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Abstract

For designing effective and tailored instruction, valid
instruments that measure the level of expertise are necessary.
We propose a graph-oriented approach for in-depth analyses
of knowledge structures. Therefore, four measures of
integration and encapsulation of knowledge structures were
validated in an experiment. Participants (six experts and six
intermediate students) recalled and explained the symptoms
and laboratory data of a medical case description in the
domain of cardiology. The results showed that the graph-
oriented measures were more discriminative towards
expertise-related differences than classic measures. Thus, our
graph-oriented measures offer a more adequate and a more
fine-grained analysis of knowledge structures.
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Introduction

“Experts are made, not born” (Schraw, 2009). This
citation nicely illustrates that the way from a novice to an
expert can be characterized as a bumpy road of deliberate
practice and effort (Ericsson, 2006). For supporting novices
in developing their skills and knowledge, good and accurate
shock absorbers, such as effective instructional
explanations, are necessary. Thus, a deep understanding of
expertise and its unique differences to novices’ knowledge
structures as a target state of novices’ development is crucial
for designing effective instruction (Nuckles, Wittwer, &
Renkl, 2005). Cognitive science provides a comprehensive
picture about the patterns of knowledge structures that
constitute expertise: the main findings suggest that experts
primarily differ from novices in the nature of their
knowledge structure; more specifically in the extent to
which their domain knowledge is integrated and compiled.
Knowledge integration can be described as principled
knowledge, which is characterized as coherent and well-
integrated domain knowledge (Chi, Feltovich, & Glaser,
1981). More specifically, novices tend to organize their
knowledge around literal, superficial features, while experts
organize their knowledge around abstract principles lying
underneath the superficial features. These abstract principles
allow for the integration of obviously divergent concepts
and subcomponents into a coherent, tightly connected
schema. As novices and intermediates do not come up with
these abstract principles, they have more difficulties in
recognizing patterns that fit together, as, for example, it is
easier for a medical doctor to ascribe divergent symptoms
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like a loss of vision and a collapsing pulse to bacterial
endocarditis, whereas novices and intermediates would not
be able to intuitively ascribe these symptoms to a specific
disease and would rather tend to “store” such details
unconnectedly in long-term memory (Schmidt & Rikers,
2007).

The second distinctive feature of experts’ knowledge is
the degree of compilation. Knowledge compilation refers to
the process by which persons transform declarative
knowledge into productions and automate these productions
by combination of these productions to larger units
(Anderson, 1981). For instance, compared to intermediates,
in order to medicate a flu, a medical doctor does not need to
reason on the detail-level of pathophysiology, but rather
operates on the macro-level of automated clinical
knowledge, like “if the patient has symptoms A,B,C, then
she has...“, which allows the expert to omit reasoning steps
when solving routine tasks (Koedinger & Anderson, 1990).
But how does this compilation change the expert’s
knowledge structure? Boshuizen and Schmidt (1992)
suggested that knowledge compilation resulted in the
“subsumption of lower level, detailed propositions under
higher level [...] propositions.” This reorganization of the
knowledge structure is called knowledge encapsulation. For
example, Rikers, Schmidt, and Boshuizen (2002) found that
experts’ knowledge structures were less detailed and they
contained more encapsulated concepts compared to
intermediates. In sum, developing expertise can be
illustrated by progressing through a number of transitory
stages that are characterized by the degree of integration and
the degree of encapsulation of the knowledge structure
(Schmidt & Rikers, 2007). To support learning, accurate and
valid assessment strategies of these stages of knowledge
structures are needed as a prerequisite for the design of
effective and tailored instruction.

Measurement of Knowledge Integration and
Knowledge Encapsulation

To have experts and intermediates elicit their knowledge,
we used the classic procedure by Patel and Groen (1986)
that consists of the following elements: 1) Participants are
provided with a medical case description, 2) they
accomplish a free recall task of the medical case description,
3) explain the underlying processes that cause the disease,
and 4) provide a diagnosis for the case description. Whereas
the free recall protocol allows for an insight into a



participant’s problem representation, the explanation
captures the conceptual understanding of underlying
patterns and the logical and semantic relations of the subject
domain (Chi, 2006). For the analysis, the recall protocols
and explanations were segmented into propositions,
consisting of one relation and an ordered set of two
concepts, containing the elementary idea units of the
referring text base (Kintsch, 1988).

