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Abstract 

We present a laboratory study investigating the generalization 
of learning across two games of strategic interaction. The 
participants’ performance was higher when a game was 
played after, as compared to before, a different game. We 
found that the generalization of learning from one game to 
another was driven by both surface and deep similarities 
between the two games. We developed a computational 
cognitive model to investigate mechanisms of generalization. 
Model development highlighted some of the challenges of 
cognitive modeling in general and modeling strategic 
interaction in particular. We found that development of 
reciprocal trust was a key factor that explained the observed 
generalization effect.  

Keywords: Cognitive modeling; Game theory; Strategic 
interaction; Generalization of learning. 

Introduction and Background 
Games of strategic interaction have successfully been used 
to model various real-world phenomena. For example, the 
game Prisoner’s Dilemma has extensively been used as a 
model for real-world conflict and cooperation (Rapoport, 
Guyer, & Gordon, 1976). There has been a recent tendency 
toward studying ensembles of games, as most real-world 
“games” rarely occur in isolation; more often they take 
place either concurrently or in sequence (Bednar, Chen, 
Xiao Liu, & Page, in press). For instance, when games are 
played in sequence, an effect known as “spillover of 
precedent” may occur: a precedent of efficient play in a 
game can be transferred to the next game (e.g., Knez & 
Camerer, 2000). We refer to this effect as generalization of 
learning in games of strategic interaction. This effect has 
important practical implications. For example, most 
organizations employ training exercises to develop 
cooperation and trust among their employees. The 
assumption is that what is learned in a very specific, ad-hoc 
exercise generalizes to organizational life once the training 
is over.      

Research on what factors cause generalization of learning 
in games of strategic interaction can be summarized as 
follows: (1) Bednar and colleagues (in press) use the 
concept of entropy or strategic uncertainly to explain when 
learned behavior is likely to spillover from one game to 
another. They suggest that prevalent strategies in games 
with low entropy are more likely to be used in games with 
high entropy, but not vice versa (Bednar et al., in press). In 

other words, individuals develop strategies for easier games 
and apply them to more complex games. (2) Another 
explanation says that expecting others to do what they did in 
the past (and expecting that they will think you will do what 
you did in the past, etc.) can coordinate expectations about 
which of many equilibria will happen (Devetag, 2005). (3) 
Finally, Knez and Camerer (2000) found that generalization 
of learning across games strongly depended on the presence 
of superficial, surface similarity (what they call ‘descriptive’ 
similarity) between the two games. When the games 
differed in (what we call) surface characteristics (e.g., 
actions were numbered differently in the two games) 
transfer of learning from one game to another did not occur. 
This result is at odds with what is known from the literature 
on individual problem solving: generalization of learning is 
facilitated by our ability to perceive abstract, deep-level 
similarities, and it can be impeded by the presence of 
superficial, surface similarities (Holyoak & Thagard, 1995).  

In this paper we present an experiment aimed at studying 
generalization of learning in games of strategic interaction. 
We want to understand when, why, in which direction, and 
under what conditions generalization occurs. We also 
present a computational cognitive model as an aid in our 
attempt to explain the empirical results and settle any 
potential inconsistencies in the literature.            

The next section introduces the experiment and discusses 
its results. Then the cognitive model is described and its 
correspondence with the human data is discussed. The paper 
ends with a general conclusion.   

Experiment  
Due to space limitation, only a brief description of the 
experiment is given here. A more detailed description was 
presented elsewhere (Juvina, Saleem, Gonzalez, & Lebiere, 
submitted). We selected two of the most representative 
games of strategic interaction: Prisoner’s Dilemma (PD) and 
the Chicken Game (CG). They are both mixed-motive non-
zero-sum games that are played repeatedly. Players can 
choose to maximize short- or long-term payoffs by engaging 
in cooperation or defection and coordinating their choices 
with each other. These features give these games the 
strategic dimension that makes them so relevant to real-
world situations (Camerer, 2003). What makes PD and CG 
particularly suitable for this experiment is the presence of 
theoretically interesting similarities and differences, 
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providing an ideal material for studying generalization of 
learning. Table 1 presents the payoff matrices of PD and 
CG.  

