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Abstract

The mReactr system is a computational implementation of the
mental model theory of reasoning (Johnson-Laird, 1983) that
is embedded within the ACT-R cognitive architecture
(Anderson, 1990). We show how the memory-handling
mechanisms of the architecture can be leveraged to store and
handle discrete representations of possibilities, i.e., mental
models, efficiently. Namely, the iconic representation of a
mental model can be distributed, in which each component of
a model is represented by a “chunk” in ACT-R’s declarative
memory. Those chunks can be merged to create minimal
mental models, i.e., reduced representations that do not
contain redundant information. Minimal models can then be
modified and inspected rapidly.

We describe three separate versions of the mReactr
software that minimize models at different stages of the
system’s inferential processes. Only one of the versions
provides an acceptable model of data from an immediate
inference task. The resulting system suggests that reasoners
minimize mental models only when they initiate deliberative
mental processes such as a search for alternative models.

Keywords: reasoning, mental models, immediate inferences,
mReactr, ACT-R

Introduction

People regularly make complex deductive inferences. For
instance, if you know that none of the lawyers in the room
are men, you might refrain from asking any of the men in
the room for legal advice. If so, you have made an
“immediate” inference from a single premise:

1. None of the lawyers are men.
Therefore, none of the men are lawyers.

The inference is valid because its conclusion must be true
given that its premise is true (Jeffrey, 1981, p. 1). You likely
followed up the deductive inference above with an inductive
inference:

2. None of the men are lawyers.
Therefore, they do not possess legal knowledge.

The second inference is inductive — the conclusion is not
necessary given the truth of the premise.

How do reasoners make deductive and inductive
inferences like the ones above? One prominent answer is
that they construct mental simulations of the things they
already know or believe. They then manipulate those
simulations to obtain information they did not have at the
outset. The idea that reasoning depends on building
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simulations, or mental models, is the fundamental intuition
behind the mental model theory of reasoning (Johnson-
Laird, 1983). In the present paper, we outline the theory and
address one of its major limitations, namely its inability to
explain how models are stored and manipulated in memory.
We describe a computational implementation of the theory
that is embedded within the ACT-R cognitive architecture
(Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin,
2004), and we show how the memory-handling mechanisms
of the architecture can be leveraged to store and handle
mental models efficiently.

Reasoning and mental models

The “model” theory of reasoning proposes that when
individuals comprehend discourse, they construct mental
models of the possibilities consistent with the meaning of
the discourse (Johnson-Laird, 2006). The theory depends on
three main principles: 1) Individuals use a representation of
the meaning of a premise and their knowledge to construct
mental models of the various possibilities to which the
premises refer. 2) The structure of a model corresponds to
the structure of what it represents (see Peirce, 1931-1958,
Vol. 4), and so mental models are iconic insofar as possible.
3) The more models a reasoner has to keep in mind, the
harder an inference is. On a model-based account, a
conclusion is necessary if it holds in all the models of the
premises and possible if it holds in at least one model of the
premises.

mReasoner (Khemlani, Lotstein, & Johnson-Laird, under
review) is a unified computational implementation of the
mental model theory of reasoning. It implements two
interoperating systems for reasoning:

a) An intuitive system (system 1) for building an initial
mental model and drawing rapid inferences from that
model

b) A deliberative system (system 2) for more powerful

recursive processes that search for alternative models.
This system can manipulate and update the initial
model created in system 1, and it can modify
conclusions

The system is akin to dual-process models of reasoning (see,
e.g., Evans, 2003, 2007, 2008; Johnson-Laird, 1983, Ch. 6;
Kahneman, 2011; Sloman, 1996; Stanovich, 1999;
Verschueren, Schacken, & d’Ydewalle, 2005). Below, we
describe the various processes that each system implements.



