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Abstract 

Intelligent tutoring systems (ITS) are a successful application 
of cognitive science theory to the field of education. Data 
generated by students using an ITS can also be used to test the 
external validity of cognitive science principles developed 
largely in laboratory settings. The present paper collected data 
from high-school students using two versions of Cognitive 
Tutor, an ITS for Geometry, to assess the impact of 
eliminating the split-attention effect. The two versions 
differed in the extent to which the interface required split 
attention during problem solving. One version used integrated 
diagrams whereas the other used non-integrated tables and 
diagrams. Results suggested that students needed fewer 
problems to master skills in the integrated version, and this 
was particularly true for mastering difficult skills. This study 
demonstrates the successful use of cognitive science 
principles to improve learning through empirically and 
theoretically derived enhancements to an ITS used in a natural 
educational setting. 

Keywords: Intelligent tutoring systems, mathematics 
instruction, split-attention effect, cognitive load theory. 

Introduction 
One of the promises of cognitive science is that it informs 
the design and implementation of effective instruction and 
educational tasks (Bruer, 1997). Unfortunately, there is 
often a disconnect between instructional tasks, as they are 
originally designed, and the actual implementation of those 
tasks in the classroom (Stein, Smith, Henningsen, & Silver, 
2000; p. 4). One way to partially mitigate this danger is to 
design instructional tasks in software. Ideally, the design of 
the software is based on a cognitive theory of learning. 
Several intelligent tutoring systems (ITS) have been 
designed based on cognitive theories, including constraint-
based reasoning (Mitrovic & Ohlsson, 1999), failure-driven 
learning (VanLehn, 1988), and the ACT-R theory of human 
cognition (Anderson, Boyle, Corbett, & Lewis, 1990). 

The designers of intelligent tutoring systems face at least 
two challenges. First, they must demonstrate a learning 
benefit above and beyond traditional classroom materials 
and activities. More importantly, an ITS should be able to 
demonstrate continuous improvements to learning as the 
theories and empirical findings the from cognitive and 
learning sciences advance. 

The purpose of the current paper is to evaluate how 
enhancements to the ITS Cognitive Tutor: Geometry 
affected student learning in real-world, educational settings. 
The ITS modifications were based on the predictions of 

cognitive load theory, which claims that learning is harmed 
when a student splits his or her attention across 
interdependent sources of information. The so-called “split-
attention effect” inspired an in vivo study in which a single 
unit from Cognitive Tutor was heavily revised to reduce 
split attention caused by the user interface. The goal of this 
paper is to extend the generalizability of that in vivo 
experiment by conducting a more in-depth analysis of 
student learning using data collected from real students 
using two different versions of the commercially available 
Cognitive Tutor.  

Cognitive Tutor 
Cognitive Tutor is an intelligent tutoring system inspired by 
the ACT-R theory of human cognition. Cognitive Tutor is 
based on the pedagogical principle that knowledge is 
decomposed into knowledge components called skills, and 
learning is maximized when the student is responsible for 
actively taking each problem-solving step. A cognitive 
model tracks if the student takes a step off the ideal solution 
path. Student modeling also allows the tutor to provide 
immediate feedback, as well as help, in the form of hints, at 
any step during problem solving. The Cognitive Tutor 
operationally defines “mastery” when the probability that a 
student knows a skill reaches a threshold of 95%. 

Cognitive Tutor has been evaluated for its efficacy in both 
the laboratory and the classroom (Anderson, Corbett, 
Koedinger, & Pelletier, 1995; Koedinger, Anderson, 
Hadley, & Mark, 1997), as well in randomized field trials 
(Ritter, Kulikowich, Lei, McGuire, & Morgan, 2007). A 
majority of the aforementioned studies used traditional 
learning materials, such as textbooks and paper-and-pencil 
homework assignments, as the baseline learning condition. 
Summarizing over several studies, Corbett (2001) estimates 
the effect size of Cognitive Tutor to be around one standard 
deviation above traditional instructional materials. 

