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Abstract

We present a laboratory study investigating the generalization
of learning across two games of strategic interaction. The
participants’ performance was higher when a game was
played after, as compared to before, a different game. We
found that the generalization of learning from one game to
another was driven by both surface and deep similarities
between the two games. We developed a computational
cognitive model to investigate mechanisms of generalization.
Model development highlighted some of the challenges of
cognitive modeling in general and modeling strategic
interaction in particular. We found that development of
reciprocal trust was a key factor that explained the observed
generalization effect.

Keywords: Cognitive modeling; Game theory; Strategic
interaction; Generalization of learning.

Introduction and Background

Games of strategic interaction have successfully been used
to model various real-world phenomena. For example, the
game Prisoner’s Dilemma has extensively been used as a
model for real-world conflict and cooperation (Rapoport,
Guyer, & Gordon, 1976). There has been a recent tendency
toward studying ensembles of games, as most real-world
“games” rarely occur in isolation, more often they take
place either concurrently or in sequence (Bednar, Chen,
Xiao Liu, & Page, in press). For instance, when games are
played in sequence, an effect known as “spillover of
precedent” may occur: a precedent of efficient play in a
game can be transferred to the next game (e.g., Knez &
Camerer, 2000). We refer to this effect as generalization of
learning in games of strategic interaction. This effect has

important practical implications. For example, most
organizations employ training exercises to develop
cooperation and trust among their employees. The

assumption is that what is learned in a very specific, ad-hoc
exercise generalizes to organizational life once the training
is over.

Research on what factors cause generalization of learning
in games of strategic interaction can be summarized as
follows: (1) Bednar and colleagues (in press) use the
concept of entropy or strategic uncertainly to explain when
learned behavior is likely to spillover from one game to
another. They suggest that prevalent strategies in games
with low entropy are more likely to be used in games with
high entropy, but not vice versa (Bednar et al., in press). In
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other words, individuals develop strategies for easier games
and apply them to more complex games. (2) Another
explanation says that expecting others to do what they did in
the past (and expecting that they will think you will do what
you did in the past, etc.) can coordinate expectations about
which of many equilibria will happen (Devetag, 2005). (3)
Finally, Knez and Camerer (2000) found that generalization
of learning across games strongly depended on the presence
of superficial, surface similarity (what they call ‘descriptive’
similarity) between the two games. When the games
differed in (what we call) surface characteristics (e.g.,
actions were numbered differently in the two games)
transfer of learning from one game to another did not occur.
This result is at odds with what is known from the literature
on individual problem solving: generalization of learning is
facilitated by our ability to perceive abstract, deep-level
similarities, and it can be impeded by the presence of
superficial, surface similarities (Holyoak & Thagard, 1995).

In this paper we present an experiment aimed at studying
generalization of learning in games of strategic interaction.
We want to understand when, why, in which direction, and
under what conditions generalization occurs. We also
present a computational cognitive model as an aid in our
attempt to explain the empirical results and settle any
potential inconsistencies in the literature.

The next section introduces the experiment and discusses
its results. Then the cognitive model is described and its
correspondence with the human data is discussed. The paper
ends with a general conclusion.

Experiment

Due to space limitation, only a brief description of the
experiment is given here. A more detailed description was
presented elsewhere (Juvina, Saleem, Gonzalez, & Lebiere,
submitted). We selected two of the most representative
games of strategic interaction: Prisoner’s Dilemma (PD) and
the Chicken Game (CG). They are both mixed-motive non-
zero-sum games that are played repeatedly. Players can
choose to maximize short- or long-term payoffs by engaging
in cooperation or defection and coordinating their choices
with each other. These features give these games the
strategic dimension that makes them so relevant to real-
world situations (Camerer, 2003). What makes PD and CG
particularly suitable for this experiment is the presence of
theoretically interesting similarities and differences,



providing an ideal material for studying generalization of
learning. Table 1 presents the payoff matrices of PD and
CG.

Table 1: Payoff matrices of PD and CG.