The intuitive system

Model building. The system builds an initial model from the
meaning of a premise, and it updates that initial model if
additional premises occur. The system begins by building a
model with a small, arbitrary set of individuals. For
example, the model of some of the artists are bohemians is
built by first constructing a set of artists:

artist
artist
artist
artist

In the diagram above, each row represents an individual
with the property of being an artist, and so the model as a
whole represents a finite number of individuals. Mental
models are representations of real individuals, not letters or
words, which we use here for convenience. The meaning of
the assertion some of the artists are bohemians provides
instructions for the system to add additional properties,
namely the property of being bohemian. The model is
updated accordingly:

artist bohemian
artist bohemian
artist
artist

bohemian

The model therefore represents a set of individuals, some of
whom are both artists and bohemians, some of whom are
just artists, and one who is just a bohemian. Once a premise
has been represented, the system can assess whether the
given conclusion is true in the initial model.

Assessing initial conclusions. When reasoners have to assess
a given conclusion, the system inspects the initial model to
verify that the given conclusion holds or does not hold. For
instance, suppose that reasoners are asked to decide whether
it is possible that all bohemians are artists given the
previous premise. From the model above, the system
initially responds in the negative, i.e., the putative
conclusion is impossible. The process is simple, and the
response is rapid. However, it is incorrect: the system’s
ability to assess and generate initial conclusions is fallible.
For instance, one can indeed show that all of the bohemians
are artists is possible. To revise its initial conclusion, the
system needs to find an alternative model in which both the
premise and conclusion hold. We turn to the second system
to explain how such a model is found.

The deliberative system

Searching for alternative models. In the preceding section,
we focused on how the system assesses conclusions based
on an initial model. However, the conclusions it draws can
be invalid. System 2 attempts to revise initial conclusions by
searching for alternative models. To do so, it uses three
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separate operations: adding properties to individuals,
breaking one individual into two separate individuals, and
moving properties from individual to another (see Khemlani,
Lotstein, & Johnson-Laird, under review). The operations
correspond to those that naive participants spontaneously
adopt when they reason about syllogisms (as evidenced by
their manipulations of external models, see Bucciarelli &
Johnson-Laird, 1999). Consider our example above. After
an individual represents the initial model and provides an
initial conclusion that is false, it can modify that conclusion
by adding properties to the initial model. If the system can
successfully create a model in which some of the artists are
bohemians and all of the artists are bohemians are both
true, then it can conclude that it is possible, but not
necessary that all of the artists are bohemians. By adding
properties, the system finds such a model:

artist bohemian
artist bohemian
artist bohemian
artist bohemian
artist bohemian

The new model, which contains individuals who are all
artists and bohemians at the same time, refutes the
conclusion that it is impossible that all the bohemians are
artists. However, the search for alternative models places a
considerable tax on working memory. Until now, the
limitations of the model theory have prevented it from
characterizing the cost of holding models in memory.

Limitations of the model theory

The model theory and its unified implementation explain
many aspects of how people make inferences. The theory
provides an explanation of how discourse is mapped to
high-level representations. It accounts for why some
reasoning problems are hard and others are easy (Khemlani
& Johnson-Laird, 2012). It provides working algorithms for
how individuals assess whether a given conclusion is
possible, necessary, or consistent with a given set of
premises. And the model theory as a whole can explain
deductive, inductive, and abductive inferences (Johnson-
Laird, 2006). As such, it represents a unified theory of
reasoning.

The theory is limited by design, however, in that most of
its predictions are qualitative. For instance, it can explain
that an inference that requires a reasoner to hold one model
in working memory should be easier than an inference that
requires three models in memory, but it cannot explain or
predict the degree of the difficulty. Is the former inference
twice as easy or thrice as easy as the latter? And how long
should each inference take? The computational model is
silent on these matters, because it specifies only those
algorithms that are pertinent to how individuals make
inferences. It ignores other aspects of cognition, such as
how models are stored in working memory and how they
are retrieved. To overcome these limitations, we



implemented the theory in the ACT-R cognitive
architecture, and we describe the resulting hybrid system
below. The framework, which we call mReactr (mReasoner
+ ACT-R), imbues the model theory with a more robust
account of how models are represented and manipulated. It
also stands as a novel application of the ACT-R system,
which has had only limited success in accounting for
behavior on high-level deductive tasks (e.g., Emond, 2003,
and Ragni, Fangmeier, & Briissow, 2010).