Classic indicators of knowledge encapsulation and
knowledge integration

Based on the propositional segmentation of the recall
protocols and the explanations, Rikers et al. (2002) used
three different measures of knowledge encapsulation and
knowledge integration. Knowledge encapsulation was
measured by the number of high-level inferences a
participant made during the recall of the case description. A
high-level inference is a statement that compiles several
reasoning steps into one statement. Therefore, each
statement in the recall protocol was coded as a 1) literal, 2)
paraphrased, 3) low-level inferred, or 4) high-level inferred
proposition of the case description. Low-level inferences
were based just on one statement in the case description,
whereas high-level inferences merged several propositions
of the case description into one inferential proposition.
Consider the following propositional segmentation of a case
description and a fictitious participant’s recall (cf. figure 1).
In this case, the participant merged seven propositions of the
case description to one proposition and solely recalled that
the man has endocarditis. Therefore, the proposition was
coded as high-level inference.

case description
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Figure 1: Example for the coding of high-level inferences

The second indicator, encapsulated concepts, was measured
by the number of matching concepts between the
participant’s explanation and a reference model that
included encapsulated concepts of the subject domain. For
instance, the match between the graphs in figure two and
three would have four matching encapsulated concepts.
Thus, the participant would have used four encapsulated
concepts.

For the knowledge integration, Rikers et al. used the
number of mentioned concepts and relations in the
explanations. For instance, the graph depicted in Figure 2
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would have a detailedness index of four concepts and three
relations.
Limitations of the classic indicators

Although the measure high-level inferences provides a
fine-grained analysis on the level of inferences in the recall
protocols, the analyses of the participants’ explanations
imply some shortcomings: The measurement of the use of
encapsulated concepts and detailedness were solely based
on the computation of frequencies of concepts and relations.
However, structural dependencies, like inter-relations
between concepts, were not investigated and thus lack
validity. In order to properly measure knowledge
encapsulation, what must be demonstrated is the
reorganization of the knowledge structure, more precisely
how participants subsume their knowledge of details under
higher-level concepts (Boshuizen & Schmidt, 1992). In a
similar vein, measuring knowledge integration requires both
structural indicators for the connectedness and the
fragmentation of the knowledge structures. Therefore, an in-
depth analysis of structural properties is necessary for
validly measuring knowledge integration and knowledge
encapsulation.

A Graph-Oriented Approach for Measuring
Knowledge Integration and Knowledge
Encapsulation

The purpose of this paper was to improve existing
measures in order to increase the reliability and validity of
knowledge encapsulation and knowledge integration
measures. Therefore, to capture key latent variables of
knowledge encapsulation and knowledge integration, we
developed four measures that were strictly based on graph
theory (Sowa & Shapiro, 2006). The analysis of knowledge
structures with graph-oriented measures has two main
methodological advantages. First, they are capable of
directly tracking structural differences, which heightens the
validity of our methodology. More precisely, with graph-
oriented measures, subsumption and integration processes
can be captured in the graphical structure. Second, due to
the mathematical formalization of knowledge encapsulation
and knowledge integration, our graph-oriented measures
could easily be automated, which increases objectivity and

efficiency.

Figure 2: Example for a conceptual graph

Mathematically, an explanation segmented into single
propositions can be interpreted as a directed simple graph
(Sowa, 2006). A graph G is an abstract representation of a
finite set of nodes V that are connected by edges E,
mathematically as G = (V, E). Nodes represent concepts,
whereas edges represent relations between the concepts.



Knowledge Integration

For the analysis of knowledge integration, we used two
different measures. Connectedness was computed by the
proportion of the sum of edges e and the sum of nodes v,
formally as:

n
i=1€i

iz Vi

This expression describes the average relatedness of
concept to concept and can take values between 0 and 1,
where 0 represents a non-connected graph and 1 means that
all concepts are directly related to each other. Figure 2
shows an example of a graph consisting of three relations
and four concepts. The connectedness for the example graph
would be .75.

The second indicator for integration is fragmentation of
the knowledge structure. Fragmentation was computed as
the number of isolated knowledge units. A knowledge unit
is represented as a disconnected component in a graph,
indicating a subgraph that is not connected to the rest of the
graph. Formally, we define fragmentation as the number of
components C, which are subsets of the graph G, where
each node v € V has no edge connection to the set of nodes
v of the complement of G\C, (Sowa & Shapiro, 2006). Our
example graph would have a fragmentation index of 1,
because there are no disconnected subcomponents in the
graph.

