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Abstract

Associative learning has been meticulously studied in many
species, and diverse effects have been explained using a
handful of basic assumptions and mechanisms. Human
language acquisition proceeds remarkably quickly and is of
great interest, but is arguably more difficult to capture under
the microscope. Nonetheless, empirical investigations have
led researchers to theorize a variety of language learning
principles and constraints. While there may indeed be
language-specific learning mechanisms that are distinct from
more universal associative learning mechanisms, we seek to
explain some basic principles of language acquisition using
domain-general mechanisms. Using an experiment and a
model, we show how the principles of mutual exclusivity —an
assumption of 1-to-1 word-object mappings, contrast, and
other constraints related to fast mapping may stem from
attention mechanisms attributed to associative learning effects
such as blocking and highlighting, but directed by competing
biases for familiar and unfamiliar pairs instead of surprise.

Keywords: statistical learning; language acquisition; cross-
situational learning; associative learning; attention

Introduction

All organisms learn, but only humans master human
languages. Since many neural structures and basic learning
mechanisms are conserved across species, it bears asking
how much of human language learning can be explained
with domain-general mechanisms, without appealing to
innate (i.e., evolved) linguistic knowledge, exemplified by
the work of Noam Chomsky, or domain-specific principles
and constraints, whether innate or developed early in life
(e.g., Markman, 1992).

One essential part of language learning is learning word-
object mappings—nouns. Two border collies have been
shown to learn hundreds of nouns over years of training
(Pilley & Reid, 2011; Kaminski, Call, & Fischer, 2004). Of
course, this feat pales in comparison to human language
learning: infants begin producing words at 1 year, and by
the end of high school have command of 60,000 words,
conservatively (Bloom, 2000). However, both dogs and
infants have been shown to fast map: given a new word,
they will choose a new object over an object with a known
label, and retain the mapping weeks later (see Bloom,
2000). Fast mapping is a powerful ability for word learning,
but is it based on domain-general or domain-specific
learning mechanisms?

One approach to studying language acquisition views
word learning as a problem of induction with an enormous
hypothesis space, and proposes a number of constraints to
restrict the space (Markman, 1992). In this view, infants
generate hypotheses that are consistent with this set of
constraints and principles. The present paper is concerned
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with a subset of these principles that relate to how people
map new words to objects.

Mutual exclusivity (ME) is the assumption that every
object has only one name (Markman & Wachtel, 1988). A
fill-the-lexical gap bias, which causes children to want to
find a name for an object with no known name, has also
been proposed (Clark, 1983) and argued (Merriman and
Bowman, 1989). When given a set of familiar and
unfamiliar objects, it has been shown that 28-month-olds
assume that a new label maps to an unfamiliar object (e.g.,
Mervis & Bertrand, 1994). Similarly, the principle of
contrast states that an infant given a new word will seek to
attach it to an unlabeled object (Clark, 1983). Fill-the-gap,
ME, and contrast make many of the same predictions made
by the more general novel name-nameless category
principle (N3C), which states that novel labels map to novel
objects (Golinkoff, Mervis, & Hirsh-Pasek, 1994).

It is not our goal to explore the overlapping and nuanced
ways that these various principles interact. Indeed, we hope
to avoid this confusing plurality of explanations by showing
that many of the behaviors ascribed to these theories can be
explained by domain-general learning mechanisms
uncovered by studies of associative learning. Nor are we the
first to suggest that human language acquisition—as fast
and yet difficult as it is—can be explained with domain-
general learning mechanisms: Smith (2000) argued as much,
and much recent work in statistical learning (described
below) is motivated by this premise. Recent work has even
found that children show a 1-to-1 bias in domains other than
language: voices to faces (Moher, Feigenson, & Halberda,
2010) and actions to objects (Childers & Tomasello, 2003).
However, few direct analogies have been drawn between the
models and paradigms of word learning and associative
learning, but see Ramscar et al. (2010). After introducing
some associative learning paradigms and linking them to
word learning, we discuss how universal attentional biases
may account for many behaviors observed across domains.
Finally, we report a new empirical word learning study
using an associative learning highlighting design, and
explain the results with a word-learning model that has
competing attentional biases for familiarity and uncertainty.

