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Abstract

Identifying the structure of mental representations is a basic
problem for cognitive science. We present a method for iden-
tifying people’s representations of categories that are defined
over a set of discrete items, such as a collection of images. This
method builds on previous work using Markov chain Monte
Carlo algorithms as the basis for designing behavioral experi-
ments, and we thus call it discrete Markov chain Monte Carlo
with People (d-MCMCP). We illustrate how this approach can
be used to identify the structure of visual categories using real
images drawn from large databases.

Keywords: category representation; Markov chain Monte
Carlo; image databases

Introduction
Humans outperform the most sophisticated computers in their
ability to process complex stimuli, such as recognizing faces
or comprehending ambiguous linguistic input. These abilities
are facilitated by organizing stimuli into categories. People’s
representations of categories directly affect their behavior:
Recognizing scenes, parsing language, and making decisions,
for example, are all influenced by people’s category represen-
tations. Therefore, understanding the structure of these repre-
sentations is an important goal for cognitive science. Most re-
search on computational models of categorization has tended
to use artificial stimuli, because such stimuli lend themselves
to controlled experiments and yield results which are eas-
ily quantified (e.g., Nosofsky, 1986; Ashby, 1992; Nosofsky,
1987). However, the stimuli constituting real-life categories
– such as images or words – are often characterized by com-
plex features that vary along a large number of dimensions
that are hard to quantify. In this paper, we present a method
for estimating the structure of categories using an arbitrary
discrete set of stimuli, making it possible to investigate real-
life categories using complex stimuli such as images drawn
from large online databases.

Many computational models of categorization can be inter-
preted as representing a category as a probability distribution
over stimuli (Ashby & Alfonso-Reese, 1995). For example,
a category c might be represented by the probability distri-
bution over images x associated with that category, p(x|c).

Using this insight, new experimental methods have been de-
veloped for estimating these subjective probability distribu-
tions. These methods are based on implementing Markov
chain Monte Carlo (MCMC) algorithms, which are widely
used in computer science and statistics for sampling from
complex probability distributions. The Markov chain Monte
Carlo with People (MCMCP) method (Sanborn & Griffiths,
2008; Sanborn, Griffiths, & Shiffrin, 2010) adapts MCMC
algorithms so as to sample from subjective probability dis-
tributions, such as the distributions over stimuli associated
with categories. The MCMCP method has been used to esti-
mate the structure of categories defined on continuous, easily
parameterized stimuli, such as stick-figure animals and ba-
sic fruit shapes (Sanborn et al., 2010) or computer-generated
faces (McDuff, 2010; Martin, Griffiths, & Sanborn, 2012).

While the introduction of MCMCP made it easier to ex-
plore complex, high-dimensional representations, the original
method could only be used with stimuli that vary along a fixed
set of parameterized dimensions. This is a serious limitation
for exploring real-life categories. For example, it is difficult
to quantify the difference between faces with genuine smiles
vs. disengenuous smiles. Here, we present an extension of
MCMCP that removes this limitation. Our method, which
we call discrete Markov chain Monte Carlo with People (d-
MCMCP), allows estimation of probability distributions over
arbitrary discrete sets of stimuli. This supports the explo-
ration of categories relating to real-life stimuli such as photo-
graphic images, every-day objects, real commercial products,
and linguistic materials such as documents and words. Be-
cause we no longer need to explicitly parameterize the stim-
uli being examined, d-MCMCP allows us to exploit the vast
array of natural stimuli available from the internet.

The outline of this paper is as follows. The next section in-
troduces the key ideas behind MCMCP. We then present our
extension of this method to discrete sets of stimuli. The re-
mainder of the paper focuses on two experiments that demon-
strate the utility of this method. The first experiment ex-
plores the categories of happy and sad faces using photo-
graphic images, allowing us to compare against previous re-
sults obtained using the original MCMCP algorithm applied
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to parameterized images of faces (Martin et al., 2012). The
second experiment explores people’s concepts of the seasons
Spring, Summer, Autumn and Winter using a set of 4000 im-
ages drawn from online databases.