Table 1: Payoff matrices of PD and CG.  
 

PD A B CG A B 
A -1,-1 10,-10 A -10,-10 10,-1 
B -10,10 1,1 

 

B -1,10 1,1 
 
Both PD and CG have two symmetric (win-win and lose-
lose) and two asymmetric (win-lose and lose-win) 
outcomes. Besides these similarities there are significant 
differences between the two games. In CG, either of the 
asymmetric outcomes is more effective in terms of joint 
payoffs than the [1,1] outcome. This is not the case in PD 
where an asymmetric outcome [10,-10] is inferior in terms 
of joint payoffs to the win-win outcome [1,1]. Mutual 
cooperation in CG can be reached by a strongly optimal 
strategy (i.e., alternation of [-1,10] and [10,-1]) or a weakly 
optimal strategy [1,1]. The optimal strategy in PD 
corresponds to the weakly optimal strategy in CG 
numerically, while the strongly optimal strategy of 
alternation in CG shares no surface-level similarities with 
the optimal strategy in PD. Thus, although mutual 
cooperation corresponds to different choices in the two 
games (i.e., surface-level dissimilarity), they share a deep-
level similarity in the sense that mutual cooperation is, in 
the long run, superior to competition in both games. This 
provides a perfect test for our first hypothesis stating that 
individuals who have learned how to find an optimal 
strategy in one game will be more likely to find an optimal 
strategy in the next game even if those optimal strategies are 
different across the two games. 

In both PD and CG, learning must occur not only at an 
individual level but also at a dyad level. If learning occurs 
only in one of the players in a dyad, the outcomes are 
disastrous for that player, because the best solution also 
bears the highest risk. For example, if only one player 
understands that alternating between the two moves is the 
optimal solution in CG, the outcome for that player can be a 
sequence of -1 and -10 payoffs. Only if both players 
understand the value of alternation and are willing to 
alternate, the result will be a sequence of 10 and -1 payoffs 
for each player, which in average gives each player a payoff 
of 4.5 points per round. Thus, the context of 
interdependence makes unilateral individual learning not 
only useless but also detrimental. The two players must 
jointly learn that only a solution that maximizes joint payoff 
is viable long term. However, this solution carries the most 
risk and thus it is potentially unstable in the long term. To 
ensure that the optimal solution is maintained from one 
round to another, there must exist a mechanism that 
mitigates the risk associated with this solution. It has been 
suggested that trust relations are self-sustaining once they 
have been developed (Hardin, 2002). In situations where 
there are benefits to individuals that can only be generated 
through mutual trust, each individual has an incentive to 

maintain the relation. A trust relation develops trough 
gradual risk-taking and reciprocation (Cook, Yamagishi, 
Cheshire, Cooper, Matsuda, & Mashima, 2005). In turn, as 
trust develops, risk is reduced and the trust relation becomes 
more stable. Our second hypothesis states that participants 
develop reciprocal trust throughout the first game, which 
facilitates learning of the optimal solution in the second 
game. 

Participants and Design  
One hundred and twenty participants were paired with 
anonymous partners (leading to 60 pairs) and were asked to 
play the two games in sequence. The 60 pairs were 
randomly assigned to two conditions defined by the order in 
which the games were played: PD-CG and CG-PD. 
Participants played 200 unnumbered rounds of each game. 
At the end of each game, participants completed a five-item 
questionnaire assessing: how trustful they were of the 
opponent; how trustful of them the opponent was; how fair 
they thought the opponent’s actions were; how fair the 
participants’ actions were towards their opponents; and how 
satisfied they were with the overall outcome of the game.  

Results1 and Discussion 
To study generalization of learning across the two games, 
we analyzed the outcomes of a game  according to when it 
was played. We also analyzed the round-by-round dynamics 
of these outcomes. The statistical significance of the 
observed effects was tested with the aid of Linear Mixed 
Effects analysis (lmer analysis from the LME4 package in 
R). This analysis was preferred instead of the classical 
analysis of variance (ANOVA) because the data violated the 
assumption of normality.  
 
