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Abstract

Intelligent tutoring systems (ITS) are a successful application
of cognitive science theory to the field of education. Data
generated by students using an ITS can also be used to test the
external validity of cognitive science principles developed
largely in laboratory settings. The present paper collected data
from high-school students using two versions of Cognitive
Tutor, an ITS for Geometry, to assess the impact of
eliminating the split-attention effect. The two versions
differed in the extent to which the interface required split
attention during problem solving. One version used integrated
diagrams whereas the other used non-integrated tables and
diagrams. Results suggested that students needed fewer
problems to master skills in the integrated version, and this
was particularly true for mastering difficult skills. This study
demonstrates the successful use of cognitive science
principles to improve learning through empirically and
theoretically derived enhancements to an ITS used in a natural
educational setting.

Keywords: Intelligent tutoring systems, mathematics
instruction, split-attention effect, cognitive load theory.

Introduction

One of the promises of cognitive science is that it informs
the design and implementation of effective instruction and
educational tasks (Bruer, 1997). Unfortunately, there is
often a disconnect between instructional tasks, as they are
originally designed, and the actual implementation of those
tasks in the classroom (Stein, Smith, Henningsen, & Silver,
2000; p. 4). One way to partially mitigate this danger is to
design instructional tasks in software. Ideally, the design of
the software is based on a cognitive theory of learning.
Several intelligent tutoring systems (ITS) have been
designed based on cognitive theories, including constraint-
based reasoning (Mitrovic & Ohlsson, 1999), failure-driven
learning (VanLehn, 1988), and the ACT-R theory of human
cognition (Anderson, Boyle, Corbett, & Lewis, 1990).

The designers of intelligent tutoring systems face at least
two challenges. First, they must demonstrate a learning
benefit above and beyond traditional classroom materials
and activities. More importantly, an ITS should be able to
demonstrate continuous improvements to learning as the
theories and empirical findings the from cognitive and
learning sciences advance.

The purpose of the current paper is to evaluate how
enhancements to the ITS Cognitive Tutor: Geometry
affected student learning in real-world, educational settings.
The ITS modifications were based on the predictions of
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cognitive load theory, which claims that learning is harmed
when a student splits his or her attention across
interdependent sources of information. The so-called “split-
attention effect” inspired an in vivo study in which a single
unit from Cognitive Tutor was heavily revised to reduce
split attention caused by the user interface. The goal of this
paper is to extend the generalizability of that in vivo
experiment by conducting a more in-depth analysis of
student learning using data collected from real students
using two different versions of the commercially available
Cognitive Tutor.

Cognitive Tutor

Cognitive Tutor is an intelligent tutoring system inspired by
the ACT-R theory of human cognition. Cognitive Tutor is
based on the pedagogical principle that knowledge is
decomposed into knowledge components called skills, and
learning is maximized when the student is responsible for
actively taking each problem-solving step. A cognitive
model tracks if the student takes a step off the ideal solution
path. Student modeling also allows the tutor to provide
immediate feedback, as well as help, in the form of hints, at
any step during problem solving. The Cognitive Tutor
operationally defines “mastery” when the probability that a
student knows a skill reaches a threshold of 95%.

Cognitive Tutor has been evaluated for its efficacy in both
the laboratory and the classroom (Anderson, Corbett,
Koedinger, & Pelletier, 1995; Koedinger, Anderson,
Hadley, & Mark, 1997), as well in randomized field trials
(Ritter, Kulikowich, Lei, McGuire, & Morgan, 2007). A
majority of the aforementioned studies used traditional
learning materials, such as textbooks and paper-and-pencil
homework assignments, as the baseline learning condition.
Summarizing over several studies, Corbett (2001) estimates
the effect size of Cognitive Tutor to be around one standard
deviation above traditional instructional materials.