PD A B CG A B
A | -1,-1 | 10,10 A | -10-10 | 10,-1
B | -10,10 | 1.1 B | -1,10 1,1

Both PD and CG have two symmetric (win-win and lose-
lose) and two asymmetric (win-lose and lose-win)
outcomes. Besides these similarities there are significant
differences between the two games. In CG, either of the
asymmetric outcomes is more effective in terms of joint
payoffs than the [1,1] outcome. This is not the case in PD
where an asymmetric outcome [10,-10] is inferior in terms
of joint payoffs to the win-win outcome [1,1]. Mutual
cooperation in CG can be reached by a strongly optimal
strategy (i.e., alternation of [-1,10] and [10,-1]) or a weakly
optimal strategy [1,1]. The optimal strategy in PD
corresponds to the weakly optimal strategy in CG
numerically, while the strongly optimal strategy of
alternation in CG shares no surface-level similarities with
the optimal strategy in PD. Thus, although mutual
cooperation corresponds to different choices in the two
games (i.e., surface-level dissimilarity), they share a deep-
level similarity in the sense that mutual cooperation is, in
the long run, superior to competition in both games. This
provides a perfect test for our first hypothesis stating that

individuals who have learned how to find an optimal
strategy in one game will be more likely to find an optimal

strategy in the next game even if those optimal strategies are
different across the two games.

In both PD and CG, learning must occur not only at an
individual level but also at a dyad level. If learning occurs
only in one of the players in a dyad, the outcomes are
disastrous for that player, because the best solution also
bears the highest risk. For example, if only one player
understands that alternating between the two moves is the
optimal solution in CG, the outcome for that player can be a
sequence of -1 and -10 payoffs. Only if both players
understand the value of alternation and are willing to
alternate, the result will be a sequence of 10 and -1 payoffs
for each player, which in average gives each player a payoff
of 4.5 points per round. Thus, the context of
interdependence makes unilateral individual learning not
only useless but also detrimental. The two players must
jointly learn that only a solution that maximizes joint payoff
is viable long term. However, this solution carries the most
risk and thus it is potentially unstable in the long term. To
ensure that the optimal solution is maintained from one
round to another, there must exist a mechanism that
mitigates the risk associated with this solution. It has been
suggested that trust relations are self-sustaining once they
have been developed (Hardin, 2002). In situations where
there are benefits to individuals that can only be generated
through mutual trust, each individual has an incentive to
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maintain the relation. A trust relation develops trough
gradual risk-taking and reciprocation (Cook, Yamagishi,
Cheshire, Cooper, Matsuda, & Mashima, 2005). In turn, as
trust develops, risk is reduced and the trust relation becomes
more stable. Our second hypothesis states that participants
develop reciprocal trust throughout the first game, which
facilitates learning of the optimal solution in the second
game.

Participants and Design

One hundred and twenty participants were paired with
anonymous partners (leading to 60 pairs) and were asked to
play the two games in sequence. The 60 pairs were
randomly assigned to two conditions defined by the order in
which the games were played: PD-CG and CG-PD.
Participants played 200 unnumbered rounds of each game.
At the end of each game, participants completed a five-item
questionnaire assessing: how trustful they were of the
opponent; how trustful of them the opponent was; how fair
they thought the opponent’s actions were; how fair the
participants’ actions were towards their opponents; and how
satisfied they were with the overall outcome of the game.

1 . .
Results” and Discussion

To study generalization of learning across the two games,
we analyzed the outcomes of a game according to when it
was played. We also analyzed the round-by-round dynamics
of these outcomes. The statistical significance of the
observed effects was tested with the aid of Linear Mixed
Effects analysis (/mer analysis from the LME4 package in
R). This analysis was preferred instead of the classical
analysis of variance (ANOVA) because the data violated the
assumption of normality.

Similarities and differences The frequencies of the most
relevant outcomes (i.e., the two symmetric ones and an
alternation of the two asymmetric ones) are displayed in
Figure 1 on a round-by-round basis. The first thing to notice
is how different the two games are from each other from a
behavioral perspective: the [1,1] outcome increases in PD
but decreases in CG; alternation is prominent in CG but
almost nonexistent in PD; and the mutually destructive
outcome ([-1,-1] in PD and [-10,-10] in CG) is more
frequent in PD than in CG. However, in spite of these
apparent differences, the two games are similar in the sense
that mutual cooperation emerges as the preferred solution
and it becomes more and more stable over time. These
patterns are in line with previous findings (e.g., Rapoport et
al., 1976). Given this deep-level similarity, we expect
players to be able to generalize their learning of the optimal
strategy across the two games, although surface similarities
might impede this process (Holyoak & Thagard, 1995).
Since we ran the games in both orders (i.e., PD-CG and CG-

! Only a summary of the results is provided here as a context for
understanding the cognitive model. A more detailed presentation
of the results was given in Juvina et al., submitted.



PD), we can also test whether generalization occurs only in
one direction, from low to high entropy, as suggested by
Bednar and colleagues (in press).

PD-CG: Human data
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Figure 1: Frequencies of the most relevant outcomes in
PD and CG by order (PD-CG on top and CG-PD on bottom)
and round averaged across all the human participants.