Similarities and differences The frequencies of the most 
relevant outcomes (i.e., the two symmetric ones and an 
alternation of the two asymmetric ones) are displayed in 
Figure 1 on a round-by-round basis. The first thing to notice 
is how different the two games are from each other from a 
behavioral perspective: the [1,1] outcome increases in PD 
but decreases in CG; alternation is prominent in CG but 
almost nonexistent in PD; and the mutually destructive 
outcome ([-1,-1] in PD and [-10,-10] in CG) is more 
frequent in PD than in CG. However, in spite of these 
apparent differences, the two games are similar in the sense 
that mutual cooperation emerges as the preferred solution 
and it becomes more and more stable over time. These 
patterns are in line with previous findings (e.g., Rapoport et 
al., 1976). Given this deep-level similarity, we expect 
players to be able to generalize their learning of the optimal 
strategy across the two games, although surface similarities 
might impede this process (Holyoak & Thagard, 1995). 
Since we ran the games in both orders (i.e., PD-CG and CG-

                                                             
1 Only a summary of the results is provided here as a context for 

understanding the cognitive model. A more detailed presentation 
of the results was given in Juvina et al., submitted.   

522



PD), we can also test whether generalization occurs only in 
one direction, from low to high entropy, as suggested by 
Bednar and colleagues (in press).  
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Figure 1: Frequencies of the most relevant outcomes in 

PD and CG by order (PD-CG on top and CG-PD on bottom) 
and round averaged across all the human participants. 

 
Generalization Driven by Surface Similarities If learning 
across games is driven by surface similarities, one would 
expect the strategy that is learned in the first game to be 
applied in the second game as well, even though it may not 
be appropriate for the second game. This is indeed the case 
with regard to the [1,1] outcome in the PD-CG order: 
players learn that [1,1] is long-term optimal in PD and they 
are more likely to achieve it in the subsequent CG, even 
though it is only weakly optimal in CG. A LME model with 
occurrence of [1,1] as a dependent variable (binomial 
distribution), order, round, and their interaction as fixed 
factors, and participant as a random factor was used to test 

the observed effects. There was a main effect of order (z = 
2.21, p = 0.027) and a main effect of round (z = -8.171, p < 
0.001); the interaction between order and round was also 
significant (z = -7.196, p < 0.001) indicating that the main 
effect of order is larger at the beginning of the game and it 
progressively becomes smaller.  

In the CG-PD order, if generalization of learning across 
games were driven by surface similarities, one would expect 
the strategy of alternating between the two asymmetrical 
outcomes to be attempted in the second game as well, at 
least in the beginning of the game. The main effect of order 
was non-significant (z = 1.476, p > 0.10), suggesting that the 
strongly optimal strategy in CG (alternation) was not 
transferred as such (based on surface similarities) to PD. 
There remains the possibility that the [1,1] outcome was 
transferred as such from CG to PD. Even though the [1,1] 
outcome is only weakly optimal in CG, it was selected with 
relatively high frequency (see Figure 1) and it might have 
been considered optimal by some participants. We will 
revisit this point in the section on combined effects of 
surface and deep-level similarities. 
 