Although effective, there is still room for improvement
given that one-on-one human tutoring, when combined with
mastery learning, produces about a two standard deviation
increase in learning (Bloom, 1984). One way to improve an
ITS is to go back and reanalyze the design of individual
units and ask if there are any opportunities for enhancing the
student’s interaction with the target material. One of the
pedagogical commitments of Cognitive Tutor is to
“minimize working memory load” (Anderson et al., 1995; p.



180). Therefore, the next section discusses cognitive load
theory as it applies to geometry instruction.

Cognitive Load Theory and the Split-Attention
Effect

According to cognitive load theory, learning is most likely
to take place when the learning environment maximizes
germane load and minimizes extraneous load. Germane
cognitive load is defined as “load devoted to the processing,
construction and automation of schemas;” whereas
extraneous load is defined as “load generated by the manner
in which information is presented to learners and is under
the control of instructional designers” (Chandler & Sweller,
1991).

Solving problems in geometry is most likely to include
both types of load. For example, it is often the case that
geometry problems are stated verbally, and they are
accompanied by a diagram. The student’s first task is to
map the given information, stated in the problem scenario,
onto the figure. For example, this would require that the
student holds an angle name and its measure in working
memory (e.g., m£ABC = 15°) while locating the relevant
angle in the diagram. This is an example of the split-
attention effect (Kalyuga, Chandler, & Sweller, 1999).

Holding the angle name and its measure in working
memory is not directly relevant to learning how to solve
these types of problems; therefore, the working memory
load imposed on the student is considered an extraneous
load. According to cognitive load theory, instructional
designers are recommended that they create a learning
environment that minimizes extraneous load caused by the
split-attention effect.

Based on the hypothesis that splitting one’s attention
across multiple sources of information harms learning,
Butcher and Aleven (2008) conducted an in vivo experiment
where they contrasted classroom learning from two different
versions of Cognitive Tutor: Geometry. The traditional
interface included a verbal statement of the given
information, a diagram, and a table. The table was the focus
of the student interactions and required students to enter the
measure of each angle, as well as a reason justifying the
calculation. For the experimental interface, all of the inputs
were made directly in the diagram. Students entered their
measures and reasons by clicking on angles in the diagram.
The learning results from that study suggested that the
interactive diagram was easier to learn from, especially in
terms of a delayed posttest for numerical test items.

Because the study by Butcher and Aleven (2008) was
conducted with a relatively restricted sample of students (n
= 58) and a single unit of instruction, there is an open
question as to whether a change to the interface translates to
classroom learning. Will the results replicate when they are
implemented in the “wild?”

To address this question, we conducted an analysis of log
files generated by students using one of two different
versions of Cognitive Tutor: Geometry that differed in terms
of the split attention required by the user interface.
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Method

Participants

We compared the usage data from two different versions of
Cognitive Tutor: Geometry software developed by Carnegie
Learning, which are described in the section below. User log
files generated by the tutor contain detailed information
about every action taken in the interface, including
latencies, errors, and access to the various forms of help
(i.e., requesting hints, accessing the glossary, reading the
lesson page, or studying the interactive example).

Two cohorts of students used two different versions of the
software. Approximately 10% of the schools that use
Carnegie Learning products were randomly selected to
collect log files from their students. For the current study,
that translates into approximately n = 1,577 students for the
2009 version and n = 2,168 students for the 2010 version.

Materials

The interface for several units and sections of the Cognitive
Tutor: Geometry curriculum were revised to reduce the
split-attention effect by using interactive diagrams. Those
units include: Pythagorean Theorem, Angle Relationships in
a Triangle, and Special Right Triangles.

Table Interface (v.2009). Previous versions of Cognitive
Tutor: Geometry included an interface similar to the one
described as the control condition from Butcher and Aleven
(2008). The interface included a static diagram, a verbal
statement (in paragraph form) of the givens and the sought,
and a table of angles in which the student is tasked with
calculating the measure and providing a rationale for the
calculation (see Fig. 1).
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Figure 1: Table Interface (v.2009).