Associative Learning

Associative learning paradigms typically present one or
more perceptual cues (e.g., objects, sounds), learners make a
response (e.g., a button press), and feedback is given (e.g.,
food, a shock). When one cue ¢, is paired with outcome o
on each trial, the resulting ¢;-o association is stronger than
q;-0 when two simultaneous cues {q,, g} predict o during
training; thus, ¢, is said to overshadow q; (Pavlov, 1927). A



reasonable way to explain overshadowing is that attention is
split between the two cues, and thus the associations ¢;-o
and g;-o grow more slowly than when ¢, appears alone.
Attention is also used to explain the blocking effect (Kamin,
1968), which can be induced using a design with two
training stages. In the early stage, cue ¢, is repeatedly paired
with outcome o, and in the late stage ¢g; and ¢, appear jointly
preceding o. The association between ¢, and o is found to be
much weaker than when only the late stage occurs. Thus ¢,
has been blocked by ¢,’s earlier association with o—much
like mutual exclusivity (ME) states that learners will not
map a second label (g;) to a known object (0). Learning
models, updating knowledge trial-to-trial, account for
blocking using selective attention to g,: since ¢, already
predicts o, there is no need to strengthen ¢»-o (e.g., Rescorla
& Wagner, 1972; Pearce & Hall, 1980). Is blocking found
in word-learning experiments? Can ME be thought of as
blocking? As it happens, two cross-situational word-
learning studies can be seen to address these questions.

Cross-situational Word Learning

A key challenge in early word learning is to deal with the
referential uncertainty intrinsic to complex scenes and
utterances. Recent research has focused on how regularities
in the co-occurrence of words and objects in the world can
significantly reduce referential ambiguity across situations.
Statistical word learning relies on two assumptions: 1) that
spoken words are often relevant to the current situation, and
2) that learners can remember to some degree the co-
occurrence of multiple words and objects in a scene. Thus,
as the same words and objects are observed in different
situations across time, people can learn the correct word-
object mappings.

In adult cross-situational learning studies (e.g., Yu &
Smith, 2007), participants are asked to learn the meaning of
alien words from a series of training trials, each of which
contains a few spoken words and a few objects. Although
each word refers to a particular onscreen object, the
intended referent is not indicated in any way, leaving
meanings ambiguous on individual trials. Ichinco, Frank,
and Saxe (2009) used a cross-situational word-learning task
in which learners are first exposed to 1-to-1 pairings on a
series of trials with four word-object pairs per trial. In the
late stage, after people had presumably learned some of the
mappings, a fifth object (or word, in another condition)
began to consistently co-occur with one of the early words
(or objects). The result was little learning of the association
between old word (or object) and new object (or word)
association, consistent with ME. However, this design can
be seen to closely match a blocking design (see Table 1),
with a few notable differences.

First, it is unclear whether words should be construed as
cues and objects as outcomes, or the reverse—an issue we
will return to. Second, a cross-situational trial has multiple
outcomes, unlike associative learning paradigms. Finally, no
trial-to-trial feedback is given, but the learner may generate
it on the basis of the preceding training trials. We contend
that none of these differences are a fundamental problem
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with seeing cross-situational learning as associative
learning. Indeed, if anything the learning problem in the real
world is more like cross-situational learning: with a
multitude of stimuli that may simultaneously serve as either
cues or outcomes for as many other stimuli, learners attempt
to associate correlated stimuli.

Training Stage | Ichinco etal., 2009 | Kamin, 1968
{W1, Wx, Wy, W, }-

Early {o1, 0x, 0y, 0,} qi-0
(W1, Wy, Wy, Wy -

Late {01, 02, O, Oy, 0.} {qi, q2}-0

Table 1: Comparison of the blocking paradigm (right) with
a cross-situational word learning paradigm (left). In both
paradigms, the late-stage stimulus (g, / 0,) is blocked from
becoming associated with the outcome (o / w;), despite
consistent co-occurrence in the late stage.