mReactr: Mental models in memory

The ACT-R cognitive architecture is a modular
computational theory of human cognition (Anderson et al.,
2004). It is a collection of interoperating modules that store
and retrieve information relevant to a particular task. The
central control system, called the procedural module, directs
the way the system accesses capacity-limited buffers. The
system also contains a declarative module for storing
knowledge of facts and procedures. Facts are stored in
structures called chunks, and procedures are represented by
productions, i.e., condition-action pairings. The productions
direct the procedural model to monitor the buffers for the
existence of certain sorts of chunks, and if a chunk appears
in a buffer in the manner that a production expects, the
relevant action will be initiated. Each chunk has an
associated level of activation. If the chunk’s activation is
low, ACT-R will take longer to retrieve it, but if it is high, it
will be retrieved quickly. Accordingly, the system
automatically calculates the time it takes to trigger
productions, modify goals, retrieve chunks, and clear
buffers.

The architecture efficiently manages chunks in declarative
memory. In particular, if it detects that two chunks are
identical in every respect, it merges those chunks into one
chunk. The merged chunk will then have a higher activation
than either individual chunk. This “chunk-merging” feature
of the system is particularly important for how mental
models are handled.

The mReactr system is an implementation of mental
model theory in ACT-R. The system can build initial
models and assess putative conclusions (system 1) and
likewise it can modify those models to search for alternative
models (system 2). It stores models in declarative memory
by assigning each individual to a separate chunk. Thus, the
system will store the model of all the artists are bohemians
as five separate chunks:

artist bohemian (chunk 1)
artist bohemian (chunk 2)
artist (chunk 3)
artist (chunk 4)

bohemian (chunk 5)

The system therefore represents the model in a distributed
fashion, as a collection of chunks with similar properties.
However, several of the separate chunks are identical to one
another, and so ACT-R will try to merge those chunks

automatically, to produce just a condensed version of the
model:

artist bohemian (chunk 1)
artist (chunk 37)
bohemian (chunk 5)

By merging the chunks, the underlying architecture
automatically produces a minimal mental model, ie., a
model that only retains information about the different types
of individuals. The process of minimizing mental models is
not something that is built into mental model theory as yet;
the basic mechanisms of memory management within ACT-
R provide a way to efficiently store and retrieve models.
But, is there any evidence that reasoners minimize models?
And if so, do they minimize models at the outset, or at a
later stage of processing? To answer both of these questions,
we compared mReactr’s accuracy and latency predictions
against data from a recent reasoning experiment.

An assessment of the model

We assessed whether the mReactr system could model
that data from a recent study on so-called “immediate”
deductive inferences akin to our introductory example above
(1). Psychologists have investigated immediate inferences
for many years (e.g., Begg & Harris, 1982; Newstead &
Griggs, 1983; Wilkins, 1928), but have yet to resolve how
logically untrained individuals make them. The inferences
are based on singly-quantified assertions in four different
moods of the premise:

All the Xs are Y's

Some of the Xs are Ys
None of the Xs are Ys
Some of the Xs are not Y's

and 8 different sorts of conclusion (4 moods by 2 figures,
i.e., arrangements of terms ‘X’ and ‘Y’). Therefore, there
are 32 possible immediate inference problems based on
these premises. A typical problem looks like this:

Suppose that some of the students are Virginians.
Is it possible that all of the Virginians are students?

Immediate inferences were chosen because the model theory
and mReactr distinguish between the relative difficulties of
three sorts of immediate inference: a) zero-model
inferences, b) one-model inferences, and c¢) multiple model
inferences.

Zero-model inferences are those in which the conclusion
is identical to the premise, and so individuals needn’t even
build a model to be able to solve the problem. For instance,
consider the following problem:

All the aldermen are barters.
Is it possible that all the aldermen are barters?



Reasoners should realize that the answer is true
immediately; however, they should nevertheless need to
extract the meanings from the assertions, and they need to
establish a set of subgoals in order to infer a conclusion.

One-model inferences are those in which the conclusion
holds in the initial model of the premise, and so individuals
can rapidly determine that an assertion is possible. For
example:

All the aldermen are barters.
Is it possible that some of the barters are aldermen?

Reasoners have to construct the meanings of the assertions,
use them to build a model, and evaluate the truth of the
conclusion in the model.