Interactive Diagram Interface (v.2010). In an effort to
reduce the split-attention effect, several units/sections of
geometry were modified to use an “interactive diagram.”
The design of the interactive diagrams was similar, but not
identical, to the design of the circle tutor used in Butcher
and Aleven (2008). All student interactions were handled in
the diagram itself. Students had the ability to click on
individual angles. Once an angle was selected, a flyout



(shown with a blue background in Fig. 2) appeared with
several input fields, including the angle measure, a reason
field where the student justifies her calculation, and drop-
down menus to select the other angles that participate in the
target angle’s calculation. When the tutor determined that
each entry was complete, a summary appeared under the
“Diagram Notes,” and the diagram itself was labeled with
the angle measure.

As previously mentioned, the revised design was intended
to reduce working memory load by externalizing some of
the information. Because students can see an angle in the
diagram, they are no longer burdened with holding the
angle’s name and measure in working memory.
Theoretically, this should provide students with more
cognitive resources to search the problem space (Larkin &
Simon, 1987) and generate domain-relevant inferences.
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Figure 2: Interactive Diagram Interface (v.2010).

Results

Due to the large sample sizes, all of the independent, two-
sample tests were significant with an alpha level of a = .01;
thus, instead of reporting p-values, we relied on Cohen’s d
as an effect-size indicator. This allows for a better estimate
of the practical significance of the differences.

The results are broken down into two sections. The first
section analyzes learning at the unit level. Given that units
from v.2009 were reorganized in v.2010, this made one-to-
one comparisons at the unit level difficult. We therefore
analyzed learning at a finer level of granularity by focusing
on the learning of individual skills, regardless of the unit in
which the skill appeared.

To control for school-related differences, we replicated all
skill-level analyses by restricting our sample to students
from the same school. There were small numeric differences
in the magnitude of the effect sizes, but they were all in the
same direction and interpretation category (e.g., small [d =
.20], medium [d = .50], & large [d = .80]); therefore, we
collapsed across schools in all subsequent analyses.

Learning Measured at the Unit Level

The software organizes the learning material hierarchically.
Units form the highest level of organization, which are sub-
divided into sections. Sections are further broken down into
problems, which can be further subdivided into individual
skills.

We used two different measures to evaluate learning at
the unit level. The first was the median number of Problems
the students solved before graduating the unit. Graduation
was defined as mastering all skills. Second, we measured
the total amount of Time (in minutes) spent in the unit. The
results for unit-level measures are summarized in Table 1.

For the problem metric, students using the table interface
generally needed to solve more problems in the tutoring
system than students using the interactive diagram interface.
This was true for Special Right Triangles (5+33 vs. 27 in
v.2009 and v.2010, respectively) and Angle Relationships
(39 vs. 9+7). The results were reversed, however, for the
Pythagorean Theorem unit (5 vs. 9).

The results for the total amount of time spent in the tutor
were largely consistent (and correlated with) the number of
problems the students solved. The biggest time saving was
observed for Angle Relationships (220.01 vs. 70.67+32.22).

Table 1: Unit-level comparisons between the two versions
of the software.

Section Problems Time
Unit Year Num. n  toGrad. (min.)
Pythagorean 2009 1 1,577 5 19.34
Theorem 2010 1 2,168 9 38.54

Special 2009 1 858 5 9.67
Right 2 745 33 54.56
Triangles 2010 1 1,197 27 67.71
Angle 2009 1 331 39 220.01
Relationships 2010 1 1,213 9 70.67
2 899 7 32.22

One potential explanation for the results in which the
table interface demonstrated better performance than the
interactive diagram interface could be due to a difference in
the distribution of material across sections. For example, the
Special Right Triangles unit originally included two
sections: “Finding the Lengths of Sides of a 45-45-90
Triangle” and “Finding the Lengths of Sides of a 30-60-90
Triangle.” In the revised version, these sections were
combined to form a single section: "Calculating the Lengths
of Sides of Special Right Triangles." Combining the
sections may have increased the difficulty because students
were required to discriminate between the principles
necessary to solve two different types of problems.