Thus, learners in the Ichinco et al. study may not learn the
extra association (w;-0,) because attention remains focused
on strengthening the still-present early-trained association
(w;-o0;). This attentional account is equivalent to the popular
account for blocking, and is corroborated by an earlier result
that defies ME: Yurovsky and Yu (2008) used a two-stage
cross-situational design much like Ichinco et al., but in the
late stage when adding a new stimulus to an existing
association, removed the old object (or word). Faced with a
word (w;) they have associated with o;, but now seeing o,
without o, repeatedly, people learned the association, but
also retained w;-o0; at test. Yurovsky & Yu’s learners cast
about for a new associate, unblocked by the presence of an
old associate to attend to—unlike in Ichinco et al.’s study.
In summary, by establishing an analogy of cross-situational
learning as a complex associative learning paradigm, we
found that two cross-situational studies can be explained
with a domain-general selective attention mechanism,
without recourse to a language-specific constraint such as
ME. To further examine the role of attention in cross-
situational learning, we do a word learning experiment using
a design that in associative learning yields the interesting
order effect of highlighting.

Experiment: Highlighting

Like blocking, highlighting is a learning order effect that
has been attributed to selective attention (Medin & Edelson,
1988; Kruschke, 1996). In an early stage of training, a cues
PE (Perfect Early) and / (Imperfect) jointly appear on each
trial, followed by outcome E (Early). In a late stage, cue /
appears with PL (Perfect Late), followed by outcome L.
Thus, [ imperfectly predicts both outcomes, having first
predicted E, and later L. On the other hand, PE perfectly
predicts E, and symmetrically, PL perfectly predicts L. As
depicted in Figure 1, learners show an order effect: PE and /
both become associated with E in the early stage, and then
PL becomes more strongly linked with L while [-PL
languishes. This is presumably because attention is shifted
away from /, since it already predicts £ in the early stage.



Formerly known as the inverse-base rate effect (note that /
is twice as frequent as PE or PL), Kruschke (2009)
presented a study with balanced frequency of the early and
late training stages and still found highlighting, lending
further credence to the attention account.

Early Late
w1 707
PE \ L) SPL O O 7
I PE 7 0 0
) E L
~ Outcomes

E L

Figure 1: The co-occurrences of cues and outcomes in the
highlighting design (right), and the estimated strength of
associations between each cue and outcome (left), shown by
the thickness of the lines.

Following a similar design, we use the Experiment to ask
1) whether highlighting occurs in a cross-situational
framework with no explicit feedback on each trial, and 2) if
words are cues and objects are outcomes, vice versa, or if
they are interchangeable. As shown in Figure 2, this is done
by making the cues in a highlighting design correspond to
either words or objects, resulting in 2 words (cues) and 1
object (outcome) per trial, or 2 objects (cues) and 1 word
(outcome) displayed per trial. Seeing a highlighting effect in
one condition and not the other may suggest one
correspondence over the other, whereas highlighting in both
conditions suggests that words and objects can act as either
cues or outcomes. Finally, finding no highlighting would
suggest that domain-specific mechanisms may be at work in
word learning.

Words as Cues (2 words, 1 object)

Early Late
Bosa Poma - 3 7 0 7
(D (2) 52 0 0 7
Manu =17 00
(3) 1 2 3
Obj 1 — Obj 3 Object

Objects as Cues (2 objects, 1 word)

Early Late
Obj 1 Obj 2 _03 0 7 7
52 0 0 0
Obj 3 =170 7
12 3
Plib(1) — Guma(3) Object

Figure 2: Highlighting designs in the Experiment (left), with
word x object co-occurrence matrices (right). In the words
as cues condition, 2 words and 1 object were given on each
trial (top), while 2 objects and 1 word were given in the
objects as cues condition (bottom).
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Subjects

Participants were 67 undergraduates at Indiana University
who received course credit for participating. None had
previously participated in cross-situational experiments.

Stimuli & Procedure

Twelve pseudowords and 12 objects were randomly drawn
from larger sets of stimuli, randomly paired, and split
between the two conditions. The pseudowords (words) are
phonotactically-probable in English (e.g., “bosa”), and were
spoken by a monotone, synthetic female voice. The objects
were photographs and drawings of uncommon objects (e.g.,
sculptures, specialty tools). Each training trial in the words
as cues condition consisted of one object and two spoken
words, while training trials in the objects as cues condition
had two objects visible while one word was spoken. In both
conditions, the object(s) remained visible for the duration of
the trial. Each trial began with 2s of silence before the first
1s word was heard. In the words as cues condition, the
second word was played after ls of silence. In both
conditions, the last word was followed by 3s of silence. In
total, each trial in the objects as cues condition lasted 6s and
trials in the words as cues condition lasted 7s.