Markov chain Monte Carlo with People
Markov chain Monte Carlo algorithms are a class of meth-
ods for generating samples from complex probability distri-
butions by constructing Markov chains that converge to those
distributions over time (see Gilks, Richardson, & Spiegel-
halter, 1996). If we want to draw a sample from the prob-
ability distribution p(x), we define a Markov chain such that
the stationary distribution of that chain is p(x), and sample a
sequence of states from that chain. If the sequence is long
enough, the states of the chain can be treated similarly to
samples from p(x). The Metropolis algorithm (Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953) is one of the
most popular methods for constructing such a Markov chain.
The sequence of states is initialized with an arbitrary value,
x. The next value in the sequence is generated via a two step
process. First, a candidate for the next value, x′, is chosen by
sampling from an arbitrary proposal distribution conditioned
on x that is specified by the designer of the algorithm, q(x′;x).
Second, a decision is made as to whether that proposed value
will be accepted using a valid acceptance function which is a
function of the relative probability of x and x′ under the tar-
get distribution p(x). While the original Metropolis algorithm
used a different acceptance function, an example of a valid ac-
ceptance function is the Barker function (Barker, 1965) which
specifies the acceptance probability to be

A(x∗;x) =
p(x′)

p(x′)+ p(x)
(1)

and defines a Markov chain that converges to p(x) provided
q(x′;x) is symmetric, with q(x′;x) = q(x;x′).

The Markov chain Monte Carlo with People method uses
the idea that categories can be represented as probability dis-
tributions over stimuli (Ashby & Alfonso-Reese, 1995). The
distribution over stimuli x for category c, p(x|c) indicates the
degree to which a stimulus item x is perceived to represent a
given category c. In theory, the simplest approach to measur-
ing human categories would be to ask people to rate the de-
gree of category membership for all possible stimuli. How-
ever, this has two serious limitations. First, categories span
such a large number of possible items that collecting individ-
ual ratings of each are not practical. Second, a question such
as “How good is this example of a happy face?” is difficult
to answer, and there is no obvious scale to use for the answer.
A solution to the second limitation would be to ask people
to make pairwise judgments, i.e. “Which example is a better
example of a happy face?”. However, this only exacerbates
the first limitation because the number of judgments required
for all possible pairs of n items is now on the order of n2.

Markov chain Monte Carlo with People addresses the chal-
lenge of estimating the distribution associated with a category

by constructing a Markov chain that produces samples from
that distribution. The method is based on a correspondence
between human choice behavior and the Barker acceptance
function. If a task can be constructed in which people are of-
fered a choice between x and x′ and choose x′ with probability

Pchoice(x′;x|c) =
p(x′|c)

p(x′|c)+ p(x|c)
(2)

then this provides a valid acceptance function for a Markov
chain that will converge to p(x|c). Equation 2 has a long
history as a model of human choice probabilities, where it is
known as the Luce choice rule or the ratio rule (Luce, 1963;
Shepard, 1957). This rule has been shown to provide a good
fit to human data when people choose between two stimuli
based on a particular property (Bradley, 1954; Clarke, 1957;
Hopkins, 1954). The Luce choice rule has also been used
to convert psychological response magnitudes into response
probabilities in many models of cognition (Nosofsky, 1986;
Ashby, 1992; Nosofsky, 1987; McClelland & Elman, 1986).

Based on this correspondence, the MCMCP method im-
plements the Metropolis algorithm, using people’s choices
to determine which proposals are accepted (Sanborn et al.,
2010). In a standard experiment, people would be asked to
make a series of pairwise decisions in which they are asked
to choose the best category member from two proposed stim-
uli. The stimuli that are presented in each decision corre-
spond to the values x and x′ in the Metropolis algorithm, and
the choices that people make determine which proposals are
accepted. With enough decisions, MCMCP will converge
to samples from the probability distribution associated with
that category, and individual stimuli will be encountered with
probability given by p(x|c). The proposal distribution can be
selected by the experimenter, provided it is symmetric in the
way required by the Barker acceptance rule.

Estimating categories for discrete sets of stimuli
The MCMCP method requires defining a proposal distribu-
tion q(x′;x) for choosing the next stimulus to present on each
trial based on the current stimulus. When stimuli are de-
scribed by a fixed set of parameters, this is easy – previous
work has used Gaussian or uniform distributions to generate
proposals for continuous parameters, and a multinomial dis-
tribution can be used to propose new values for discrete fea-
tures. However, real-life categories are not made up of eas-
ily parameterized items: Real-life categories apply to stimuli
that are difficult to parameterize such as real objects, images,
sounds, and words. The lack of parameterization makes it
unclear how to propose a reasonable stimulus based on the
current stimulus, which is central to the MCMCP algorithm’s
efficiency. Hence, in order for MCMCP to measure repre-
sentations of a wide range of real-life categories, we need
to a method for making reasonable proposals when explor-
ing stimuli that are not easily parameterized. In this section,
we introduce such a method, which we call discrete Markov
Chain Monte Carlo with People (d-MCMCP).
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The d-MCMCP procedure adds three steps to MCMCP.
The first step is to create a database of stimulus items over
which the probability distribution associated with a category
is to be estimated. The second step is computing a rough mea-
sure of the similarity between all possible item pairs, giving a
symmetric similarity matrix, S. The similarity metric can be
chosen as appropriate for the domain, and need only provide
a heuristic guide to the perceived similarity of human partici-
pants. For example, similarity between color histograms can
used to quantify similarity for color images. The third step is
constructing a graph of the stimulus items based on these sim-
ilarities. A random walk on this graph is then used to define
the proposal distribution used in MCMCP.