Knowledge Encapsulation

For the analysis of the encapsulation of the knowledge
structures, we used two different measures. The omission of
concepts is an indicator of how many inferential steps a
participant skips while explaining a phenomenon. The more
encapsulated a knowledge structure is, the more concepts a
participant omits. For the identification of the inferential
steps, a reference model is needed. This reference model
must include all causal relations to sufficiently understand
the phenomenon under investigation. Thus, the reference
model depicts an accurate causal representation of the
phenomenon. The omission of concepts is computed as the
number of concepts that are in the set of the reference model
(rm), but not in the participant’s model (pm), formally as:

rm\pm={x €rm|x ¢&pm}

The more omission a participant made the less accurate
was her explanation. Figure 3 shows an example for a
reference model. Located in the reference model are the
concepts 5, 6 and 7 that do not appear in the participants’
model in figure 2. In this case, we would have an omission
of 3, because in this case the participant would have omitted
three concepts in her explanation.

A second indicator concerning knowledge encapsulation
is the length of the inference path. It describes the shortest
path between the most distinct concepts and is an indicator
for the average length of inferences in the experts’
explanation (Dijkstra, 1959). It is computed as the shortest
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distance between the most distant nodes and can take values
from 1 to N. A low index in the inference path indicates
high encapsulation, whereas high N indicates a very detailed
description of the phenomenon. In our example, the most
distant nodes would be Node 6 and Node 7, and the shortest
path would include 4 edges; therefore the inference path
would be 4.

O
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Figure 3: Example for a reference model
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Research Questions and Hypotheses

The main purpose of the experiment was to test, if our
graph-oriented measures were more sensitive when
investigating expertise-related differences of knowledge
encapsulation and knowledge integration compared to the
classic measures (Boshuizen & Schmidt, 1992; Patel &
Groen, 1986; Rikers, Schmidt, & Boshuizen, 2002). In more
detail, we examined, if our graph-oriented measures were
more capable to detect differences concerning knowledge
encapsulation and knowledge integration compared to the
classic measures. Furthermore, we validated our graph-
oriented measures with the classic measures. For this
purpose, we, analogically to previous experiments, asked
cardiology experts and intermediate medical students to
recall and explain the signs and symptoms of a clinical case
description of a fictitious patient who had bacterial
endocarditis, taken from Patel and Groen (1986).

Based on these theoretical considerations, we addressed
the following research questions.

Predictions Regarding Structural Differences
between Experts and Intermediates

For the classic indicators, in accordance with Rikers et al.
(2002), we hypothesized that experts would make more
high-level inferences and would use more encapsulated
concepts compared to intermediates. For knowledge
integration, analogically to Rikers et al., we assumed that
experts’ explanations would be less detailed (less concepts
and less relations) compared to intermediates.

For the graph-oriented measures, we expected the
following effects: Generally, we assumed that experts would
subsume specific concepts under encapsulated concepts,
which would result in shorter inference paths and more
omissions of concepts in their explanations compared to
intermediates. With regard to knowledge integration, we
expected that experts’ knowledge structures should be more
tightly connected and less fragmented compared to
intermediates (Chi et al., 1981).



Predictions Regarding the Validity of the Graph-
Oriented Measures

In order to test concurrent validity of the graph-oriented
measures, we examined whether the classic measures were
correlated with the graph-oriented measures. More
importantly, we tested whether our graph-oriented measures
would be able to discriminate between experts’ and
intermediates’ explanations. More specifically, we
hypothesized that our graph-oriented measures would be
more discriminatory with regard to differences related to
expertise, because they would be better able to measure
structural differences.

Method

Participants

Six experts and six intermediates participated in the
experiment. Experts were recruited from a German
cardiology hospital. All were medical specialists who had a
mean work experience of 19.5 years and board certification
in their specialty of cardiology. They were, on average,
49.75 years old (SD = 6.24). Intermediates were advanced
medical students in the clinical block of their study
program. They were on average 25.83 years old (SD =
1.72). Their average number of semesters in the medical
program was 10.83 semesters (SD = 1.17) and they had
attended at least one special course in cardiology.

Design

A quasi-experimental between subjects design was used,
with expertise as the independent variable. Dependent
variables encompassed measures of knowledge integration
and knowledge encapsulation.

Materials

The materials were merged into one booklet, containing a
demographic questionnaire about the participants’ age, prior
knowledge and experience in the area of cardiology. The
main component was a clinical case description of a
fictitious patient who had bacterial endocarditis (an
inflammation of the inner layer of the heart). This
description was used in several previous studies (Patel &
Groen, 1986; Rikers et al., 2002). The clinical case
description included context information, central findings of
laboratory data, and descriptions of symptoms. Furthermore,
we included two blank sheets for the recall task and the
explanation.

Procedure

The entire experiment lasted approximately 40 minutes.
First, the participants completed the demographic
questionnaire (5 minutes). Second, they read the case
description (5 minutes). Third, in the recall task, participants
wrote down everything they could remember (5min).
Fourth, the participants provided an explanation for the
signs and symptoms of the case description, in full
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sentences (20 minutes). They were asked to write an
intelligible and comprehensive explanation.  Fifth,
participants provided a diagnosis and suggested possible
therapies (5 minutes).