Although effective, there is still room for improvement 
given that one-on-one human tutoring, when combined with 
mastery learning, produces about a two standard deviation 
increase in learning (Bloom, 1984). One way to improve an 
ITS is to go back and reanalyze the design of individual 
units and ask if there are any opportunities for enhancing the 
student’s interaction with the target material. One of the 
pedagogical commitments of Cognitive Tutor is to 
“minimize working memory load” (Anderson et al., 1995; p. 
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180). Therefore, the next section discusses cognitive load 
theory as it applies to geometry instruction. 

Cognitive Load Theory and the Split-Attention 
Effect 

According to cognitive load theory, learning is most likely 
to take place when the learning environment maximizes 
germane load and minimizes extraneous load. Germane 
cognitive load is defined as “load devoted to the processing, 
construction and automation of schemas;” whereas 
extraneous load is defined as “load generated by the manner 
in which information is presented to learners and is under 
the control of instructional designers” (Chandler & Sweller, 
1991). 

Solving problems in geometry is most likely to include 
both types of load. For example, it is often the case that 
geometry problems are stated verbally, and they are 
accompanied by a diagram. The student’s first task is to 
map the given information, stated in the problem scenario, 
onto the figure. For example, this would require that the 
student holds an angle name and its measure in working 
memory  (e.g., m∠ABC = 15°) while locating the relevant 
angle in the diagram. This is an example of the split-
attention effect (Kalyuga, Chandler, & Sweller, 1999). 

Holding the angle name and its measure in working 
memory is not directly relevant to learning how to solve 
these types of problems; therefore, the working memory 
load imposed on the student is considered an extraneous 
load. According to cognitive load theory, instructional 
designers are recommended that they create a learning 
environment that minimizes extraneous load caused by the 
split-attention effect. 

Based on the hypothesis that splitting one’s attention 
across multiple sources of information harms learning, 
Butcher and Aleven (2008) conducted an in vivo experiment 
where they contrasted classroom learning from two different 
versions of Cognitive Tutor: Geometry. The traditional 
interface included a verbal statement of the given 
information, a diagram, and a table. The table was the focus 
of the student interactions and required students to enter the 
measure of each angle, as well as a reason justifying the 
calculation. For the experimental interface, all of the inputs 
were made directly in the diagram. Students entered their 
measures and reasons by clicking on angles in the diagram. 
The learning results from that study suggested that the 
interactive diagram was easier to learn from, especially in 
terms of a delayed posttest for numerical test items. 

Because the study by Butcher and Aleven (2008) was 
conducted with a relatively restricted sample of students (n 
= 58) and a single unit of instruction, there is an open 
question as to whether a change to the interface translates to 
classroom learning. Will the results replicate when they are 
implemented in the “wild?”  

To address this question, we conducted an analysis of log 
files generated by students using one of two different 
versions of Cognitive Tutor: Geometry that differed in terms 
of the split attention required by the user interface. 

Method 

Participants 
We compared the usage data from two different versions of 
Cognitive Tutor: Geometry software developed by Carnegie 
Learning, which are described in the section below. User log 
files generated by the tutor contain detailed information 
about every action taken in the interface, including 
latencies, errors, and access to the various forms of help 
(i.e., requesting hints, accessing the glossary, reading the 
lesson page, or studying the interactive example). 

Two cohorts of students used two different versions of the 
software. Approximately 10% of the schools that use 
Carnegie Learning products were randomly selected to 
collect log files from their students. For the current study, 
that translates into approximately n = 1,577 students for the 
2009 version and n = 2,168 students for the 2010 version. 

Materials 
The interface for several units and sections of the Cognitive 
Tutor: Geometry curriculum were revised to reduce the 
split-attention effect by using interactive diagrams. Those 
units include: Pythagorean Theorem, Angle Relationships in 
a Triangle, and Special Right Triangles. 

 
Table Interface (v.2009). Previous versions of Cognitive 
Tutor: Geometry included an interface similar to the one 
described as the control condition from Butcher and Aleven 
(2008). The interface included a static diagram, a verbal 
statement (in paragraph form) of the givens and the sought, 
and a table of angles in which the student is tasked with 
calculating the measure and providing a rationale for the 
calculation (see Fig. 1). 

 

 
 

Figure 1: Table Interface (v.2009). 
 