A key assumption in using the Barker acceptance function
is that the proposals must be symmetric. That is the probabil-
ity of choosing a proposal value given a current value would
be the same if the proposal and current values were reversed.
In order for this to be true of a random walk on a graph, the
edges must be symmetric (ie. the walk can traverse an edge
in each direction), and each node in the graph must have the
same degree (ie. each node must have the same number of
neighbors). Just choosing the b nearest neighbors (as given
by the similarity metric) for each node does not suffice, be-
cause while node i might be one of b nearest neighbors to
node j the reverse is not does not have to be true. As a re-
sult nodes will have different degrees. Taking the union or
intersection of edges resulting from considering the nearest
neighbors of each item will also result in unequal degrees.

To address this problem, we instead construct the graph
that maximizes the similarity along edges while keeping the
degree of each node constant. Formally, we want to find

argmax
G

∑
i j

Gi jSi j s.t. ∑
j

Gi j = b; Gii = 0; Gi j = G ji

where G is the adjacency matrix of the graph, with Gi j = 1
if there is an edge from i to j and Gi j = 0 otherwise. This
is an instance of the maximum weight b-matching problem
(Papadimitriou & Steiglitz, 1998). Exact algorithms ex-
ist for solving this problem, such as the blossom algorithm
(Edmonds, 1965), but these are impractical for large-scale ap-
plications. Consequently, we use an approximate algorithm
based on max-product message passing to find a b-matching
(Jebara & Shchogolev, 2006).

Given a graph on stimuli that is a b-matching, proposals
for the d-MCMCP algorithm can be made in a variety of
ways. The selected proposal method is held constant through-
out the experiment (as is standard in MCMC and MCMCP).
The most straightforward proposal method is to choose a pro-
posal uniformly from all b neighbors, where the value of b is
chosen at the experimenter’s discretion. A second method is
to make a geometric proposal. Here, the proposal is gener-
ated iteratively using a number of steps, ngeom, that is chosen
from a geometric distribution with a fixed parameter. A ran-
dom walk of length ngeom is then performed, choosing the
next node uniformly from the b neighbors of the most recent
one. The node at the end of the random walk is the proposal.

For all proposal methods it is prudent to allow for some small
probability of choosing uniformly from all possible stimulus
items to allow the algorithm to move between local maxima.

Experiment 1: happy and sad faces
As a first test of the d-MCMCP method, we examined the cat-
egories of happy and sad faces using a database of images of
real faces. Previous work had applied the original MCMCP
method to estimating these categories using parameterized
face stimuli, where a continuous space was derived from
eigenfaces computed from the same set of images (Martin
et al., 2012). Use of the same image database allows direct
comparison of the results of d-MCMCP and MCMCP with a
matched stimulus set, and ratings of the emotional content of
the resulting faces provide a way to evaluate these results.

Method
Participants. A total of 60 undergraduates participated in
exchange for course credit.
Stimuli. A database of 1271 images of faces was as-
sembled from the California Facial Expression (CAFE)
database, a collection of 1280 normalized 40 × 64 pixel
gray-scale portraits containing 64 individuals (Dailey, Cot-
trell, & Reilly, 2001), expressing approximately eight distinct
“FACS-correct” emotions, which are classified according to
the taxonomy of the Facial Action Coding System (Ekman &
Friesen, 1978).
Procedure. Face images were convolved with Gabor filters
at 8 scales and 5 orientations. Principal Components Anal-
ysis (PCA) was then applied to the whole set of convolved
images and the Euclidean distance between the top 50 com-
ponents was used as the similarity metric for defining the ma-
trix S. Two graphs G were produced using the approximate
b-matching algorithm from Jebara and Shchogolev (2006),
one with b = 6 and one with b = 16. This algorithm gives
an approximate solution to the b-matching problem, so there
was still some minor variation in the degree of individual
nodes. Our empirical evaluation of the performance of the
d-MCMCP procedure will thus also help to indicate whether
this residual variation affects the results. There is no guaran-
tee that a maximal b-matching is connected, so we used the
largest connected component as the basis for the d-MCMCP
procedure. The largest connected component contained 1216
images with b = 6 and all 1271 images with b = 16.