Generalization Driven by Surface Similarities If learning
across games is driven by surface similarities, one would
expect the strategy that is learned in the first game to be
applied in the second game as well, even though it may not
be appropriate for the second game. This is indeed the case
with regard to the [1,1] outcome in the PD-CG order:
players learn that [1,1] is long-term optimal in PD and they
are more likely to achieve it in the subsequent CG, even
though it is only weakly optimal in CG. A LME model with
occurrence of [1,1] as a dependent variable (binomial
distribution), order, round, and their interaction as fixed
factors, and participant as a random factor was used to test
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the observed effects. There was a main effect of order (z =
2.21, p = 0.027) and a main effect of round (z = -8.171, p <
0.001); the interaction between order and round was also
significant (z = -7.196, p < 0.001) indicating that the main
effect of order is larger at the beginning of the game and it
progressively becomes smaller.

In the CG-PD order, if generalization of learning across
games were driven by surface similarities, one would expect
the strategy of alternating between the two asymmetrical
outcomes to be attempted in the second game as well, at
least in the beginning of the game. The main effect of order
was non-significant (z = 1.476, p > 0.10), suggesting that the
strongly optimal strategy in CG (alternation) was not
transferred as such (based on surface similarities) to PD.
There remains the possibility that the [1,1] outcome was
transferred as such from CG to PD. Even though the [1,1]
outcome is only weakly optimal in CG, it was selected with
relatively high frequency (see Figure 1) and it might have
been considered optimal by some participants. We will
revisit this point in the section on combined effects of
surface and deep-level similarities.

Generalization Driven by Deep-Level Similarities If
learning across games was driven by deep-level similarities,
one would expect learning the optimal strategy in the first
game to increase the probability of learning the optimal
strategy in the second game, even though there is no surface
similarity between these strategies. These strategies ([1,1] in
PD and alternation in CG) are similar only on an abstract,
deep level: they both aim at maximizing joint payoff in a
sustainable way, which in these two games is realistically
possible only if the two players make (approximately) equal
payoffs on a long run. On a surface level, these two
strategies are very different. The [1,1] strategy in PD
requires that players make the same move at each trial and
they do not switch to the opposite move. In contrast, the
alternation strategy in CG requires that players make
opposite moves at each round and they continuously switch
between the two moves. A LME model with occurrence of
the alternation outcome in CG as a dependent variable,
order, round and their interaction as fixed factors, and
participant as a random factor revealed a main effect of
order (z = -2.014, p = 0.044) indicating a higher level of
alternation when CG was played after PD, a main effect of
round (z = 16.205, p < 0.001) indicating that more and more
pairs of participants discovered the alternation strategy as
the game unfolded, and a significant interaction between
order and round (z = 8.5, p < 0.001) indicating that the
optimal strategy was learned faster when CG was played
second. The same analysis was conducted for the occurrence
of the [1,1] outcome in PD and it revealed a main effect of
order (z = -4.340, p < 0.001) indicating that more pairs of
participants discovered the optimal strategy in PD when it
was played after CG, a main effect of round (z = 10.149, p <
0.001) indicating that more and more pairs of participants
found the optimal strategy as the game unfolded, and a
significant interaction between order and round (z = 12.689,



p < 0.001) indicating that the optimal strategy reached a
ceiling when PD was played after CG, whereas it increased
continuously when PD was played before CG. These results
supported our first hypothesis. Specifically, learning the
optimal strategy in the first game increased the probability
of learning the optimal strategy in the second game, even
though the optimal strategies were different in the two
games. This generalization effect was significant in both
directions (PD-CG and CG-PD) suggesting that entropy
(Bednar et al., in press) has little explanatory relevance. If
entropy were the causing factor, generalization would have
only occurred in one direction.

Combined Effects of Surface and Deep Similarities In the
case of deep-level generalization, the main effect of order
was smaller in magnitude for CG (z = -2.014, p = 0.044)
than for PD (z = -4.340, p < 0.001). It seems as if CG has a
stronger impact on PD than vice versa. A possible
explanation for this difference is based on how surface and
deep-level similarities combine with each other to drive
generalization of learning across games. They may have
congruent or incongruent effects. Thus, in the PD-CG order,
surface and deep-level similarities act in a divergent,
incongruent way: surface similarity makes it more likely
that the [1,1] outcome is selected whereas deep-level
similarities make it more likely that the alternation outcome
is selected. In other words, generalization based on surface
similarity interferes with generalization based on deep-level
similarity. In contrast, in the CG-PD order, both types of
similarities act in a convergent, congruent way: they both
increase the probability that the [1,1] outcome is selected.
There is no impeding effect of surface similarity on PD
because there is no optimal strategy in CG that is similar
enough to a non-optimal or sub-optimal strategy in PD. The
impeding and/or enabling effects of surface similarities on
deep-level generalization are revisited in the modeling
section.

