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Abstract

Learning abstract relationships is an essential capability in
human intelligence. Christie & Gentner (2010) argued that
comparison plays a crucial role in such learning. Structural
alignment highlights the shared relational structure between
compared examples, thereby making it more salient and
accessible for subsequent use. They showed that 3-4 year old
children who compared examples in a word-extension task
showed higher sensitivity to relational structure. This paper
shows how a slight extension to an existing analogical model
of word learning (Lockwood et al 2008) can be used to
simulate their experiments. This provides another source of
evidence for comparison as a mechanism for learning
relational abstractions.

Introduction

Our ability to abstract and reason with relations between
objects is an essential part of our intelligence. As children,
we acquire a variety of relations, including spatial relations
such as above, and on, and functional relations like edible
and dangerous. How children acquire and use such
relational abstractions is an important question in cognitive
development. Gentner (2003) has argued that comparison
promotes learning new relational abstractions. The idea is
that structural alignment highlights common structure,
which becomes more salient and available for subsequent
use.

One line of evidence for this theory comes from an
experiment by Christie & Gentner (2010). To show that
children (ages 3-4) were learning new relations, they used
novel spatial relational categories in a word extension task,
as illustrated in Figure 1. Here the relationship might be
characterized as “An animal above another identical
animal”. In the Solo condition, children were shown a
single standard (here, Standard 1) and told it was a novel
noun (e.g. “Look, this is a jiggy! Can you say jiggy?”). In
the Comparison condition, children were invited to compare
two examples (e.g. “Can you see why these are both
jiggies?” when presenting Standard 1 and Standard 2
simultaneously). In both conditions, children were then
presented with a forced-choice task, where they had to
choose which one of the alternatives is a jiggy (e.g. “Which
one of these is a jiggy?” when presented with the relational
match and object match cards). Children in the Solo
condition preferred the object match, while those in the
Comparison condition chose relational matches twice as
often as object matches. This provides evidence that
comparison can lead to learning new relational abstractions.
In a second experiment, a third condition, Sequential, was
added, where children saw two standards serially, to test

whether or not simple exposure to more examples was
sufficient to promote learning. They found significant
differences between Sequential and Comparison, and
between Solo and Comparison, but the difference between
Sequential and Solo were not significant. This provides
additional evidence that it is comparison specifically that is
promoting learning.
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Figure 1: Example of stimulus set from Christie & Gentner
(2010)

This paper shows that this phenomena falls out of
computational models of analogical generalization already
proposed for word learning. We start by summarizing the
necessary background, including the models of analogical
matching and generalization used and how we use sketch
understanding to reduce tailorability by producing portions
of the input representations automatically. Next we describe
an extension to a similarity-based word learning model
(Lockwood et al 2008) that enables it to model this task.
Then we describe two simulation experiments that
demonstrate that this model is capable of exhibiting
behavior consistent with that described in Christie &
Gentner (2010), including sensitivity analyses to shed light
on why it does so. After discussing related work, we close
with a discussion of future work.



Background

Our model is based on Gentner’s (1983) structure-mapping
theory of analogy and similarity. In structure-mapping,
comparison involves a base and target, both structured,
relational representations. Comparison results in one or
more mappings, which contain a set of correspondences that
describe how the elements in the structured representations
align, a score that indicates the overall structural quality of
the match, and possibly candidate inferences representing
knowledge that could be projected from base to target (as
well as from target to base). Our computational model of
comparison is the Structure-Mapping Engine, SME
(Falkenhainer et al 1989; Forbus et al 1994). Here SME is
used both as a component in our model of analogical
generalization (described below) and in making the decision
in the forced-choice task. The score is normalized to be
between zero and one, by dividing it by the score obtained
for the maximum self-mapping of base and target.