Generalization Driven by Deep-Level Similarities If 
learning across games was driven by deep-level similarities, 
one would expect learning the optimal strategy in the first 
game to increase the probability of learning the optimal 
strategy in the second game, even though there is no surface 
similarity between these strategies. These strategies ([1,1] in 
PD and alternation in CG) are similar only on an abstract, 
deep level: they both aim at maximizing joint payoff in a 
sustainable way, which in these two games is realistically 
possible only if the two players make (approximately) equal 
payoffs on a long run. On a surface level, these two 
strategies are very different. The [1,1] strategy in PD 
requires that players make the same move at each trial and 
they do not switch to the opposite move. In contrast, the 
alternation strategy in CG requires that players make 
opposite moves at each round and they continuously switch 
between the two moves. A LME model with occurrence of 
the alternation outcome in CG as a dependent variable, 
order, round and their interaction as fixed factors, and 
participant as a random factor revealed a main effect of 
order (z = -2.014, p = 0.044) indicating a higher level of 
alternation when CG was played after PD, a main effect of 
round (z = 16.205, p < 0.001) indicating that more and more 
pairs of participants discovered the alternation strategy as 
the game unfolded, and a significant interaction between 
order and round (z = 8.5, p < 0.001) indicating that the 
optimal strategy was learned faster when CG was played 
second. The same analysis was conducted for the occurrence 
of the [1,1] outcome in PD and it revealed a main effect of 
order (z = -4.340, p < 0.001) indicating that more pairs of 
participants discovered the optimal strategy in PD when it 
was played after CG, a main effect of round (z = 10.149, p < 
0.001) indicating that more and more pairs of participants 
found the optimal strategy as the game unfolded, and a 
significant interaction between order and round (z = 12.689, 
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p < 0.001) indicating that the optimal strategy reached a 
ceiling when PD was played after CG, whereas it increased 
continuously when PD was played before CG. These results 
supported our first hypothesis. Specifically, learning the 
optimal strategy in the first game increased the probability 
of learning the optimal strategy in the second game, even 
though the optimal strategies were different in the two 
games. This generalization effect was significant in both 
directions (PD-CG and CG-PD) suggesting that entropy 
(Bednar et al., in press) has little explanatory relevance. If 
entropy were the causing factor, generalization would have 
only occurred in one direction.  
 
Combined Effects of Surface and Deep Similarities In the 
case of deep-level generalization, the main effect of order 
was smaller in magnitude for CG (z = -2.014, p = 0.044) 
than for PD (z = -4.340, p < 0.001). It seems as if CG has a 
stronger impact on PD than vice versa. A possible 
explanation for this difference is based on how surface and 
deep-level similarities combine with each other to drive 
generalization of learning across games. They may have 
congruent or incongruent effects. Thus, in the PD-CG order, 
surface and deep-level similarities act in a divergent, 
incongruent way: surface similarity makes it more likely 
that the [1,1] outcome is selected whereas deep-level 
similarities make it more likely that the alternation outcome 
is selected. In other words, generalization based on surface 
similarity interferes with generalization based on deep-level 
similarity. In contrast, in the CG-PD order, both types of 
similarities act in a convergent, congruent way: they both 
increase the probability that the [1,1] outcome is selected. 
There is no impeding effect of surface similarity on PD 
because there is no optimal strategy in CG that is similar 
enough to a non-optimal or sub-optimal strategy in PD. The 
impeding and/or enabling effects of surface similarities on 
deep-level generalization are revisited in the modeling 
section. 
 
Reciprocal Trust In addition to game choices, we analyzed 
the debriefing questionnaires that were administered at the 
end of each game. Since the answers to these questions were 
highly correlated with each other for any one individual 
participant, we averaged them in one composite variable 
that we call Reciprocal Trust. Since the debriefing questions 
were administered twice (at the end of each game) we refer 
to them as T1 and T2. We calculated correlations between 
these two trust variables and the variables indicating mutual 
cooperation in the two games. Spearman’s rho coefficient 
was used for correlations because the data failed to meet the 
normality assumption. We found that the more frequent 
mutual cooperation was in the first game the more likely the 
players were to rate each other as trustworthy at T1 (r = 
0.75, p < 0.001 for PD and r = 0.42, p < 0.001 for CG). In 
addition, the more trustworthy players rated each other at 
T1, the more likely they were to enact mutual cooperation in 
the second game (r = 0.28, p = 0.03 for CG and r = 0.47, p < 
0.001 for PD). Finally, mutual cooperation in the second 

game predicted high levels of trust at T2 (r = 0.67, p < 0.001 
for CG and r = 0.88, p < 0.001 for PD). As expected, the 
level of reciprocal trust increased from T1 to T2 (meanT1 = 
11.8, meanT2 = 14.1, t = -3.247, p = 0.001). These 
correlations between trust and the frequency of mutual 
cooperation corroborate our second hypothesis. They 
suggest that generalization of learning driven by deep-level 
similarity is facilitated by development and maintenance of 
reciprocal trust. This finding will be essential for model 
development.   