Reciprocal Trust In addition to game choices, we analyzed
the debriefing questionnaires that were administered at the
end of each game. Since the answers to these questions were
highly correlated with each other for any one individual
participant, we averaged them in one composite variable
that we call Reciprocal Trust. Since the debriefing questions
were administered twice (at the end of each game) we refer
to them as T1 and T2. We calculated correlations between
these two trust variables and the variables indicating mutual
cooperation in the two games. Spearman’s rho coefficient
was used for correlations because the data failed to meet the
normality assumption. We found that the more frequent
mutual cooperation was in the first game the more likely the
players were to rate each other as trustworthy at T1 (r =
0.75, p < 0.001 for PD and » = 0.42, p < 0.001 for CG). In
addition, the more trustworthy players rated each other at
T1, the more likely they were to enact mutual cooperation in
the second game (r = 0.28, p = 0.03 for CG and r=0.47, p <
0.001 for PD). Finally, mutual cooperation in the second
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game predicted high levels of trust at T2 (» = 0.67, p < 0.001
for CG and r = 0.88, p < 0.001 for PD). As expected, the
level of reciprocal trust increased from T1 to T2 (meanr; =
11.8, meanr, = 14.1, ¢ -3.247, p = 0.001). These
correlations between trust and the frequency of mutual
cooperation corroborate our second hypothesis. They
suggest that generalization of learning driven by deep-level
similarity is facilitated by development and maintenance of
reciprocal trust. This finding will be essential for model
development.

A cognitive model of generalization of learning

Modeling generalization of learning across games of
strategic interaction provides an opportunity to address
some of the ongoing challenges of computational cognitive
modeling. Three of these challenges are particularly relevant
here and are described below as the model is introduced.
The model is developed in ACT-R and it will be made
freely available to the public on the ACT-R website.

Interdependence

In games of strategic interaction, players are aware of each
other and their interdependence. In a previous study we
showed that game outcomes were influenced by players’
awareness of interdependence. In PD, the more information
the two players in a dyad had about each other’s options and
payoffs the more likely they were to establish and maintain
mutual cooperation (Martin, Gonzalez, Juvina, & Lebiere,
submitted). Consequently, a cognitive model playing against
another cognitive model in a simultaneous choice paradigm
needs to develop an adequate representation of the
opponent. We use instance-based learning (IBL) and
sequence learning (SL) (Gonzalez, Lerch, & Lebiere, 2003)
to ensure that the opponent is dynamically represented as
the game unfolds. Specifically, at each round in the game an
instance (snapshot of the current situation) is saved in
memory. The instance contains the previous moves of the
two players and the opponent’s current move. Saved
instances are used to develop contextualized expectations
about the opponent’s moves based on ACT-R’s memory
storage and retrieval mechanisms (Anderson, 2007).
Expectations can explain some of the spillovers across
games (Devetag, 2005).

Generality

Before one attempts to build a model of generalization of
learning across two games, one needs to have a model that
is able to account for the human data in both games.
Although by and large cognitive models are task-specific,
there is a growing need to develop more general, task-
independent models and there are a few precedents: Lebiere,
Wallach, and West (2000) developed a model of PD that
was able to account for human behavior in a number of
other 2X2 games; and Salvucci (under revision) developed a
“supermodel” that accounts for human data in seven

2 http://act-r.psy.cmu.edu/



different tasks. We build upon these precedents of generality
by developing a single model to account for round-by-round
human data in both PD and CG. We achieve this generality
by using instance-based learning for opponent modeling (as
described in the previous section) and reinforcement
learning for action selection. Both instance-based learning
and reinforcement learning are very general learning
mechanisms that can produce different results depending on
their input. Specifically, at each round in the game, the
model predicts the opponent’s move based on the
opponent’s past behavior and selects its own move based on
the utilities of its own past moves in the current context. The
input that the model receives as it plays determines the
model’s behavior. The input is represented by opponent’s
move, own move, and the payoffs associated with these
moves.

An important question is what constitutes the reward from
which the model learns the utilities of its actions (moves).
Players may try to maximize their own payoff, the
opponent’s payoff, the sum of the two player’s payoffs, the
difference, etc. Thus, a large number of reward structures
can be imagined. A complicating assumption is that the
reward structure might change as the game unfolds
depending on the dynamics of the interaction between the
two players. This indeed seems to be the case here, as we
have realized after a large number of model explorations: no
single preset reward structure is sufficient to account for the
human data. One could try to computationally explore the
space of all possible reward structures and their
combinations to find the one that best fit the human data,
but the value of this approach is questionable, because it
may lead to a theoretically opaque solution. Instead, we
chose to employ a theoretically guided exploration that
drastically reduces the number of possible reward structures
and, more importantly, gives us a principled way to describe
the dynamics of players’ motives as the game unfolds (see
its description in the next section).