Analogical generalization is modeled via SAGE
(Sequential  Analogical Generalization Engine), an
extension of SEQL (Kuehne et al 2000) which incorporates
probabilities and analogical retrieval. Information about
concepts is stored in generalization contexts (Friedman &
Forbus, 2008). Each generalization context maintains a set
of examples of that concept, plus generalizations concerning
it. Examples are provided incrementally. For each new
example, the most similar prior examples and
generalizations are retrieved via a model of analogical
reminding (MAC/FAC, Forbus et al 1995). The retrieved
items are compared, via SME, with the new example. For
each comparison, if the score of the best mapping is over a
threshold (the assimilation threshold), the compared items
are assimilated into a generalization — a new one in the case
of two examples, or an updated version of the existing
generalization in the case of an example and a
generalization. The assimilation process keeps the common
structure of the mapping, replacing non-identical entities
with abstract place-holders. Associated with each fact in
generalizations is a probability, based on the number of
times a statement aligning with it appears in an example
(Halstead & Forbus, 2005). For example, in a
generalization about swans, the fact that swans are birds
might have a probability of 1.0, while the probability that
their color is white might be 0.999 while the probability that
their color is black might be 0.001. Non-overlapping facts
are kept, albeit given a low probability (i.e., 1/N, where N is
the number of examples assimilated into that
generalization). Facts whose probability drops below the
probability cutoff are removed from the generalization.
SAGE is the central component in our word-learning model,
as explained below.

Tailorability is an important problem in cognitive
simulation. To reduce tailorability, we use automatically
constructed visual and spatial representations.  These
representations are computed by CogSketch (Forbus et al
2011), an open-domain sketch understanding system.
CogSketch uses models of visual and spatial processing to
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compute qualitative relationships from digital ink. For
example, it automatically = computes topological
relationships (e.g. inside, touching) and relative positions
(e.g. above, right of) for the entities in a sketch. It also
includes a model of mental rotation, which uses SME to
first do a qualitative shape match which then guides a
guantitative match (Lovett et al 2009). This enables it to
compute relationships such as sameShape,
reflectedOnXAxis, and so on. Conceptual information
can be introduced by adding attribute information to entities
in the sketch. For example, the top entities in Standard 1 of
Figure 1 might be described as identical elephants, one
positioned above the other. The attributes are derived from
a large, independently-developed knowledge base'. The
relationships automatically computed by CogSketch, along
with the conceptual attributes provided for an entity, provide
the inputs for our simulation. Moreover, CogSketch
provides a mechanism for dividing a sketch into
subsketches, which is what we use to combine all of the
elements of a stimulus set onto the same sketch, for
convenience. Figure 2 provides an example of a sketched
stimulus set.
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Figure 2: The sketched version of the stimulus set of Figure 1

! OpenCyc, see www.opencyc.org



Word Learning via Analogical Generalization

We model the learning of words as follows. For each word,
there is a generalization context. Every time the word is
used, an appropriate subset of the world is encoded to
capture information about what that word denotes, and is
provided to the generalization context for that word as an
example. The generalizations constructed by SAGE can be
considered as the meanings for the words. Note that such
meanings can be probabilistic, since SAGE computes
frequency information for every statement in the
generalization. The ability to track multiple generalizations
provides a mechanism for handling multiple senses of a
word. The ability to store unassimilated examples provides
a means of handling edge cases, and helps provide noise
immunity in the face of changes in the underlying
distribution of examples of a concept.

This account has been used to successfully model spatial
propositions of contact in English and in Dutch (Lockwood
et al 2008). It makes no commitment to the particulars of
encoding, because this is a complex issue, especially since
evidence from studies of novice/expert differences suggest
that encoding strategies evolve with learning (Chi et al
1981). When using CogSketch as a source of stimuli, we use
an entire subsketch as the relevant material to encode.

Simulation Experiments

Now let us see how this model can be used to simulate the
experiments of (Christie & Gentner, 2010). We begin with
their Experiment 1.

Simulation Experiment 1

Recall that Experiment 1 used two conditions to show
children the new concept, followed by a forced-choice task.
We model these as follows:

Forced-choice task: Each of the choices is used with
the generalization context for the word to retrieve the
most similar generalization or example for that
choice. The choice whose similarity score is highest
constitutes the decision. For simplicity, We start with
an empty generalization context for every novel word
used.

Solo Condition: The single example is added to the
generalization context for the word.

Comparison Condition: The two examples are added
to the generalization context, but since the
experimenter has asserted that they are both examples
of the concept, we assume that the child is more
likely to assimilate them into a generalization, which
is modeled by lowering the assimilation threshold
from its default of 0.8 to 0.1. We also assume that the
probability cutoff is 0.6, so that facts which do not
appear in the shared structure will be eliminated from
the generalization.