Interactive Diagram Interface (v.2010). In an effort to 
reduce the split-attention effect, several units/sections of 
geometry were modified to use an “interactive diagram.” 
The design of the interactive diagrams was similar, but not 
identical, to the design of the circle tutor used in Butcher 
and Aleven (2008). All student interactions were handled in 
the diagram itself. Students had the ability to click on 
individual angles. Once an angle was selected, a flyout 
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(shown with a blue background in Fig. 2) appeared with 
several input fields, including the angle measure, a reason 
field where the student justifies her calculation, and drop-
down menus to select the other angles that participate in the 
target angle’s calculation. When the tutor determined that 
each entry was complete, a summary appeared under the 
“Diagram Notes,” and the diagram itself was labeled with 
the angle measure. 

As previously mentioned, the revised design was intended 
to reduce working memory load by externalizing some of 
the information. Because students can see an angle in the 
diagram, they are no longer burdened with holding the 
angle’s name and measure in working memory. 
Theoretically, this should provide students with more 
cognitive resources to search the problem space (Larkin & 
Simon, 1987) and generate domain-relevant inferences. 

 

 
 

Figure 2: Interactive Diagram Interface (v.2010). 

Results 
Due to the large sample sizes, all of the independent, two-
sample tests were significant with an alpha level of α = .01; 
thus, instead of reporting p-values, we relied on Cohen’s d 
as an effect-size indicator. This allows for a better estimate 
of the practical significance of the differences. 

The results are broken down into two sections. The first 
section analyzes learning at the unit level. Given that units 
from v.2009 were reorganized in v.2010, this made one-to-
one comparisons at the unit level difficult. We therefore 
analyzed learning at a finer level of granularity by focusing 
on the learning of individual skills, regardless of the unit in 
which the skill appeared. 

To control for school-related differences, we replicated all 
skill-level analyses by restricting our sample to students 
from the same school. There were small numeric differences 
in the magnitude of the effect sizes, but they were all in the 
same direction and interpretation category (e.g., small [d = 
.20], medium [d = .50], & large [d = .80]); therefore, we 
collapsed across schools in all subsequent analyses. 

Learning Measured at the Unit Level 
The software organizes the learning material hierarchically. 
Units form the highest level of organization, which are sub-
divided into sections. Sections are further broken down into 
problems, which can be further subdivided into individual 
skills. 

We used two different measures to evaluate learning at 
the unit level. The first was the median number of Problems 
the students solved before graduating the unit. Graduation 
was defined as mastering all skills. Second, we measured 
the total amount of Time (in minutes) spent in the unit. The 
results for unit-level measures are summarized in Table 1. 

For the problem metric, students using the table interface 
generally needed to solve more problems in the tutoring 
system than students using the interactive diagram interface. 
This was true for Special Right Triangles (5+33 vs. 27 in 
v.2009 and v.2010, respectively) and Angle Relationships 
(39 vs. 9+7). The results were reversed, however, for the 
Pythagorean Theorem unit (5 vs. 9). 

The results for the total amount of time spent in the tutor 
were largely consistent (and correlated with) the number of 
problems the students solved. The biggest time saving was 
observed for Angle Relationships (220.01 vs. 70.67+32.22). 

 
Table 1: Unit-level comparisons between the two versions 

of the software. 
 

  Section  Problems Time 
Unit Year Num. n to Grad.  (min.) 

Pythagorean 2009 1 1,577 5 19.34 
Theorem 2010 1 2,168 9 38.54 
Special  2009 1 858 5 9.67 
Right   2 745 33 54.56 
Triangles 2010 1 1,197 27 67.71 
Angle 2009 1 331 39 220.01 
Relationships 2010 1 1,213 9 70.67 

  2 899 7 32.22 
 

One potential explanation for the results in which the 
table interface demonstrated better performance than the 
interactive diagram interface could be due to a difference in 
the distribution of material across sections. For example, the 
Special Right Triangles unit originally included two 
sections: “Finding the Lengths of Sides of a 45-45-90 
Triangle” and “Finding the Lengths of Sides of a 30-60-90 
Triangle.” In the revised version, these sections were 
combined to form a single section: "Calculating the Lengths 
of Sides of Special Right Triangles." Combining the 
sections may have increased the difficulty because students 
were required to discriminate between the principles 
necessary to solve two different types of problems.  