Generalization of learning

When the model relies only on the two learning mechanisms
described above (i.e., instance-based learning and
reinforcement learning) it is able to only account for the
generalization driven by surface similarities. Thus, the
opponent is expected to make the same move in a given
context as in the previous game. Similarly, an action that
has been rewarded in the first game tends to be selected
more often in the second game. It is impossible in this
framework to account for generalization driven by deep-
level similarities. For example, if the opponent used to
repeat move B when it was reciprocated in PD, there is no
reason to switch to alternation between A and B when none
of these moves are reciprocated in CG. Moreover, learning
within a game may in fact hinder generalization of learning
across games if surface similarities are incongruent with the
optimal solution in the target game. To find a solution to the
deep generalization problem, we need to return to a
theoretical and empirical analysis of the two games.
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As mentioned in the introduction, in both PD and CG the
long-term optimal solution bears the highest risk and, thus,
it is unstable in the absence of reciprocal trust. We indeed
found that self-reported trust increases after game playing
and it positively correlates with the optimal outcome. It may
well be that trust explains the deep-level generalization of
learning across games. Players learn to trust each other and
this affects their reward structure.

Recent literature on trust (e.g., Castelfranchi & Falcone,
2010) suggests that trust is essentially a mechanism that
mitigates risk and develops through risk-taking and
reciprocity. Inspired by this literature, we added a “trust
accumulator” to our model — a variable that increases when
the opponent makes a cooperative (risky) move and
decreases when the opponent makes a competitive move. In
addition, a variable called “willingness to invest in trust”
was necessary to overcome situations in which both players
strongly distrust each other and persist in a mutually
destructive outcome, which further erodes their reciprocal
trust, and so on. In such situations, the empirical data shows
that players make attempts to develop trust by gradual risk-
taking. When these attempts are reciprocated, trust starts to
re-develop. In the absence of reciprocation these attempts
are discontinued. The willingness to invest in trust increases
with each mutually destructive outcome and decreases with
each attempt to cooperate that is not reciprocated.

The variables “trust accumulator” and “willingness to
invest in trust” are used to determine the dynamics of the
reward structure. They both start at zero. When they both
are zero or negative, the two players act selfishly by trying
to maximize the difference between their own payoff and
the opponent’s payoff. This quickly leads to the mutually
destructive outcome, which decreases trust but increases the
willingness to invest in trust. When the latter is positive, a
player acts selflessly, trying to maximize the opponent’s
payoff. This can lead to mutual cooperation and
development of trust or players may relapse into mutual
destruction. When the trust accumulator is positive, a player
tries to maximize joint payoff and avoid exploitation. Thus,
the model switches between three reward functions
depending on the dynamics of trust between the two players.
This mechanism provides a principled solution to the
problem of selecting the right reward structure and in the
same time solves the generalization problem: due to
accumulation of trust in the first game, the model employs a
reward structure that is conducive to the optimal solution
and thus better performance in the second game.

Modeling results

A cognitive model incorporating the principles described
above was developed and fit to the human data presented in
the previous section. Fitting the model to the human data
was done manually by varying a number of parameters (of
which some are standard in the ACT-R architecture and
others were introduced as part of the trust mechanism) and
trying to increase correlation (r) and decrease root mean
square deviation (RMSD) between model and human data.



The results of the current best model (» = 0.89, RMSD =
0.09) are presented in Figure 2.
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Figure 2: Results of model simulation.

Overall, the model matches the trends in the human data
reasonably well (compare to Figure 1). More importantly,
the generalization effects are also accounted for.

Discussion and Conclusion

We found that generalization of learning across two games
of strategic interaction is driven by deep-level similarities
between the two games. Surface similarities may facilitate
or hinder generalization depending on whether they are
congruent or incongruent with the optimal solution. We
used one cognitive model to account for human data in both
games. This model helped to explain the observed
generalization effect: reciprocal trust was necessary to
mitigate the risk associated with the long-term optimal
solution. We can conclude that some of the factors
suggested in the literature are not necessary (entropy,

526

cognitive load) or insufficient (expectations, surface
similarities), while others are essential (deep-level similarity
and reciprocal trust) for generalization of learning in games
of strategic interaction.
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