Analysis of the Knowledge Structures

We used our graph-oriented measures, described above,
to examine differences between experts and intermediates
regarding their knowledge structures. For the cross-
validation of our graph-oriented measures, we used the
classic measures by Rikers et al. (2002) as well. To heighten
reliability, we implemented a computer program which
automatically calculated all mathematically formalized
measures for knowledge integration and knowledge
encapsulation, except for the number of high level
inferences. Latter was coded by two independent raters that
were blind to the experimental conditions. Interrater
agreement as determined by Cohen’s Kappa was very good
(x =.77) and differences were resolved by discussions.

Results

There were no significant differences between experts and
intermediates regarding the number of propositions in the
recall protocol, F(1, 10) = 3.44, p = .09, partial n? = .26, and
the number of propositions in the explanations, F(1, 10) =
3.01, p = .11, partial n* = .24. Furthermore, as all of our
participants were knowledgeable in the domain of
cardiology, all participants correctly diagnosed that the
patient had bacterial endocarditis, and proposed broad
antibiotic mediation as first treatment. The means and
standard deviations for all the dependent measures as well
as for the propositions can be seen in table 1.

Predictions Regarding Structural Differences
between Experts and Intermediates

Classic indicators

Concerning knowledge integration, our analyses showed
that intermediates’ explanations contained more concepts,
F(1, 10) = 6.23, p = .03, partial n? = .38, but did not
significantly differ with regard to the number of relations,
F(1, 10) = 3.04, p = .11, partial n* = .23. Concerning
knowledge encapsulation, there was no significant
difference between experts and intermediates regarding the
number of high-level inferences, F(1, 10) = 2.43, p = .15,
partial n? = .20 and in the use of encapsulated concepts, F(1,
10) = .06, p = .82, partial n? = .01.

Graph-Oriented Measures

With regard to knowledge integration, intermediates’
knowledge structures were significantly more fragmented
than experts’ knowledge structures, F(1, 10) = 6.58, p = .03,
partial 1> = .40. Concerning connectedness, there was no
significant difference between experts and intermediates,
F(1, 10) = 2.83, p = .12, partial n° = .22.

With regard to knowledge encapsulation, experts’
inference paths were significantly shorter than those of
intermediates, F(1, 10) = 4.40, p = .05, partial n* = .33.
Furthermore, experts omitted more relevant concepts in



their explanations compared to intermediates, F(1, 10) =
7.50, p = .02, partial n = .43.

Table 1: Means, standard deviations and effect sizes for
knowledge integration and encapsulation.

Variables Intermediates Experts 0
Propositions RC*  33.33(5.99) 27.50(4.85) .26
Propositions EX" 44,67 (8.59) 34.50(11.31) .24
Classic measures of knowledge integration

Concepts 50.83 (9.45) 35.83(11.29) .38
Relations 4450 (8.46) 34.33(1152) .23
Graph-oriented measures of knowledge integration
Connectedness .88 (.05) .96 (.11) 22
Fragmentation 6.5 (1.98) 3.5(2.07) 40
Classic measures of knowledge encapsulation
High-level 117(1.17)  5.33(6.44) .20
Inferences
Encapsulated 750 (1.87)  7.47(293) .01
concepts
Graph-oriented measures of knowledge encapsulation
Inference path 10.83 (3.06)  7.17 (2.64) .33
Omission of
concepts 2 (1.10) 4 (1.41) 43

Note. Differences with p < .05 are in boldface.
 mean number of propositions in the recall protocols.
® mean number of propositions in the explanations.

Predictions regarding the Validity of the Graph-
Oriented Measures

Table 2 presents the correlations between the classic and
the graph-oriented measures. With regard to knowledge
integration, we found high correlations between the classic
measure of detailedness and the graph-oriented measure of
fragmentation.

For knowledge encapsulation, we found high correlations
between the classic measure of high-level inferences and the
graph-oriented measure of inference path. Correlations
between high-level inferences and omission of concepts
were not significant. As the effect sizes (table 1) indicated,
the best indicator of knowledge integration was our
fragmentation measure; for knowledge encapsulation, our
omission of concepts measure.