A cognitive model of generalization of learning 
Modeling generalization of learning across games of 
strategic interaction provides an opportunity to address 
some of the ongoing challenges of computational cognitive 
modeling. Three of these challenges are particularly relevant 
here and are described below as the model is introduced. 
The model is developed in ACT-R and it will be made 
freely available to the public on the ACT-R website2.  

Interdependence 
In games of strategic interaction, players are aware of each 
other and their interdependence. In a previous study we 
showed that game outcomes were influenced by players’ 
awareness of interdependence. In PD, the more information 
the two players in a dyad had about each other’s options and 
payoffs the more likely they were to establish and maintain 
mutual cooperation (Martin, Gonzalez, Juvina, & Lebiere, 
submitted). Consequently, a cognitive model playing against 
another cognitive model in a simultaneous choice paradigm 
needs to develop an adequate representation of the 
opponent. We use instance-based learning (IBL) and 
sequence learning (SL) (Gonzalez, Lerch, & Lebiere, 2003) 
to ensure that the opponent is dynamically represented as 
the game unfolds. Specifically, at each round in the game an 
instance (snapshot of the current situation) is saved in 
memory. The instance contains the previous moves of the 
two players and the opponent’s current move. Saved 
instances are used to develop contextualized expectations 
about the opponent’s moves based on ACT-R’s memory 
storage and retrieval mechanisms (Anderson, 2007). 
Expectations can explain some of the spillovers across 
games (Devetag, 2005).  

Generality  
Before one attempts to build a model of generalization of 
learning across two games, one needs to have a model that 
is able to account for the human data in both games. 
Although by and large cognitive models are task-specific, 
there is a growing need to develop more general, task- 
independent models and there are a few precedents: Lebiere, 
Wallach, and West (2000) developed a model of PD that 
was able to account for human behavior in a number of 
other 2X2 games; and Salvucci (under revision) developed a 
“supermodel” that accounts for human data in seven 

                                                             
2 http://act-r.psy.cmu.edu/ 
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different tasks. We build upon these precedents of generality 
by developing a single model to account for round-by-round 
human data in both PD and CG. We achieve this generality 
by using instance-based learning for opponent modeling (as 
described in the previous section) and reinforcement 
learning for action selection. Both instance-based learning 
and reinforcement learning are very general learning 
mechanisms that can produce different results depending on 
their input. Specifically, at each round in the game, the 
model predicts the opponent’s move based on the 
opponent’s past behavior and selects its own move based on 
the utilities of its own past moves in the current context. The 
input that the model receives as it plays determines the 
model’s behavior. The input is represented by opponent’s 
move, own move, and the payoffs associated with these 
moves.  

An important question is what constitutes the reward from 
which the model learns the utilities of its actions (moves). 
Players may try to maximize their own payoff, the 
opponent’s payoff, the sum of the two player’s payoffs, the 
difference, etc. Thus, a large number of reward structures 
can be imagined. A complicating assumption is that the 
reward structure might change as the game unfolds 
depending on the dynamics of the interaction between the 
two players. This indeed seems to be the case here, as we 
have realized after a large number of model explorations: no 
single preset reward structure is sufficient to account for the 
human data. One could try to computationally explore the 
space of all possible reward structures and their 
combinations to find the one that best fit the human data, 
but the value of this approach is questionable, because it 
may lead to a theoretically opaque solution. Instead, we 
chose to employ a theoretically guided exploration that 
drastically reduces the number of possible reward structures 
and, more importantly, gives us a principled way to describe 
the dynamics of players’ motives as the game unfolds (see 
its description in the next section).    

