectory is aligned with a
point in the other. The DTW distance is then the mean Eu-
clidean distance across all pairs of aligned points.

The simple drawer model. Upon visual inspection of the
stroke matches π(·) chosen by the outer minimization in Eq.
1, there is a striking consistency across drawers in the inferred
parts for a character. We show two characters in Fig. 2, where
color denotes the stroke matches (left panels). The plots for
the entire dataset are available online.2 While this qualita-
tive correspondence may reflect richly structured motor pro-
cesses, there could be a more simplistic explanation. The
consistency could be a consequence of selection bias, since
we selected drawers that used the modal number of strokes,

1This transformation subtracts the center of gravity and rescales,
such that the range of the largest dimension is 105.

2http://web.mit.edu/brenden/www/consistency.html
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Figure 3: A histogram analysis of the consistency in the motor data, comparing human drawers (red) with a parallel dataset of simple drawers
(blue) designed as a null hypothesis. Humans are strikingly consistent across a range of statistics compared to the simple model. As labeled,
some histograms pool data from characters with different numbers of strokes (e.g., {2,3} includes 2- and 3-stroke characters).

and there will be fewer degrees of freedom available to a k-
stroke drawer for any given k. In the special case of k disjoint
segments (like in Braille), there may only be one production
option. To explore the degrees of freedom and to provide a
baseline for the observed consistency, we devised a “simple
drawer” model that is likely to mimic human drawers when
the space is highly constrained, but otherwise it more freely
explores the potential motor space.

The simple drawer is given access to the same set of points
a real drawer traversed in the motor data, but without the se-
quential information. It then tries to draw the same character
as efficiently as possible using the same number of strokes.
It must visit every point exactly once, while minimizing the
distance traveled while ink is flowing. Given a real draw-
ing with strokes S1, ...,Sk, the simple drawer’s interpretation
Q1, ...,Qk is defined by the problem

argmin
Q1,...,Qk

k∑
i=1

|Qi|−1∑
j=1

||Qij−Qi(j+1)||2, (2)

where | · | is the number of points in the stroke sequene, and
|| · ||2 is Euclidean distance. Each point Sij in the original
drawing is equal to exactly one point Qab in the new draw-
ing. This formulation encourages smooth strokes, but it also
leads to creative parses (Fig. 2 right panels), in part be-
cause there are multiple optima. A drawback of the model
is that it sometimes draws paths where no ink exists. To
reduce this problem, the simpler drawer is not allowed to
travel large distances between adjacent points, where the up-
per bound is the maximal adjacent distance in the corre-
sponding real drawing. For optimization, we can reformulate
the problem as the well-known traveling salesman problem
(TSP) by inserting k cost-free “points” to indicate the stroke
breaks. Inspired by efficient approximate solvers for the TSP

problem, we optimized using simulated annealing with alter-
nating Metropolis-Hasting node swaps and Gibbs sampling
(Rubinstein & Kroese, 2008).

Results. The simple drawer was used to re-sketch each im-
age, creating an entire parallel dataset for comparative anal-
ysis. The shape-based consistency of a character is the mean
distance (Eq. 1) between each pair of drawings of that char-
acter. Fig. 3B shows histograms of this consistency measure
for the human drawers (red) and the simple drawers (blue).
The aggregate histogram (right) for characters with two to
five strokes shows a large difference in the consistency of
the parts. The histogram for characters with one stroke (left)
shows a closer correspondence between participants and the
simple drawer, due to the limited degrees of freedom.3 These
results suggest that people inferred motor programs that were
based on a characteristic set of strokes.

The direction of the parts

Do different drawers infer the same stroke directions? For
each character, a single canonical drawer was chosen to mini-
mize the sum shape-based distance across all other drawers of
that character (Eq. 1). Example canonical drawers are shown
in the dotted boxes in Fig. 2 (left). For each person’s drawing
compared to the canonical drawing, the chosen value of the
inner minimization in Eq. 1 indicates whether each stroke,
or that stroke in reverse direction (F (·)), is a better match to
the corresponding stroke in the canonical drawer. Aggregat-
ing across each stroke in the dataset, Fig. 3C (red) displays
the proportion of times the modal stroke direction was picked,
using the canonical drawer as the reference point. The dataset

3Some single stroke characters can still be drawn in a number of
ways, such as choosing the starting location of an “O.” People tend
to start at the top, while the simpler drawer is agnostic.
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of simple drawers (blue) provides a direction-agnostic base-
line. By comparison, people’s inferred programs clearly have
preferred directions.

The order of the parts
Is stroke order also consistent across drawers? As in the
analysis of direction, and the canonical drawers were used
as the reference points, from which stroke order was defined.
For any person’s drawing compared to the canonical draw-
ing of that character, the chosen permutation π(·) from the
outer minimization in Eq. 1 defines a relative ordering of the
strokes. Aggregating across each drawing, Fig. 3D shows
the proportion of times the modal stroke order was picked.
Like the other statistics, stroke order was also highly consis-
tent across characters. Unsurprisingly, consistency was less
pronounced as the number strokes increased.