A similar case could be made for the Pythagorean 
Theorem unit. The original unit included a section that only 
required students to solve for the length of the hypotenuse. 
However, in the revised version, either the hypotenuse or 
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the leg could be the sought value. Again, students were 
required to make finer-grained discriminations in the 
revised version, which could have accounted for the 
increased time required to graduate from the unit. 

Learning Measured at the Skill Level  
As the previous paragraph suggests, the two versions of 
Cognitive Tutor changed in more ways than just the 
interface. In some cases, the geometry units were rearranged 
such that the section breakdown was different from one year 
to the next; therefore, measures of learning could be 
confounded by section-level changes. 

To control for these potentially confounding factors, we 
measured learning on individual skills, with learning 
operationally defined as the number of problems the 
students solved to master each skill. As stated previously, 
mastery was achieved when the probability of a student 
knowing a skill reached 95%. To ensure a fair comparison, 
for this analysis we focused on skills that were consistent 
between the two versions. 

The skills for each unit are presented in separate sections 
below. The name and id of each skill can be found in the 
Appendix. 

 
Special Right Triangles. Two types of triangles were 
covered in this section: 45-45-90 and 30-60-90. For the 
easier triangles (45-45-90), the revised version using 
interactive diagrams actually led to worse performance in 
that students needed more problems to master these skills in 
the revised interface (see Table 2; shaded values). Effect 
sizes ranged from small (d = -0.33) to large (d = -2.54). 

The reverse, however, was true for the more challenging 
triangles (30-60-90). The revised interface reduced the 
number of problems needed to master the associated skills. 
Effect sizes ranged between (d = .33 - .46). 

 
Table 2: Skill comparisons for Special Right Triangles. 

 
  2009 2010   
Skill ID n x̄ (SD) n x̄ (SD) d 

SR-45_01 871 3.09 (1.9) 991 3.99 (3.41) -0.33 
SR-45_02 785 1.52 (1.06) 1028 6.32 (7.66) -0.88 
SR-45_03 819 3.33 (1.2) 938 16.67 (7.81) -2.39 
SR-45_04 798 2.35 (1.03) 934 16.6 (7.88) -2.54 
SR-30_01 476 21.78 (11.36) 893 17.27 (7.79) 0.46 
SR-30_02 558 19.68 (11.8) 991 16.29 (7.65) 0.34 
SR-30_03 478 21.56 (12.07) 1000 16.63 (6.96) 0.50 
SR-30_04 543 21.08 (12.13) 1009 17.89 (5.93) 0.33 
SR-30_05 577 16.29 (10.95) 924 19.5 (5.85) -0.36 
SR-30_06 465 22.31 (12.04) 890 17.57 (7.95) 0.46 

Note: Skill IDs refer to Special Right Triangles, followed by 
the fist angle measure (e.g., 45 or 30). 
 

One potential explanation for the inconsistent results is 
that the previous version was easier than the revised version 
because it separated the two special right triangles into their 
own sections (see Table 1). When students solved 45-45-90 
problems, they did not have to discriminate between shorter, 
longer, or equal leg lengths when calculating the non-given 
side. Restricting our analyses to the 2009 sample, students 
demonstrated fewer errors while solving 45-45-90 problems 
(M = 5.15, SD = 5.93) than 30-60-90 problems (M = 39.53, 
SD = 37.35), d = 1.29. This suggests that, at the section 
level, the 45-45-90 problems were easier to solve. 
 
Angle Relationships in a Triangle. The skills associated 
with the unit “Angle Relationships in a Triangle” were more 
consistent. For these skills, the revised interface showed a 
marked reduction in the average number of problems the 
students solved before mastering their skills. The effect 
sizes ranged between medium (d = .57) and large (d = 2.66), 
with a majority of the skills falling in the large category (see 
Table 3).  