Generalization of learning  
When the model relies only on the two learning mechanisms 
described above (i.e., instance-based learning and 
reinforcement learning) it is able to only account for the 
generalization driven by surface similarities. Thus, the 
opponent is expected to make the same move in a given 
context as in the previous game. Similarly, an action that 
has been rewarded in the first game tends to be selected 
more often in the second game. It is impossible in this 
framework to account for generalization driven by deep-
level similarities. For example, if the opponent used to 
repeat move B when it was reciprocated in PD, there is no 
reason to switch to alternation between A and B when none 
of these moves are reciprocated in CG. Moreover, learning 
within a game may in fact hinder generalization of learning 
across games if surface similarities are incongruent with the 
optimal solution in the target game. To find a solution to the 
deep generalization problem, we need to return to a 
theoretical and empirical analysis of the two games. 

As mentioned in the introduction, in both PD and CG the 
long-term optimal solution bears the highest risk and, thus, 
it is unstable in the absence of reciprocal trust. We indeed 
found that self-reported trust increases after game playing 
and it positively correlates with the optimal outcome. It may 
well be that trust explains the deep-level generalization of 
learning across games. Players learn to trust each other and 
this affects their reward structure.  

Recent literature on trust (e.g., Castelfranchi & Falcone, 
2010) suggests that trust is essentially a mechanism that 
mitigates risk and develops through risk-taking and 
reciprocity. Inspired by this literature, we added a “trust 
accumulator” to our model – a variable that increases when 
the opponent makes a cooperative (risky) move and 
decreases when the opponent makes a competitive move. In 
addition, a variable called “willingness to invest in trust” 
was necessary to overcome situations in which both players 
strongly distrust each other and persist in a mutually 
destructive outcome, which further erodes their reciprocal 
trust, and so on. In such situations, the empirical data shows 
that players make attempts to develop trust by gradual risk-
taking. When these attempts are reciprocated, trust starts to 
re-develop. In the absence of reciprocation these attempts 
are discontinued. The willingness to invest in trust increases 
with each mutually destructive outcome and decreases with 
each attempt to cooperate that is not reciprocated.  

The variables “trust accumulator” and “willingness to 
invest in trust” are used to determine the dynamics of the 
reward structure. They both start at zero. When they both 
are zero or negative, the two players act selfishly by trying 
to maximize the difference between their own payoff and 
the opponent’s payoff. This quickly leads to the mutually 
destructive outcome, which decreases trust but increases the 
willingness to invest in trust. When the latter is positive, a 
player acts selflessly, trying to maximize the opponent’s 
payoff. This can lead to mutual cooperation and 
development of trust or players may relapse into mutual 
destruction. When the trust accumulator is positive, a player 
tries to maximize joint payoff and avoid exploitation. Thus, 
the model switches between three reward functions 
depending on the dynamics of trust between the two players. 
This mechanism provides a principled solution to the 
problem of selecting the right reward structure and in the 
same time solves the generalization problem: due to 
accumulation of trust in the first game, the model employs a 
reward structure that is conducive to the optimal solution 
and thus better performance in the second game.  

Modeling results  
A cognitive model incorporating the principles described 
above was developed and fit to the human data presented in 
the previous section. Fitting the model to the human data 
was done manually by varying a number of parameters (of 
which some are standard in the ACT-R architecture and 
others were introduced as part of the trust mechanism) and 
trying to increase correlation (r) and decrease root mean 
square deviation (RMSD) between model and human data. 
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The results of the current best model (r = 0.89, RMSD = 
0.09) are presented in Figure 2.   
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Figure 2: Results of model simulation.  

 
Overall, the model matches the trends in the human data 
reasonably well (compare to Figure 1). More importantly, 
the generalization effects are also accounted for.   

Discussion and Conclusion  
We found that generalization of learning across two games 
of strategic interaction is driven by deep-level similarities 
between the two games. Surface similarities may facilitate 
or hinder generalization depending on whether they are 
congruent or incongruent with the optimal solution. We 
used one cognitive model to account for human data in both 
games. This model helped to explain the observed 
generalization effect: reciprocal trust was necessary to 
mitigate the risk associated with the long-term optimal 
solution. We can conclude that some of the factors 
suggested in the literature are not necessary (entropy, 

cognitive load) or insufficient (expectations, surface 
similarities), while others are essential (deep-level similarity 
and reciprocal trust) for generalization of learning in games 
of strategic interaction.  
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