
Comparing the inductive biases of simple neural networks and Bayesianmodels

Thomas L. Griffiths (tom griffiths@berkeley.edu)
Joseph L. Austerweil (joseph.austerweil@gmail.com)
Vincent G. Berthiaume (vberthiaume@berkeley.edu)

Department of Psychology, University of California, Berkeley, CA 94720 USA

Abstract

Understanding the relationship between connectionist and
probabilistic models is important for evaluating the compati-
bility of these approaches. We use mathematical analyses and
computer simulations to show that a linear neural network can
approximate the generalization performance of a probabilis-
tic model of property induction, and that training this network
by gradient descent with early stopping results in similar per-
formance to Bayesian inference with a particular prior. How-
ever, this prior differs from distributions defined using discrete
structure, suggesting that neural networks have inductive bi-
ases that can be differentiated from probabilistic models with
structured representations.
Keywords: Bayesian modeling, connectionism, inductive bi-
ases, property induction

Introduction
Cognitive scientists use different mathematical formalisms
to model human cognition. Understanding the relationships
between these approaches is critical to resolving questions
about the nature of the mind. Recently, researchers have de-
bated whether probabilistic or connectionist models of cog-
nition provide better prospects for making progress in cogni-
tive science (Griffiths, Chater, Kemp, Perfors, & Tenenbaum,
2010; McClelland et al., 2010). One of the key issues in
this debate is that many probabilistic models are defined in
terms of structured, discrete representations, while connec-
tionist models use continuous, graded representations that can
mimic discrete structure when needed. A possible resolution
would be to view probabilistic and connectionist models as
lying at different levels of analysis (Marr, 1982), with neural
networks a continuous approximation to Bayesian inference
over discrete representations. However, this requires estab-
lishing whether such an approximation is possible.

To explore this issue, we use the problem of property in-
duction as a case study for investigating the relationship be-
tween probabilistic models of cognition and neural networks.
Property induction – inferring the properties of a novel ob-
ject based on the properties of other objects – has played a
key role in the debate between probabilistic and connection-
ist models. An influential probabilistic model explains hu-
man property induction in terms of Bayesian inference over
discrete representations such as graphs and trees (Kemp &
Tenenbaum, 2009), whereas a successful connectionist model
explains people’s inferences via continuous representations
learned by gradient descent (Rogers & McClelland, 2004).

We use a combination of mathematical analysis and com-
puter simulations to address three questions. First, can a prob-
abilistic model with a discrete representation for a set of ob-
jects be approximated by a neural network model with con-
tinuous representations? Second, are the solutions that tend

to be found by training neural networks by gradient descent
comparable to those produced by Bayesian inference (that is,
are theinductive biases of these approaches related)? Finally,
how compatible are the inductive biases of neural networks
with those of structured probabilistic models? We provide
positive answers to the first two questions, showing that a
simple neural network can always approximate a probabilis-
tic model of property induction, and that training this network
using a gradient descent algorithm is similar to Bayesian in-
ference with a particular prior distribution. However, we also
show that there remains a significant difference between this
prior and distributions based on discrete representations.

Mathematical analysis
Our mathematical analysis focuses on comparing the model
of property induction used by Kemp and Tenenbaum (2009;
henceforth KT09) with a linear neural network.

Setting up the problem
The KT09 model assumes that we want to capture the joint
distribution of the elements of continuousN-dimensional
vectorsx indicating the value of a single property forN ob-
jects.1 This distribution,p(x), results from a diffusion pro-
cess on a graph. The diffusion process induces a multivariate
Gaussian distribution onx with mean zero and covariance

Σdiscrete=

(

∆+
1

σ2 I
)−1

(1)

where∆ is the Laplacian of the graph, beingG− I for a graph
with adjacency matrixG, andI is the identity matrix.

Now consider a linear neural network model.2 This model
represents an observedN ×M matrix (the values ofM prop-
erties forN objects) as the product

X = YZ (2)

whereX is the N ×M matrix of observed objects,Y is an
N ×K matrix, andZ is a K ×M matrix. In this model,Z is
the representation of the set of properties on a hidden layer
with K units (as might be encoded in the weights from an

1This formulation is a little counter-intuitive, as the set of objects
is fixed but the set of properties is left open (ie. new properties tend
to be observed, rather than new objects). This differs from the most
intuitive way of thinking about the problem for a neural network,
in which the network is trained to predict the properties that objects
have, with the set of properties fixed and the set of objects left open.