The original experiment used 8 stimulus sets. We encoded
8 sketches of animals, using CogSketch. Each element of
the stimulus set (e.g. Standard 1, Standard 2, etc.) was
drawn as a separate subsketch. CogSketch’s default
encoding methods were used, plus an additional query to
ascertain if any of the entities in a subsketch had the same
shape as any other, and if so, what transformation held
between them (where no transformation implies the
relationship sameshape). Moreover, filters were used to
automatically remove three types of information: Redundant
information (e.g. given (rightOf B A), (leftOf A B)
is redundant), irrelevant information (e.g., global estimates
of glyph size like MediumsizeGlyph), and bookkeeping
information (e.g. relationships describing timestamps). The
table below shows the final encoding for the sketches
stimulus set (Figure 2) and the resultant generalization.

Table 1: Encoding for the sample sketch.

Standard-1 Standard-2
(sameShapes Object-99 (sameShapes Object-104
Object-420) Object-425)
(above Object-99 (above Object-104
Object-420) Object-425)

(isa Object-420 Elephant)
(isa Object-99 Elephant)

(isa Object-425 Dog)
(isa Object-104 Dog)

Generalization for “jiggy”

(above (GenEntFn 1 0 jiggy) (GenEntFn 0 0 jiggy))
(sameShapes (GenEntFn 1 0 jiggy) (GenEntFn 0 0 jiggy)
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An interesting open parameter concerns the number of
conceptual attributes that children might be encoding.
While we suspect that a large number of attributes would be
encoded?, we do not know of data that provides specific
estimates. Consequently, we perform a sensitivity analysis
by running the simulation while varying the number of
conceptual attributes to ascertain their impact on the results.
Specifically, we varied the number of attributes from zero to
nine. We assumed that encoding is reasonably uniform, i.e.
that the same attributes would always be computed for
identical objects. For simplicity, we further assumed that
the set of attributes computed for one entity had no overlap
with the set of attributes computed for another entity whose
shape is different. Given these assumptions, we used
synthetic attributes (e.g. Uniquestandard-
1MtAttribute8) for convenience.

Figure 3 shows the results. From the data, we can see that
the model chose the relational match 100% of the time for
the Comparison condition. This is qualitatively consistent
with the behavior of participants in the Comparison
condition, where participants chose the relational match
around 60% of the time. We believe that the lack of object
matches in this simulation condition are due to the use of
completely independent attributes for each entity type in the

2 See the Specificity Conjecture (Forbus & Gentner 1989).



http://127.0.0.1/rbrowse/kbb-frameset.html?concept-id=20&kb=1
http://127.0.0.1/rbrowse/kbb-frameset.html?concept-id=20&kb=1

stimuli sets. Since they are independent, no attributes are
left in the generalization after assimilation. The more
overlapping attributes there are, the more likely an object
match is to become possible.

Returning to Figure 3, in the Solo condition, as the
number of attributes rises, the proportion of object matches
rises (i.e., the proportion of relational matches falls). Again,
this provides a good qualitative fit for the results of (Christie
& Gentner 2010) Experiment 1. Since attributes are more
salient to children, due to lack of relevant domain
knowledge (Ratterman & Gentner, 1998), it is reasonable to
assume that they would encode more attributes than
relations, which is compatible with the simulation results.

Recall that we assume that the probability cutoff is set
high enough that non-overlapping information is
immediately filtered out. (Since these are novel concepts,
there can be at most two examples in any generalization,
and hence the probability of any fact not in the overlap
would be 0.5, which is less than the 0.6 threshold.) Would
adding in probabilistic information improve the fit of the
model to human data? To determine this, we tried changing
the probability cutoff to its usual default of 0.2. This leads
to all attributes remaining in the generalization, which
results in the score for the object match being boosted so
high that it always wins over the relational match, regardless
of the experimental condition used. This suggests that when
children are invited to compare, they do indeed restrict
themselves to keeping exactly the overlapping structure.
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Figure 3: Results for Simulation Experiment 1

Simulation Experiment 2

Experiment 2 in (Christie & Gentner 2010) actually consists
of two experiments. Both involved a new condition, the
Sequential condition, designed to rule out non-comparison
explanations. In Experiment 2a, fillers, in the form of
pictures of familiar objects, were interposed between the
serial presentation of the standards. No invitation to
compare was issued. In Experiment 2b, no fillers were
used, and the Solo and Comparison conditions from
Experiment 1 were added, by way of replication. In our

model, fillers would be added to some other generalization
context, thus 2a and 2b look identical from the perspective
of our model. We model the new condition as follows:

e Sequential Condition: The two examples are added to
the generalization context, but with the default
assimilation threshold 0.8.