When the conclusion fails to hold in the initial model, but
does hold in an alternative to it, then participants have to
search for that alternative model. We refer to such problems
as multiple-model inferences. For instance:

All of the aldermen are barters.
Is it possible that some of the barters are not aldermen?

For multiple-model inferences, mReactr predicts that
reasoners extract the meaning of the assertion and build an
initial model, but their initial model suggests an erroneous
evaluation of whether or not the conclusion is possible. To
obtain a correct evaluation, reasoners have to modify their
initial model to produce an alternative model. The theory
therefore predicts that zero-model inferences should be
easier than one-model inferences, and one-model inferences
should be easier than multiple-model inferences. Likewise,
mReactr provides precise latency predictions for how long
zero-, one-, and multiple-model inferences should take.

We used mReactr to simulate an experiment conducted by
Khemlani, Lotstein, & Johnson-Laird (in revision). In the
study, the participants carried out all 32 problems (4 sorts of
premise x 8 sorts of conclusion), and they responded “yes”
or “no” to a conclusion about a possible conclusion to each
problem. The contents of the problems were based on nouns
referring to common occupations. The instructions stated
that the task was to respond to questions about a series of
assertions concerning what was possible given the truth of
the assertion.

Simulation

Our goals in simulating immediate inference data were
two-fold. First, we sought to test the fidelity of the mReactr
system as an instantiation of the model theory. We restricted
our simulation to valid immediate inferences, i.e., 22 of the
32 problems. The theory distinguishes between three sorts
of problem, and so mReactr should reflect the same
distinction. A failure of the computational model to capture
those data indicates a poor implementation of the model
theory. We retained all of the default values of the ACT-R
architecture, except we increased the architecture’s default

tracking ability so that it could track 10 individual chunks
(i.e., the :declarative-num-finsts parameter).

Second, we attempted to examine whether mReactr could
fit the data better when it actively engaged in minimizing
models by merging chunks. We created three separate
versions of mReactr:

1) no chunk-merging version
2) system 1 chunk-merging version
3) system 2 chunk-merging version

In the no chunk-merging version, chunks were kept separate
and ACT-R’s automated chunk-merging capability was
disabled. In the system I chunk-merging version, chunks
were merged before the system engaged in any inferential
processes. And in the system 2 chunk-merging version,
chunks were kept separate in the initial model. They were
merged only when mReactr initiated a search for alternative
models. The best performing version of the theory can help
establish whether and when models should be minimized.

Results and discussion

The results of the experiment corroborated the theory’s
predictions of difficulty (Khemlani et al., in revision), and
they yielded the following trend: reasoners were 98%
correct for zero-model problems, 85% correct for one-model
problems, and 71% correct for multiple-model problems
(Page’s trend test, L = 340.0, z = 3.88, p < .0001).
Immediate inferences are relatively easy to deduce,
nevertheless participants exhibit predictable patterns of
difficulty. The mean latencies also corroborated the
predicted trend: 4.30 s for zero-model problems, 5.17 s for
one-model problems, and 5.41 s for multiple-model
problems (Page’s trend test, L = 336.0, z = 3.33, p <.0005).

Figure 1 illustrates the empirical latencies and the
predicted latencies from the different versions of mReactr.
As the figure shows, the system yielded the closest match to
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Figure 1: Participants’ mean latencies (in s) to solve zero-, one-,
and multiple-model problems, and the latencies predicted by the
three separate versions of mReactr.



Model fits

Goodness of fit

mReactr version RMSE D p
a) By problem type
No chunk-merging .99 .40 .67 .60
System 1 chunk-merging .94 .54 .67 .60
System 2 chunk-merging .99 18 .67 .60
b) By immediate inference
No chunk-merging 45 .70 41 .05
System 1 chunk-merging .23 .86 .50 .008
System 2 chunk-merging .45 57 18 .86

Table 1: Model fits for the three versions of mReactr by problem
type (zero-, one-, and multiple-model problems) and by the 22
valid immediate inferences. Note: a lack of significance for the
Kolmogorov-Smirnov D statistic indicates a good fit.

the data when chunk-merging was initiated at a later stage
of processing, i.e., the system 2 chunk-merging version (R’
= .99, RMSE = .18). When chunk-merging was disabled in
the no chunk-merging version, the system did well, but it
took too long to search for alternative models, (R2 = .99,
RMSE = .40). In the system [ chunk-merging version,
mReactr performed faster than participants tend to perform,
yielding a poorer fit of the data (R* = .94, RMSE = .54).