We compared three different methods for defining the pro-
posal distributions. For all three proposal methods, we al-
lowed for a 10% chance of proposing a jump to a node cho-
sen uniformly at random. The three methods for choosing
the remaining proposals were the uniform random walk on
the graph with b = 6 (U6), the uniform random walk on the
graph with b = 16 (U16), and the geometric proposal with
ngeom = 0.5 on the graph with b = 6 (G6).

Participants were randomly assigned to proposal-type con-
ditions. Trials were presented on three different computers,
one for each proposal type. Each participant completed tri-
als corresponding to four d-MCMCP chains (two for happy
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Figure 1: Results of comparing MCMCP using eigenfaces
and d-MCMCP with a variety of proposal methods on the
same set of face stimuli. Average faces for each type of pro-
posal. Averages are taken across all trials and all four chains
corresponding to happy and sad.

faces, two for sad faces). There were 100 trials for each of the
four chains. On a given trial, the participant decided which of
a pair of faces was either more happy or more sad. Twelve
trials in the beginning were offered as practice, which were
not included in the analysis. There were also 40 catch tri-
als with face pairs for which the more happy or sad face was
clearly obvious (in this case, we used the emotion designa-
tions in the CAFE database to select faces that should clearly
be happy or sad). Thus each participant responded to 100 × 4
+ 12 + 40 = 452 trials, which took approximately 25 minutes.
The responses were linked in chains of ten participants each:
The last trial of each of the four chains was passed along to
the next participant as his/her first non-practice trial to form a
linked chain of 1000 trials. Participants who did not correctly
answer at least 27 catch trials (p < .01 under random guess-
ing) were not included in the results, or added into a chain.
We collected two chains of 10 participants for each proposal
type, corresponding to four happy and sad chains with 1000
trials in each chain.

Results
The images selected on each trial were averaged together to
produce the average faces shown in Figure 1. All three pro-
posal methods produced mean faces that appeared reasonably
consistent with the target emotions. Also included in Fig-
ure 1 are the results reported in (Martin et al., 2012) using
MCMCP in a parameterized space based on the eigenfaces
derived from the image database we used for d-MCMCP.
Qualitatively, the results from d-MCMCP are at least as good
and perhaps better than those produced using eigenfaces.

To quantify the performance of the different variants of the
algorithm, we conducted a follow-up experiment in which a
group of 40 participants recruited via Amazon Mechanical
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Figure 2: Happiness ratings for average faces for three types
of d-MCMCP proposals as well as original MCMCP method
as a function of trial number (error bars show one standard
error). Averages are taken across the 50 most recent trials (or
starting from the first trial for trials less than 50) and across
all four chains corresponding to the same emotion (happy or
sad). Also included are face ratings for the results of a pre-
vious MCMCP experiment that used eigenfaces derived from
the same image database (Martin et al., 2012).

Turk provided ratings of the emotions exhibited by faces de-
rived from our chains. For each proposal type (and for the
chains based on eigenfaces used in Martin et al. (2012)), cu-
mulative average faces were computed for each of 40 loga-
rithmically spaced numbers of trials, averaging across all four
chains that corresponded to each emotion. For trial numbers
greater than 50 images were averaged only over the 50 most
recent trials, meaning that no more than 200 faces contributed
to any single image. Participants rated the emotion exhibited
by each of these mean faces on a scale from 1-9, where 1
indicates “very sad” and 9 indicates “very happy”. All par-
ticipants rated all faces, and received $1 in compensation for
their time.

The results of our follow-up experiment are shown in Fig-
ure 2. The d-MCMCP method results in statistically signifi-
cantly higher ratings for faces derived from happy chains re-
gardless of proposal type, perhaps as a consequence of be-
ing able to explore a larger space of faces than the eigenface
method. Results for sad chains are more comparable. There
are no systematic differences between the different proposal
types, although the U16 proposal appeas to produce happier
faces faster than the other two proposals. For both happy and
sad chains there is some variation in the emotion ratings of
mean faces over time, consistent with the idea that MCMCP
should be exploring the distribution of faces associated with
the category (and possibly moving between modes of that dis-
tribution) rather than finding the most extreme instance of that
category.