Training for each condition consisted of 28 trials. The
highlighting structures shown in Figure 2 were replicated
within each condition: in words-as-cues, people heard six
words and saw four objects, while in objects-as-cues, people
heard four words and saw six objects. Knowledge was
assessed after the completion of each condition using 6AFC
testing: learners were asked to choose the best object for
each of the six words. That is, we are probing the
conditional probability objects, given a word. Note that in
words-as-cues, two of the six objects available at test had
not been seen during training, while in objects-as-cues, two
words were never heard. These were not removed to keep
the conditions symmetric, and in case systematic response
deviations were found. Words were tested in random order.
Note that the test in the words as cues condition corresponds
most directly to associative learning testing: participants are
given a cue (word) and asked to predict the outcome
(object). In the objects as cues condition, we are actually
asking learners to choose the best cue (object) when given
an outcome (word). Participants completed both conditions
in counterbalanced order.

Results & Discussion

Figure 3 displays the conditional probabilities of choosing
each object', given each word, and the corresponding
estimated relative strengths of each word-object association.
The results in both conditions exhibit all the characteristics
of highlighting: cue / is more strongly linked to £ than L,
and although PE-E and PL-L are both quite strong, PL-L is
stronger. In the words as cues condition, object o; (E) was

' As noted before, there were two highlighting replications in
each condition, so there were six objects available at test. Here we
have collapsed the two replications for ease of presentation, and
left out incorrect responses (e.g., choosing 04, 05, or 06 for wy, wy,
or ws3). The mean response probability for these cells is .08.



chosen significantly more than o3 (L; .51 vs. .25) for word
ws (I Xz(l,N:79) = 9.23, p<.01). In the objects as cues
condition, o5 (/) was chosen significantly more often for w;
(E) than w3 (L; .28 vs. .16; XZ(I,N:73) =6.04, p=.01). Thus,
the early association of / with E kept / from becoming
strongly associated with L—much like a mutual exclusivity
constraint would keep people from associating a second
word with an already-labeled object. Given words as cues, L
(03) was chosen more often for PL (w,) than E (0;) was
chosen for PE (o;; .82 vs. .69), though the difference was
not significant (x*(1,N=157) = 1.08, p=.30). Similarly, given
objects as cues, PL (0,) was chosen more often for L (w3)
than PE (0;) was chosen for E (wy; .71 vs. .60), but again
the difference was not significant (Xz(l,N:215) = 1.68,
p=20). Despite not being statistically significant’, these
conditional response rates match a highlighting result in
both cases: PL-L is learned faster (stronger) because little
attention is given to /-L, as cue [ is already associated with
E. In terms of word learning, this is much like the novel
name-nameless category principle (N3C; Golinkoff et al.,
1994): given a new object (or word—PL), it is reasonable to
associate this with a new word (or object—L), rather than a
word (or object—PFE) with an already-known associate (E).

Words as Cues (2 words, 1 object)

Early Late
Bosa 3 .51 .06 .25
(1) 22 08 .02
Manu =1 .69 .03 .06
1 2 3
Obj 1 Obj 3 Object
Objects as Cues (2 objects, 1 word)
Early Late
Obj 1 _3 03 .16
s2 .11 .14 .20
ObJ3 =1 60 .02 .28
1 2 3
Plib (1) -~ Guma (3) Object

Figure 3: Collated response probabilities (p(o|w)) for the
two conditions in the Experiment (right). Both conditions
show evidence of highlighting, with estimated association
strengths shown by thickness of cue-outcome links (left).

In summary, the Experiment shows that highlighting can
take place in a cross-situational word learning context, both
with objects as cues and words as outcomes, and vice versa.
The selective attention account of highlighting holds that the
early association of PE and / with E reduces attention to the

? Testing the relative strength of PE-E and PL-L would ideally
be done with a trial that presents both cue PE and PL, and asks
learners which outcome is preferred. However, a test of this sort is
difficult to do in a paradigm with spoken words, and we instead
chose to match previous word learning paradigms for consistency.
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later co-occurrence of / with L, thereby leaving PL-L to gain
more attention (i.e., strength). We contend that this domain-
general account explains word-learning behavior not only in
this Experiment, but in many situations that have motivated
verbal theories of language-specific constraints. In the next
section, we introduce a version of a recent associative model
of word learning that shows what sort of attentional biases
can account for highlighting—and word learning.