Across all three simulations, the system negatively
correlated with participants’ accuracy (r's < -.90, p’s <
.0001). Likewise, the simulations fit the latencies well.
Table 1a gives the model fits for the three separate versions
of the system across the three types of problems as a whole,
as well as across the 22 different problems separately.

We ran a separate set of analyses to examine how the
three versions of the system modeled the 22 valid immediate
inferences separately (see Table 1b). This set of analyses
would by definition yield poorer model fits as a result of the
inherent variation between different problems, and so any
significant correlation can be construed as support for the
theory. The analysis replicated and elaborated upon the
aggregated results. The system fit the data moderately well
with chunk-merging turned off, but its RMSE was relatively
high (R* = .45, RMSE = .70), and a Kolmogorov-Smirnov
goodness of fit analysis indicated that the system exhibited
reliably different distributional properties than that of the
experiment (D 41, p .05). Likewise, the system
provided a relatively poor fit of the data when models were
minimized at the outset (R* = .23, RMSE = .86) and so
mReactr produced results that came from a separate
distribution (Kolmogorov-Smirnov test, D = .50, p = .008).
Only when models were minimized before the system
searched for alternative models did the system fit the data
well (R* = .45, RMSE = .57), and the goodness-of-fit
analysis indicated a close match between mReactr and the
data (Kolmogorov-Smirnov test, D = .18, p = .86).

The results of the simulations showed that across all three
version of mReactr, the system successfully implemented
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the model theory’s predictions of difficulty, and it
distinguished between zero-, one-, and multiple-model
problems. However, the system performed best only when it
initiated chunk-merging before it began a search for
alternative models. The results have important implications
for an overlooked process in the psychology of reasoning:
representational minimization.

General Discussion

The computational theory, mReactr, is system
implemented in the ACT-R cognitive architecture that
simulates the construction of mental models in order to
draw immediate inferences from singly-quantified premises.
The cognitive architecture comes equipped with the ability
to manage its declarative memory efficiently, namely by
merging identical chunks. mReactr repurposes this chunk-
merging functionality to produce minimal mental models at
a particular stage of inference. At the outset, mReactr uses
the same collection of iconic representations as is specified
in the model theory. However, the full representation is
ephemeral, and it lasts only until the system starts to modify
the model. If and until the system initiates a search for
alternative models, it minimizes the model. This process
maps onto the psychological strategy of abstracting over the
different sorts of individuals.

The theory predicts that individuals should be faster and
more accurate when an inference can be drawn from an
identity in the meanings of the assertions, i.e., when they do
not need to consult a mental model. They should be next
fastest and accurate when an inference can be drawn from
the initial model constructed in system 1. And they should
be slowest and least accurate when an inference can be
drawn only from the discovery of an alternative model
constructed in system 2. These rank-order predictions were
borne out in the data from an experiment that tested all 22
valid inferences about possible conclusions in the set of 32
inferences.

The system we describe is limited, however, and it can be
improved to yield a more fine-grained processing account of
the data. We suggest two separate ways of proceeding. One
way to improve the fit of the system is to make the system
sensitive to the direction in which it scans models. For
instance, if reasoners read a particular premise, e.g., all
artists are bohemians, they may be biased to scan the model
in the opposite directions by considering bohemians before
artists. This figural bias is widely documented in syllogistic
reasoning (Khemlani & Johnson-Laird, 2012) and it is likely
to make a difference when reasoning about immediate
inferences as well.

Another way to improve the system’s overall performance
is to consider the process of model minimization as
something that may or may not occur depending on strategy
and individual differences (Bucciarelli & Johnson-Laird,
1999). Some reasoners may be more likely to minimize their
models, and others might prefer to keep the full model
representation in mind.



In sum, model minimization is an important way in which
individuals can optimize the storage and retrieval of mental
models. It is embodied in the computational system of
deductive reasoning that we developed.
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