Experiment 2: Seasonal images
Our first experiment indicated that d-MCMCP produced com-
parable or better performance to MCMCP when applied to a
set of stimuli where both methods could be used. In our sec-
ond experiment, we used d-MCMCP to explore categories de-
fined on a set of stimuli for which there is no simple paramet-
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ric representation. Specifically, we explored the categories of
images associated with the seasons Spring, Summer, Autumn,
and Winter, using 4000 images obtained from online image
databases. By applying the d-MCMCP procedure to these
stimuli, we can identify high probability images and compute
informative aggregate statistics for each category, allowing
us to answer questions such as what distribution of colors is
associated with each season.

Method
Participants. A total of 90 participants were recruited using
Amazon Mechanical Turk. Each participant was paid $1 for
completing the 25 minute experiment.
Stimuli. A set of 4000 colored season-related images was
assembled by searching for public domain web images using
the phrases “spring season”, “summer season”, “autumn sea-
son”, and “winter season” in Google Image Search and on
Flickr.com. The top 500 results for searches on Google and
Flickr for each season were downloaded using Bulk Image
Downloader. All images were resized so that the maximum
dimension was 250 pixels, while preserving the original ratio
of image height to width.
Procedure. The similarity between all possible image pairs
(7998000 pairs for 4000 images) was quantified using both
the Basic Color Histogram (BCH) descriptor (Griffin, 2006)
and the Scale-Invariant Feature Transform (SIFT; Lowe,
1999). BCH classifies and counts pixels as belonging to one
or other of the eleven basic colors (black, white, grey, red,
orange, yellow, green, blue, purple, pink, and brown). SIFT
applies local filters to transform images into collections of lo-
cal feature vectors which are invariant to scaling, rotation and
translation of the image. Similarity results over all pairs of
images for both methods were normalized to have unit vari-
ance and then added together, thus yielding a similarity mea-
sure which combined results of both BCH and SIFT. The sim-
ilarity between all pairs was represented as a similarity matrix
which was fed into the b-matching algorithm. A graph was
found using b = 5, which was the smallest value such that all
4000 images remained fully connected. We used a proposal
distribution corresponding to a uniform random walk on this
graph.

Each participant made pairwise choices between images
by answering questions such as Which image is more repre-
sentative of Spring?. There were 100 trials for each of four
chains, one for each season. There were also 12 practice tri-
als, and 40 catch trials for which one image of the pair obvi-
ously corresponded to a particular season (as judged by the
experimenter). Thus each participant completed 452 trials.
Participants who did not at least get 27 catch trials correct
were not included in the chains or analysis. We collected data
by linking three sets of 10 participants forming three chains
of 1000 trials for each of the four seasons.

Results
The top ten images that were chosen most often over all three
chains for each season are shown in Figure 3. Clearly, the im-

ages are very indicative of each season. Figure 4 (a) shows, as
a function of the number of trials, the L1 distance between 11-
bin color histograms calculated for cumulative images, both
between chains for the same season and between chains cor-
responding to different seasons. Within-chain distance de-
creases over time, and is typically lower than the similarity
between chains, supporting the idea that chains are converg-
ing towards different parts of the space of images. Figure 4
(b) shows a simple example of the kind of statistical analyses
that can be done on the resulting samples. The color his-
tograms for the different seasons are quite different from one
another, and each correspond to a palette that seems consis-
tent with our intuitive representation of each season.

Conclusion
We have presented a new method for estimating the structure
of people’s mental representation of categories, showing that
it produces performance that is comparable to existing meth-
ods, and can be used with rich sets of complex stimuli such
as images derived from online databases. By extending the
MCMCP algorithm so that it can be applied to any arbitrary
set of stimuli, our d-MCMCP method makes it possible to
measure people’s representations of a broader range of natu-
ral categories, and in a greater variety of real-world settings.
Using our approach, MCMCP algorithms can be applied to
large databases which contain discrete items, such as images
or text. This has the potential to lead to significant advances
for cognitive scientists interested in studying categories in
a way that goes beyond simple parameterized stimuli. The
results of such an investigation are likely to be valuable to
machine learning and computer vision researchers interested
in training systems to produce and improve on human per-
formance in categorizing images and other complex stimuli.
Conducting experiments using d-MCMCP on a large scale
will allow us to build up a catalogue of human category rep-
resentations, taking a step towards understanding how those
categories are formed.
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