The lone exception was the first skill, which asks the 
students to “Enter given value.” It seems that entering the 
given value was slightly easier in the original table interface 
that required students to map between the verbal description 
and entering the given in a table. This might be because the 
answer of the top row of the table is always the given value, 
whereas a small amount of search is required to enter the 
given in the interactive diagram. 

 
Table 3: Skill comparisons for Angle Relationships. 

 
  2009 2010 

 Skill ID n x̄ (SD) n x̄ (SD) d 
Ang_Re_01 1140 1.86 (1.27) 901 2.29 (0.98) -0.38 
Ang_Re_02 1244 4.38 (5.83) 891 1.79 (1.56) 0.61 
Ang_Re_031 455 9.86 (5.43) 887 2.19 (2.49) 1.82 
Ang_Re_04 455 5.90 (8.8) 887 2.19 (2.49) 0.57 
Ang_Re_05 369 24.50 (16.83) 887 2.19 (2.49) 1.85 
Ang_Re_06 344 29.80 (16.41) 887 2.19 (2.49) 2.35 
Ang_Re_07 344 30.17 (16.35) 887 2.19 (2.49) 2.39 
Ang_Re_08 331 31.86 (15.59) 887 2.19 (2.49) 2.66 
Ang_Re_09 344 29.79 (16) 887 2.19 (2.49) 2.41 
Ang_Re_10 450 10.10 (13.31) 889 3.88 (2.2) 0.65 

 
Pythagorean Theorem. The final section in which there 
were matching skills was the unit on the Pythagorean 
Theorem. The two skills in this section that fit our criteria 
both demonstrated an advantage for the interactive diagram. 
Students using the revised interface needed fewer problems 
to solve both skills (i.e., calculate the length of the 

                                                             
1 “Ang_Re_03” through “_09” have the same statistics because 

the 2010 skill included each of the 2009 variants as sub-skills. 
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hypotenuse in and out of a contextual scenario). The effect 
sizes were both considered “large” (d > .90; see Table 4).  

 
Table 4: Skill comparisons for Pythagorean Theorem. 

 
  2009 2010   
Skill ID n x̄ (SD) n x̄ (SD) d 

Pythag_01 1663 15.64 (8.79) 2338 8.84 (4.42) 0.98 
Pythag_02 1702 15.38 (8.9) 2338 8.84 (4.42) 0.93 

 

Discussion 
Using data gathered from the use of an intelligent tutoring 
system (ITS) in natural educational settings, the current 
study demonstrates how an already effective intelligent 
tutoring system can be further refined through the 
application of cognitive and learning theories. The current 
study draws from research on the “split-attention effect,” 
which demonstrates that performance on a task is greatly 
reduced when the student must split her attention across 
interdependent sources of information. Learning is greatly 
reduced because working memory is tasked with holding a 
large number of chunks of information. According to 
cognitive load theory, when that large burden on working 
memory is not relevant to abstracting principles from the 
domain, then this leads to an “extraneous load.” Students are 
not able to transfer the knowledge that is inferred from 
problem solving to long-term memory. 

The split-attention effect is particularly relevant to solving 
geometry problems in an ITS, where the student is required 
to split her attention across a verbal scenario that states 
given information, a diagram that depicts relationships 
between segments and angles, and a table that holds 
information about each angle.  

Butcher and Aleven (2008) demonstrated, in an in vivo 
study, that a revised ITS interface can enhance learning both 
immediately and over the long term. On the basis of their 
strong results, the Cognitive Tutor: Geometry interface was 
revised to emulate the same type of interaction. With the 
“interactive diagrams,” students were given the chance to 
concentrate the focus of their attention on the learning 
materials.  

Although the in vivo results were strong, there was a 
chance that crucial design elements did not get directly 
translated into the commercial version of the software. A 
comparison of screenshots between the Butcher and Aleven 
(2008; Fig. 1) and the current study (Figs. 1 & 2) reveals 
that there were subtle design differences. For example, the 
original study modified a unit on circles, whereas the 
current study mainly concentrated on triangles. There may 
be subtle content differences that lend themselves more or 
less well to learning gains through interactive diagrams. 
Second, the information in the interactive circle diagrams 
was echoed in a table; whereas, the triangle tutor included a 
“Diagram Notes” panel with similar, but differently 
formatted, information. 