Again we varied the number of conceptual attributes, in the
same way as in Simulation Experiment 1.
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Figure 4: Results of Simulation Experiment 2

Figure 4 illustrates the results. As anticipated, the results
for the Sequential condition are identical to the results the
model generates for the Solo condition. This is because of
the model does not generalize the two standards, and hence
the choices will be compared to the exemplars in the
generalization context. This makes the results of the

Object Attributes

Prop.Relational Match Selected

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

assimilation threshold

Figure 5: Sensitivity analysis

Comparison condition be the same as the Solo condition.
We know of no psychological evidence that would
provide constraints on the value of the assimilation
threshold.  Consequently, we performed a sensitivity
analysis by varying the assimilation threshold between 0.1
and 0.9, while varying the number of attributes from zero to
nine. Figure 5 illustrates the results. The region marked as



black indicates a high proportion of relational match choices
and then the contour fades down gradually.

The slope of the contour indicates that the model readily
generalizes the standards when both the assimilation
threshold and the number of object attributes are low. This
can be interpreted as follows. A low assimilation threshold
corresponds to a higher willingness to accept the standards
as belonging to the same category, which fits the
assumptions of our model. A low number of object
attributes indicates a leaner encoding i.e. not enough
attention was paid to the object, or it may be unfamiliar.
This is a second possible explanation for why some children
chose the relational match for the Sequential condition.

Related Work

There have been several prior computational models of
word learning. For example, Siskind (1996) developed an
algorithm for cross-situational learning of word/meaning
mappings. He used synthetic conceptual representations
and lexicons to examine its scaling properties and noise
immunity. Our use of arbitrary predicates is similar to his
use of synthetic conceptual representations, but our visual
representations are grounded in prior cognitive science
research. It is an open question whether Siskind’s algorithm
would work on realistic conceptual representations, and
similarly, it is an open question as to whether our word
learning algorithm can scale to the size of vocabularies that
his does. Another model, described in (Roy and Pentland
2002) uses speech and vision signals as input, to tackle the
problem of how children learn to segment these perceptual
streams while at the same time learning word meanings. A
particularly novel aspect of their approach was modeling a
corpus of infant-directed speech they gathered, to ensure
their inputs were naturalistic. Our use of sketch
understanding is motivated by the hypothesis that it forces
us to incorporate high-level vision, while factoring out most
of the complexities of signal processing. The relatively
crude visual processing techniques used in Roy &
Pentland’s system, compared to mammalian vision systems,
suggests that theirs, too, is an approximation, albeit a more
signal-rich version than ours. Neither of these models, nor
any other word learning model that we are aware of, has
tackled the role of comparison in learning relational
abstractions.

Discussion

We have shown that a model of word learning based on
analogical generalization, using automatically encoded
sketches augmented by conceptual information, can
simulate the behavior found in (Christie & Gentner 2010).
The invitation to compare, we argue, leads the child to
aggressively attempt to form a generalization between the
two new exemplars, as modeled by lowering the
assimilation threshold and only keeping overlapping
structure. This finding is robust across a wide range of
choices for the number of object attributes. Moreover, serial
presentation to the model, as with humans, does not lead to
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relational learning, as measured by responses in the forced-
choice task.

There are several lines of future work that suggest
themselves. First, we intend to explore if the model can
handle closely related phenomena (e.g. Gentner & Namy
1999, who used a similar experimental paradigm but with
pre-existing concepts instead of novel concepts). Second,
we plan on exploiting more of CogSketch’s automatic
encoding capabilities, by wusing it to automatically
decompose object-level spatial descriptions into edge-level
representations. The sketches in the stimuli will be
represented by a set of constituent edges, their attributes and
relations that hold between them (e.g. (isa edge2
StraightEdge) (edgesParallel edge?
edge4)). For example, a square can be segmented into
four constituent edges. These more detailed spatial
representations will contain more shared attributes and
relations and hence would naturally introduce more overlap
between entities. This would provide a test of our
hypothesis that such overlap is responsible for participants
in the Comparison condition sometimes choosing the object
match. Finally, we plan to extend this model to explore how
object labels promote uniform relational encoding and re-
representation (Gentner, 2010).
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