One-shot classification
The previous analyses suggest that people can infer rich
motor-based concepts from just a single example. If the same
perceptual inferences occurred in the context of categoriza-
tion, would these representations prove useful for one-shot
classification? We investigated this question by using the mo-
tor data to classify characters by type, based on the shape-
based distance measure (Eq. 1). The model received 20 ran-
dom characters with just one example each. Test examples
(2 per class) were classified as the best fitting category. All
20 categories used the same (modal) number of strokes. This
classification task was repeated 20 times with different char-
acters, and the mean percent correct is shown in Fig. 4.

We used several baselines for comparison. The simplest
method picked the closest image in pixel space, using Eu-
clidean distance. We also tested Deep Boltzmann Machines
(DBMs; Salakhutdinov & Hinton, 2009) as a representative
feature-based model. DBMs learn a hierarchy of distributed
feature representations for the raw pixels, without using a pri-
ori knowledge about the geometry of images. DBMs have
obtained state-of-the-art performance on handwritten digit
recognition when trained with thousands of digits, and we
pre-trained it on the 30 alphabets that were not used for clas-
sification (about 19,000 images). For one-shot classification,
new items were represented in feature space and classified
based on cosine similarity across all hidden layers (two with
1000 units each). We also tested a model that infers latent
stroke-like parts from the raw images (Lake et al., 2011), as
well as the simple drawing model, which uses the same motor
data but without the strong structural consistency.

Performance was measured across a range of different
numbers of strokes (Fig. 4). Chance performance is 5% cor-
rect, and pixel distance performed at 20% correct on average
(“pixels” in Fig. 4). Next was the DBM at 37% (“features”),
the inferred parts model at 48%, and then the simple drawer
at 50%. The real stroke data was far better than all of the
other methods, with an average performance of 83% correct.
We also tried to include stroke order and direction informa-
tion in the classification cost function, but performance did
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Figure 4: Classification performance based on one example of 20
different characters. Test instances were compared to each class,
and the best match was selected.

not improve significantly. Finally, human one-shot classifi-
cation performance was 96%, as measured behaviorally in a
20-way classification task (“human-level” in Fig. 4; see foot-
note for experimental setup).4 Overall, the motor data was by
far the most effective means for one-shot classification.

Discussion
Our category production experiment produced over 32,000
images of handwritten characters. Each of the roughly 1,600
characters was drawn by 20 different participants, and we
found a strong correspondence in the structure of their in-
ferred motor programs. On the whole, the number, shape,
order, and direction of the parts (strokes) was highly consis-
tent across participants. Also the motor data provided a pow-
erful basis for one-shot classification. These results suggest
that when people look at a new character, they can infer a
richly structured motor program. This motor program is ca-
pable of both synthesizing new examples and classifying new
instances with high discriminative accuracy.

How can these motor programs be learned from just one
example? This ability clearly depends on prior experience,
but how does this translate into constraints on the formation
of these programs? There are various possibilities. Prior
knowledge might come in the form of shared sub-programs
or shared strokes, like our preliminary model in Lake et al.
(2011). From their general writing and drawing experience,
people might learn sub-routines like “circles, diagonal lines,
or S-shapes,” and then they could parse novel characters into
this rich set of parts. But prior knowledge could come in
many other forms, including more general constraints and bi-
ases (learned or otherwise) in human drawing and motor ca-
pabilities. Researchers have found a number of rules that use-
fully characterize drawing: start drawing at the top-left, draw
horizontal strokes left-to-right, draw vertical strokes top-to-
bottom, and minimize the number of strokes (Goodnow &
Levine, 1973; Van Sommers, 1984). In a preliminary anal-
ysis, we have observed strong versions of these effects in
our dataset of natural alphabets. Thus, it is possible that

4This study was run on Amazon Mechanical Turk with 15 par-
ticipants and 50 trials. Each trial consisted of a single test image,
and participants were asked to pick one of the 20 other images that
looked the most similar. This was the same task that the models
performed, except that characters with different numbers of strokes
were intermixed and a different set of alphabets was used.
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some of the richness of these newly acquired concepts (in-
cluding shape, direction, and order) is a consequence of rela-
tively simple, low-level principles. But it is also unclear how
these directives should be combined when they conflict, or
how they might interact with other forms of prior knowledge.
Computational models are well-suited to help answer these
questions, and we hope that future work will clarify how prior
knowledge can support such rapid program induction.

Finally, although our work has focused on handwritten
characters, we expect that similar phenomena and computa-
tional accounts are relevant more broadly. Characters share
interesting structure with other kinds of symbols used for
communication, including spoken words and gestures. Char-
acters are produced by a sequence of strokes, and likewise,
spoken words are produced as a sequence of phonemes. Char-
acters, spoken words, and gestures are also “embodied,” since
the mind and body can both generate and perceive concepts
in these domains (e.g., Liberman, Cooper, Shankweiler, &
Studdert-Kennedy, 1967; Freyd, 1983). All of these concepts
must also be learnable from one or a few examples, in the
context of efficient communication and social learning. One-
shot program induction may also be possible in learning very
different kinds of natural concepts, such as trees or ferns that
have distinctive branching patterns and unique leaf shapes.
One-shot learning could be possible here for a different rea-
son: not because of the strong priors imposed by motor con-
straints or previous learning, but because a single example is
highly complex and contains extensive repeated structure. We
hope that future work will explore a fuller range of rich rep-
resentations for concepts, while explaining how these same
concepts can be learned from just one or a few examples.
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