Model

Familiarity and novelty are among the simplest ways to be
aware of one’s knowledge state about stimuli, and both
biases have been observed in infants—inferred from their
influence on attention (for an overview, see Hunter & Ames,
1988). Kachergis, Yu, and Shiffrin (2012) introduced an
associative model with these biases, and showed that it
accounts for fast mapping in adults, as well as gradual
relaxation of ME with further training. The model assumes
that word-object pairings on each trial compete for attention
(i.e., associative strength). Attention is preferentially given
to word-object pairings that are already associated by
previous co-occurrence. Such a mechanism naturally
exhibits blocking, since after the early association of ¢; with
o, it will continue to strengthen ¢;-o in the late stage, barely
attending ¢,-o. However, the model’s bias for familiar
pairings competes with a bias to attend to stimuli with no
strong associate (e.g., a novel stimulus). This bias can help
explain behaviors covered by language-learning principles
such as contrast and N3C. We describe the model below,
and show how it accounts for highlighting using competing
attention for familiar pairings and uncertain stimuli.
Formally, let M be an m word x m object association
matrix that is arbitrarily large (here, m=100). Cell M,,, is the
strength of association between word w and object o.
Strengths are subject to forgetting (i.e., general decay) but
are augmented by viewing the particular stimuli. Before the
first trial, M has no information: each cell is set to 1/m. On
each training trial ¢, a subset S of words and objects appear.
Association strengths are allowed to decay, and on each
new trial a fixed amount of associative weight, y, is
distributed among the associations between words and
objects, and added to the strengths. The rule used to
distribute ) (i.e., attention) balances a preference for
attending to unknown stimuli with a preference for
strengthening already-strong associations. When a word and
referent are repeated, extra attention (i.e., x) is given to this
pair—a bias for prior knowledge. Pairs of stimuli with no or
weak associates also attract attention, whereas pairings
between uncertain objects and known words, or vice versa,
do not attract much attention. To capture stimulus
uncertainty, we allocate strength using entropy (H), a
measure of uncertainty that is 0 when the outcome of a
variable is certain (e.g., a word appears with one object, and
has never appeared with any other object), and maximal
(logon) when all of the n possible object (or word)
associations are equally likely (e.g., when a stimulus has not
been observed before, or if a stimulus were to appear with



every other stimulus equally). In the model, on each trial the
entropy of each word (and object) is calculated from the
normalized row (column) vector of associations for that
word (object), p(M,,.), as follows:

T

H(My,) ==Y p(Muy,;) - log(p(Mu,))
1=1
The update rule for adjusting and allocating strengths for
the stimuli presented on a trial is:

- MEWHE) g
S e Sog HTHE) N

w,o
In this equation, « is a parameter governing forgetting, y
is the weight being distributed, and A is a scaling parameter
governing differential weighting of uncertainty and prior
knowledge (familiarity). As A increases, the weight of
uncertainty (i.e., the exponentiated entropy term, which
includes both the word and object’s association entropies)
increases relative to familiarity. The denominator
normalizes the numerator so that exactly x associative
weight is distributed among the potential associations on the
trial. For stimuli not on a trial, only forgetting operates.
After training, for each word the model’s choice
probabilities on k alternative objects is determined by the
softmax choice rule (Bridle, 1990):
_ _cmp(@Mu,)

>k exp(dMu,o0y,)
where ¢ is a scaling parameter that determines the level of
discrimination the model shows: ¢ values above 1 amplify
small differences in association weights.

The model was trained on the same 28 trials of word-
object co-occurrences experienced by participants in the two
conditions, and the four parameters were fit to minimize the
discrepancy between the model’s predicted response rates
and the 36 human choice proportions for each condition. In
the words as cues condition, the best-fitting parameters
(=11, A=46, o=1, ¢=6.16) achieved an R’ of 984
(MSE=9.5¢-4). In the objects as cues condition, the best-
fitting parameters (}=.12, A=.37, a=1, ¢=6.16) achieved an
R’ of .884 (MSE=.0044). Both fits are quite good, and the
best-fitting parameters are close in value. With o=1,
forgetting was not operating; perhaps memory is not taxed
by such a small number of words and objects—cross-
situational studies typically have more than a dozen pairs.
With ¢=6.16, the model showed good discrimination at test.