A similar case could be made for the Pythagorean
Theorem unit. The original unit included a section that only
required students to solve for the length of the hypotenuse.
However, in the revised version, either the hypotenuse or



the leg could be the sought value. Again, students were
required to make finer-grained discriminations in the
revised version, which could have accounted for the
increased time required to graduate from the unit.

Learning Measured at the Skill Level

As the previous paragraph suggests, the two versions of
Cognitive Tutor changed in more ways than just the
interface. In some cases, the geometry units were rearranged
such that the section breakdown was different from one year
to the next; therefore, measures of learning could be
confounded by section-level changes.

To control for these potentially confounding factors, we
measured learning on individual skills, with learning
operationally defined as the number of problems the
students solved to master each skill. As stated previously,
mastery was achieved when the probability of a student
knowing a skill reached 95%. To ensure a fair comparison,
for this analysis we focused on skills that were consistent
between the two versions.

The skills for each unit are presented in separate sections
below. The name and id of each skill can be found in the
Appendix.

Special Right Triangles. Two types of triangles were
covered in this section: 45-45-90 and 30-60-90. For the
easier triangles (45-45-90), the revised version using
interactive diagrams actually led to worse performance in
that students needed more problems to master these skills in
the revised interface (see Table 2; shaded values). Effect
sizes ranged from small (d = -0.33) to large (d = -2.54).

The reverse, however, was true for the more challenging
triangles (30-60-90). The revised interface reduced the
number of problems needed to master the associated skills.
Effect sizes ranged between (d = .33 - .46).

Table 2: Skill comparisons for Special Right Triangles.

2009 2010
SKIlID »n  (SD) n  x(SD) d
SR-45 01 871 3.09(1.9) 991 3.99(3.41) -0.33
SR-45 02 785 1.52(1.06) 1028 6.32(7.66) -0.88
SR-45 03 819 3.33(1.2) 938 16.67 (7.81) -2.39
SR-45 04 798 2.35(1.03) 934 16.6(7.88) -2.54
SR-30 01 476 21.78 (11.36) 893 17.27 (7.79) 0.46
SR-30 02 558 19.68(11.8) 991 16.29 (7.65) 0.34
SR-30 03 478 21.56 (12.07) 1000 16.63 (6.96) 0.50
SR-30 04 543 21.08 (12.13) 1009 17.89 (5.93) 0.33
SR-30 05 577 16.29(10.95) 924 19.5(5.85) -0.36
SR-30 06 465 22.31(12.04) 890 17.57 (7.95) 0.46

Note: Skill IDs refer to Special Right Triangles, followed by
the fist angle measure (e.g., 45 or 30).
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One potential explanation for the inconsistent results is
that the previous version was easier than the revised version
because it separated the two special right triangles into their
own sections (see Table 1). When students solved 45-45-90
problems, they did not have to discriminate between shorter,
longer, or equal leg lengths when calculating the non-given
side. Restricting our analyses to the 2009 sample, students
demonstrated fewer errors while solving 45-45-90 problems
(M = 5.15, SD = 5.93) than 30-60-90 problems (M = 39.53,
SD = 37.35), d = 1.29. This suggests that, at the section
level, the 45-45-90 problems were easier to solve.

Angle Relationships in a Triangle. The skills associated
with the unit “Angle Relationships in a Triangle” were more
consistent. For these skills, the revised interface showed a
marked reduction in the average number of problems the
students solved before mastering their skills. The effect
sizes ranged between medium (d = .57) and large (d = 2.66),
with a majority of the skills falling in the large category (see
Table 3).