To test if our graph-oriented measures discriminated
better between experts and intermediates as compared to the
classic measures, we conducted a discriminant analysis
(step-wise). All variables both of the classic and the graph-
oriented measures were entered into the analysis. The
method of minimizing Wilks’ lambda was used for
inclusion of the variable, and the criterion F to enter was set
to 4. The stepwise discriminant heuristic selected as relevant
predictors omission of concepts and fragmentation,
canonical R? = .62, which significantly discriminated all the
cases into the expert’s and intermediate’s condition, A = .39,
x? (2) = 858, p = .01. The discriminant heuristic solely
selected graph-oriented measures, but none of the classic
measures was selected.
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Table 2: Correlations of the dependent measures (N =12)

1 2 3 4 5 6 7
Classic measures
1 Concepts -
2 Relations 95 -
High-level 43 -46 -
Inferences
Encapsulated o4 05 25 -
Concepts
Graph-oriented measures
5 Connectedness -35 -.04 -20 -65 -
6 Fragmentation .64 .41 -06 .55 -78 -
7 Inference Path 68 .63 -62 .30 -18 .45 -
8 Omissionof gy 49 14 -19 24 -34 -26
concepts
Note. Correlations with p < .05 are in boldface.
Discussion
In this paper, we proposed four graph-oriented indicators for
measuring  knowledge integration and  knowledge

encapsulation. Based on graph theory, these indicators allow
for an in-depth analysis of the structure of knowledge
integration and encapsulation. The results from our study
can be summarized as follows:

Overall, our results showed the validity of our graph-
oriented measures with regard to knowledge encapsulation
and knowledge integration by detecting structural
differences between experts’ and intermediates’ knowledge
structures.

For the classic measures by Rikers et al. (2002), the only
statistically significant expertise-related difference occurred
in regard to the number of concepts, indicating that experts’
explanations were less detailed than intermediates’
explanations. For the other classic knowledge encapsulation
measures, that is, the number of high-level inferences and
the number of encapsulated concepts, no significant
differences between experts and intermediates were found.
However, we concede that our sample of experts and
intermediates was very small. Thus, given the considerable
effect sizes for the classic measures, it can be assumed that
with a larger sample size, those differences would have also
reached statistical significance.

Our graph-oriented measures of encapsulation, namely
the omission of concepts and the length of the inference
path, significantly differed between experts and
intermediates. Additionally, for knowledge integration, we
found significant differences with regard to the
fragmentation of the explanations, indicating that experts’
explanations were less fragmented (i.e. more integrated)
than intermediates’ explanations. However, connectedness
did not differ significantly between experts and
intermediates. Generally, the largest effects in our study
resulted for the graph-oriented indicators: analyses showed
that the most discriminative indicator of knowledge
integration was fragmentation. Similarly, regarding
knowledge encapsulation, the omission of concepts was the
most discriminative predictor. Hence, the graph-oriented



indicators were more sensitive towards differences between
experts and intermediates, that is, the graph-oriented
indicators were better able to discriminate between experts
and intermediates. Further evidence for the validity of our
graph-oriented measures can be found in the high
correlations between the classic measures by Rikers et al.
(2002) and our graph-oriented measures. They seem to
measure the construct of knowledge encapsulation and
knowledge integration related to the classic measures, but
due to the granularity of the graph-oriented measures in a
more sensitive and discriminative way.

Despite the promising results of our experiment, there are
also limitations and open questions that need to be
addressed. One limitation refers to the small sample size in
the experiment. Although we showed that the graph-
oriented measures were more discriminative compared to
the classic measures by Rikers et al., the small sample size
limited test power and therefore results should be
interpreted with caution. As our experts were cardiologists
with around 20 years of work experience, it proved to be
difficult to convince a large number of them to participate in
our study. Additionally, in using only one task, namely to
explain the reasons of bacterial endocarditis, the scope of
our experiment was rather restricted. Therefore, additional
tasks should be included to map a more integrated
representation of the domain of cardiology. Apart from the
scope, it should also be acknowledged that assessing
participants’ knowledge structures by analyzing written
recall protocols and written explanations is a rather indirect
measure of participants’ knowledge structure. Therefore, it
should be examined whether our results can also be
replicated using a more direct elicitation technique, such as
think-aloud protocols. Beside these methodological issues,
there remains the question, if the graph-oriented indicators
are able to model the development of expertise. Therefore,
novices should be included in future studies.

In conclusion, we see our methodology as a promising
starting point for future research. The results showed that
our graph-oriented indicators are well suited to detect
differences between different expertise levels concerning
the encapsulation and integration of knowledge structures.
Graph-oriented indicators proved to be more sensitive and
therefore more valid measures of structural differences,
compared to the classic measures that solely rely on
frequencies of concepts and high-level inferences. Likewise,
due to the formalization of the measures, they can be easily
automated, which heightens objectivity and reliability and
offers a more efficient way of measuring knowledge
structures. It is up to further research to explore these
possibilities.
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