Shown in Figure 4, the model’s response proportions are
close to the data and fit qualitatively well, showing the
highlighting effect in both conditions. How does the model
do this? In the first stage of words-as-cues, when w; (PE)
and w; (/) co-occur with o; (E), attention is split between
the associations w;-0; and w;-01, and the uncertainty about
all three stimuli drops as knowledge grows. Moving to the
second stage, when w, (PL) and w3 (/) appear with o3 (L),
w,-03 demands more attention than ws-03 because w; has
lower uncertainty from early training, while w, is novel and
has no associates. During the second stage, w;-0; thus gets

Mw,o = aMw,o +

plolw)
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more attention than w;-03;, and becomes relatively stronger
than the early wj-o; association. Thus, using competing
biases for uncertain stimuli and familiar associations, the
model mimics the highlighting effect shown by people.

Words as Cues (2 words, 1 object)

Model Human
3 53 .05 .26 3 .51 .06 .25
22 04 04 2 08 .02
=1 68 .06 .06 1 .69 .03 .06
1 2 3 1 2 3
Object
Objects as Cues (2 objects, 1 word)
Model Human
3 .03 .20 3 .03 .16
%2 A7 .17 .20 2 .11 .14 .20
31 .44 03 .40 1 .60 .02 .28
1 2 3 1 2 3
Object

Figure 4: Human response probabilities (right) and model
response probabilities (left) closely match in the words as
cues condition (top), and match well with objects as cues,
showing highlighting in both cases.

Intriguingly, the model shows an asymmetry between
conditions that is less striking in humans. With objects as
cues, when given w; (E), the model shows less bias towards
0; (PE) than humans do: people choose o, twice as often as
03 (1), whereas the model chooses 0, only a bit more than o0;.
Humans may show a stronger bias for o, (PE) because they
have retrospectively decreased the association between 03
and w; once o3 began appearing with w;. Another
possibility is that people use uncertainty at test: o (PE) has
lower entropy than o3 (/) since it only occurred with wy.
With words as cues, both objects have equal entropy. This
asymmetry deserves future study, and may yet leave room
for language-specific constraints.

General Discussion

We have presented an analogy between cross-situational
word learning and associative learning, shown how a study
of the former (Ichinco et al., 2009) is a blocking design, and
suggested the result is straightforwardly explained with the
same domain-general attention mechanism. As evidence that
attention creates order effects in word learning, we found
highlighting—an associative learning effect ascribed to
attention (Medin & Edelson, 1988; Kruschke, 1996)—in a
cross-situational word learning experiment. Moreover, we
showed that an associative word-learning model with
competing attentional biases for familiarity and uncertainty
(Kachergis, Yu, & Shiffrin, 2012) accounts for these results.

By linking word learning to associative learning, as
suggested by Smith (2000), we may find that the plurality of
overlapping language-specific constraints (e.g., ME, N3C,
contrast, and fill-the-gap) are unnecessary to explain many



language learning behaviors. Instead, we predict that a more
parsimonious explanation will emerge, built upon a
foundation of domain-general mechanisms. Language-
specific principles and constraints may yet exist, but we
should first see how far more universal mechanisms take us.

Moreover, note that this bridge between domains is two-
way: the present study used what was originally a word-
learning model to explain highlighting. Although our
model’s attentional account is similar to the account given
by other learning models (for an overview see Kruschke,
2011), other models do not use competing uncertainty and
familiarity biases to shift attention. Instead, many models
use a measure of prediction error to determine the rate of
association change (e.g., Rescorla & Wagner, 1972; Pearce
& Hall, 1980). In language, objects produce words in
speakers (“Watch out—snake!”), but words predict objects
for listeners. For language learners, we have shown that
both directions of training produce a highlighting effect,
captured by our model’s symmetric associations and simple
biases without generating predictions. These mechanisms,
based on some of the simplest cues of knowledge state, may
also fare well in other associative learning paradigms—in
and out of a word-learning context.

Thus, future work in both domains can benefit from an
exchange of ideas to wuncover commonalities and
differences, and to flesh out and refine verbal theories. We
hope that others will find it enlightening to explore the link
between associative learning, language acquisition, and
other domains.
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