The lone exception was the first skill, which asks the
students to “Enter given value.” It seems that entering the
given value was slightly easier in the original table interface
that required students to map between the verbal description
and entering the given in a table. This might be because the
answer of the top row of the table is always the given value,
whereas a small amount of search is required to enter the
given in the interactive diagram.

Table 3: Skill comparisons for Angle Relationships.

2009 2010

SKilID  n % (SD) n  %@SD) d
Ang Re 01 1140 1.86(1.27) 901 2.29 (0.98) -0.38
Ang Re 02 1244 4.38(5.83) 891 1.79 (1.56) 0.61
Ang Re 03' 455 9.86(5.43) 887 2.19(2.49) 1.82
Ang Re 04 455 590 (8.8) 887 2.19(2.49) 0.57
Ang Re 05 369 24.50 (16.83) 887 2.19 (2.49) 1.85
Ang Re 06 344 29.80 (16.41) 887 2.19 (2.49) 2.35
Ang Re 07 344 30.17(16.35) 887 2.19(2.49) 2.39
Ang Re 08 331 31.86(15.59) 887 2.19(2.49) 2.66
Ang Re 09 344 29.79(16) 887 2.19(2.49) 2.41
Ang Re 10 450 10.10(13.31) 889 3.88(2.2) 0.65

Pythagorean Theorem. The final section in which there
were matching skills was the unit on the Pythagorean
Theorem. The two skills in this section that fit our criteria
both demonstrated an advantage for the interactive diagram.
Students using the revised interface needed fewer problems
to solve both skills (i.e., calculate the length of the

' “Ang Re_03” through “ 09” have the same statistics because
the 2010 skill included each of the 2009 variants as sub-skills.



hypotenuse in and out of a contextual scenario). The effect
sizes were both considered “large” (d > .90; see Table 4).

Table 4: Skill comparisons for Pythagorean Theorem.

2009 2010
SKlID »n  %@SD) n x(@SD) d
Pythag 01 1663 15.64 (8.79) 2338 8.84 (4.42) 0.98
Pythag 02 1702 1538 (8.9) 2338 8.84 (4.42) 0.93

Discussion

Using data gathered from the use of an intelligent tutoring
system (ITS) in natural educational settings, the current
study demonstrates how an already effective intelligent
tutoring system can be further refined through the
application of cognitive and learning theories. The current
study draws from research on the “split-attention effect,”
which demonstrates that performance on a task is greatly
reduced when the student must split her attention across
interdependent sources of information. Learning is greatly
reduced because working memory is tasked with holding a
large number of chunks of information. According to
cognitive load theory, when that large burden on working
memory is not relevant to abstracting principles from the
domain, then this leads to an “extraneous load.” Students are
not able to transfer the knowledge that is inferred from
problem solving to long-term memory.

The split-attention effect is particularly relevant to solving
geometry problems in an ITS, where the student is required
to split her attention across a verbal scenario that states
given information, a diagram that depicts relationships
between segments and angles, and a table that holds
information about each angle.

Butcher and Aleven (2008) demonstrated, in an in vivo
study, that a revised ITS interface can enhance learning both
immediately and over the long term. On the basis of their
strong results, the Cognitive Tutor: Geometry interface was
revised to emulate the same type of interaction. With the
“interactive diagrams,” students were given the chance to
concentrate the focus of their attention on the learning
materials.