The current results support the generalization that small 
design differences can have a measurable impact on 
learning. At the unit level, there were generally mixed 
results with some, but not all, units demonstrating a reduced 
amount of time spend solving problems. Analysis at the 
more fine-grained level of individual skills yielded more 
consistent results. Most, but not all, of the skills associated 
with the interactive diagram showed a positive effect. Some 
of the skills that showed an increase in the number of 
problems required to master the skills seemed to fit into one 
of two categories. Either the skills were very easy (i.e., 
“enter given”) or they were embedded in a particularly easy 
unit. In these cases, it might have been better to rely on the 
old design. For more difficult skills, however, there was a 
definite advantage to interacting directly with the diagram.  

Although the results are encouraging, the current set of 
analyses could be improved in the following ways. First, 
this was not an experimental study. Students were not 
randomly assigned to condition; therefore, the conclusions 
that we can draw from these analyses are strictly 
correlational. However, these results are suggestive and 
point to interesting new research projects. For example, 
subsequent research should test the hypothesis that 
interactive diagrams are especially helpful for more difficult 
topics.  

Another improvement on the current analyses would be to 
assess “robust” learning, which is defined as learning that is 
retained over a long interval, transfers to new situations, and 
helps accelerate learning of subsequent material (Koedinger, 
Corbett, & Perfetti, 2010). Because this was an analysis of 
the log files generated by student users, we were not privy 
to the students’ pre- and post-test scores. Future analyses 
will look at post-requisite materials available in the tutor 
and evaluate if there is any evidence of transfer or 
accelerated future learning. Although it may have taken 
students more problems to master the skills presented in the 
Special Right Triangles unit, students might be able to 
transfer their knowledge more accurately when they were 
required to struggle with deciding which rule applies within 
the collapsed Special Right Triangle section (e.g., desirable 
difficulties; Bjork, 1994). 

In addition, we would also like to conduct further 
analyses to determine whether the changes in the design 
features affected the learning curves of the matched (i.e., 
comparable) skills. 

 In conclusion, it is widely acknowledged that learning 
geometry is challenging. As instructional designers and 
members of the cognitive science community, it is 
incumbent upon us to ensure that learning difficult science, 
technology, engineering, or math (STEM) topics is both 
efficient and robust. One way to continuously improve our 
methods of instruction is to keep going back and testing our 
learning environments against the most recent empirical and 
theoretical developments. The current study takes an 
important step in that direction.  
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Appendix 
Skill ID Skill Name 
SR-45_01 Enter given side length. 
SR-45_02 Calculate leg given other leg in a 45-45-90 triangle. 
SR-45_03 Calculate hypotenuse in a 45-45-90 triangle. 
SR-45_04 Calculate leg given hypotenuse in a 45-45-90 triangle. 
SR-30_01 Calculate longer leg given shorter leg in a 30-60-90 triangle. 
SR-30_02 Calculate hypotenuse given shorter leg in a 30-60-90 triangle. 
SR-30_03 Calculate shorter leg given hypotenuse in a 30-60-90 triangle. 
SR-30_04 Calculate hypotenuse given longer leg in a 30-60-90 triangle. 
SR-30_05 Calculate shorter leg given longer leg in a 30-60-90 triangle. 
SR-30_06 Calculate longer leg given hypotenuse in a 30-60-90 triangle. 
Ang_Re_01 Enter given value. 
Ang_Re_02 Enter calculated value. 
Ang_Re_03 Enter reason of Right Angle. 
Ang_Re_04 Enter reason of Triangle Sum. 
Ang_Re_05 Enter reason of Angle Addition or Triangle Sum. 
Ang_Re_06 Enter reason of Triangle Exterior Angle. 
Ang_Re_07 Enter reason of Linear Pair. 
Ang_Re_08 Enter reason of Angle Addition. 
Ang_Re_09 Enter reason of Isosceles Triangle. 
Ang_Re_10 Enter reason of Equilateral Triangle. 
Pythag_01 Find hypotenuse in context 
Pythag_02 Find hypotenuse out of context 
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