Although the in vivo results were strong, there was a
chance that crucial design elements did not get directly
translated into the commercial version of the software. A
comparison of screenshots between the Butcher and Aleven
(2008; Fig. 1) and the current study (Figs. 1 & 2) reveals
that there were subtle design differences. For example, the
original study modified a unit on circles, whereas the
current study mainly concentrated on triangles. There may
be subtle content differences that lend themselves more or
less well to learning gains through interactive diagrams.
Second, the information in the interactive circle diagrams
was echoed in a table; whereas, the triangle tutor included a
“Diagram Notes” panel with similar, but differently
formatted, information.
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The current results support the generalization that small
design differences can have a measurable impact on
learning. At the unit level, there were generally mixed
results with some, but not all, units demonstrating a reduced
amount of time spend solving problems. Analysis at the
more fine-grained level of individual skills yielded more
consistent results. Most, but not all, of the skills associated
with the interactive diagram showed a positive effect. Some
of the skills that showed an increase in the number of
problems required to master the skills seemed to fit into one
of two categories. Either the skills were very easy (i.e.,
“enter given”) or they were embedded in a particularly easy
unit. In these cases, it might have been better to rely on the
old design. For more difficult skills, however, there was a
definite advantage to interacting directly with the diagram.

Although the results are encouraging, the current set of
analyses could be improved in the following ways. First,
this was not an experimental study. Students were not
randomly assigned to condition; therefore, the conclusions
that we can draw from these analyses are strictly
correlational. However, these results are suggestive and
point to interesting new research projects. For example,
subsequent research should test the hypothesis that
interactive diagrams are especially helpful for more difficult
topics.

Another improvement on the current analyses would be to
assess “robust” learning, which is defined as learning that is
retained over a long interval, transfers to new situations, and
helps accelerate learning of subsequent material (Koedinger,
Corbett, & Perfetti, 2010). Because this was an analysis of
the log files generated by student users, we were not privy
to the students’ pre- and post-test scores. Future analyses
will look at post-requisite materials available in the tutor
and evaluate if there is any evidence of transfer or
accelerated future learning. Although it may have taken
students more problems to master the skills presented in the
Special Right Triangles unit, students might be able to
transfer their knowledge more accurately when they were
required to struggle with deciding which rule applies within
the collapsed Special Right Triangle section (e.g., desirable
difficulties; Bjork, 1994).

In addition, we would also like to conduct further
analyses to determine whether the changes in the design
features affected the learning curves of the matched (i.e.,
comparable) skills.

In conclusion, it is widely acknowledged that learning
geometry is challenging. As instructional designers and
members of the cognitive science community, it is
incumbent upon us to ensure that learning difficult science,
technology, engineering, or math (STEM) topics is both
efficient and robust. One way to continuously improve our
methods of instruction is to keep going back and testing our
learning environments against the most recent empirical and
theoretical developments. The current study takes an
important step in that direction.
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Appendix
Skill ID Skill Name
SR-45 01 Enter given side length.
SR-45 02 Calculate leg given other leg in a 45-45-90 triangle.
SR-45 03  Calculate hypotenuse in a 45-45-90 triangle.
SR-45 04  Calculate leg given hypotenuse in a 45-45-90 triangle.
SR-30 01 Calculate longer leg given shorter leg in a 30-60-90 triangle.
SR-30_ 02  Calculate hypotenuse given shorter leg in a 30-60-90 triangle.
SR-30 03 Calculate shorter leg given hypotenuse in a 30-60-90 triangle.
SR-30 04  Calculate hypotenuse given longer leg in a 30-60-90 triangle.
SR-30_05  Calculate shorter leg given longer leg in a 30-60-90 triangle.
SR-30 06  Calculate longer leg given hypotenuse in a 30-60-90 triangle.

Ang Re 01 Enter given value.

Ang_Re 02 Enter calculated value.

Ang Re 03 Enter reason of Right Angle.

Ang Re 04 Enter reason of Triangle Sum.

Ang_Re_05 Enter reason of Angle Addition or Triangle Sum.
Ang Re 06 Enter reason of Triangle Exterior Angle.
Ang Re 07 Enter reason of Linear Pair.

Ang_Re_08 Enter reason of Angle Addition.

Ang Re 09 Enter reason of Isosceles Triangle.

Ang Re 10 Enter reason of Equilateral Triangle.

Pythag 01  Find hypotenuse in context
Pythag 02  Find hypotenuse out of context