2Neural network models typically use non-linear activation func-
tions at the hidden layer. This complicates the analysis, but we hope
to explore the consequences of such non-linearities in future work.
We return to this point in the Discussion.

402

input layer to the hidden layer, with localist coding of proper-
ties at the input layer) andY encodes the relation of properties
over objects on the hidden layer.3 A single property vector is
generated by multiplying the weight matrix,Y, by the vector
representing the property,z, to obtainx = Yz. The model is
trained by finding weightsY and representationsZ that min-
imize the error in reconstructingX.

Approximating generalization
It should be clear that the linear neural network can perfectly
reproduce any observed matrixX, providedK is greater than
or equal to the rank ofX. This follows simply by thinking
about Equation 2 as a set of equations for the entries inX
where the entries inY andZ are free parameters – we can re-
produceX if we have enough free parameters to construct its
linearly independent columns. The more interesting question
is thus how the network will generalize. That is, what does it
predict for a new property based on what it has learned from
the observed properties?

Analyzing generalization requires making assumptions
about the nature of thez vector for a novel property. If
we assume thatz follows a multivariate Gaussian distribu-
tion with mean zero and covarianceσ2

z I , we can obtain some
results that provide connections between the neural network
and Bayesian approaches. This is a reasonable assumption
if the weights from the localist node from an unobserved
property to the hidden layer are assumed to be independently
drawn from a Gaussian distribution. This will be true if the
initial weights are drawn from a Gaussian, but as we show
below it is also consistent with the implicit prior assumed by
gradient descent algorithms.

We can determine the prediction the neural network will
make for a new property by asking howx is distributed given
Y. Using standard Gaussian identities,x will be multivariate
Gaussian with mean zero and covariance

Σcontinuous= σ2
z YYT (3)

sincex is a linear function of a Gaussian random variable.
Characterizing the distribution onx implied by this model

makes it straightforward to construct a condition under which
the model produces the same joint distribution as a probabilis-
tic model based on any discrete graph structure: This will oc-
cur whenΣdiscrete= Σcontinuous. This can be used to establish
a direct connection between the neural network’s representa-
tions for the objects and the graph Laplacian∆. In particular,
Y can be obtained from the eigenvectors of∆. If the network
is trained from a matrixX of property values sampled from
p(x), then any learning algorithm that produces a represen-
tation corresponding to the principal components ofX will

3Since the model is linear, this interpretation can be “transposed”
to give another interpretation, whereY is the hidden layer represen-
tation of the objects andZ the weights for the properties. This is a
more intuitive way of formulating the model and is also more con-
sistent with connectionist models of these phenomena, as advocated
by Rogers and McClelland (2004). However, this interpretation is a
little harder to use to get intuitions about the results shown below.

approximate this outcome, with the approximation improv-
ing as the number of samplesM increases. Thus, the answer
to our first question is that the probabilistic model can be ap-
proximated arbitrarily well by a neural network.

Establishing that our simple neural network with continu-
ous representations can potentially approximate the general-
ization performance of a probabilistic model using a discrete
representation raises a different question: Will these models
also perform similarly when learning those representations
from data? That is, if we train a neural network model on a
finite number of samples fromp(x), will it behave similarly
to a probabilistic model that infers a discrete representation
from the same data via Bayesian inference? This is a question
about the inductive biases of these two different approaches
to learning – those factors that lead a learning algorithm to
favor one solution over another. In the context of the prop-
erty induction problem, this question reduces to whether the
predictions produced by the neural network after training will
be similar to those resulting from Bayesian inference with a
particular prior distribution.

Gradient descent and Bayesian inference
Gradient descent is a standard approach to training a neural
network, where the weights are assigned small random values
and then modified in the direction indicated by the gradient of
the error repeatedly for a fixed number of training iterations.
In this section, we summarize results showing that this learn-
ing algorithm behaves similarly to Bayesian inference witha
Wishart prior on covariance matrices.

For simplicity, we start by considering the problem of up-
datingz for a single property, keepingY fixed. In this case
the goal is to find thez such thatYz minimizes the squared
error in reconstructing the corresponding property vectorx.
We can write the objective function as(x−Yz)T (x−Yz).
Differentiating, we obtain the weight update rule

∆z = ηYT (x−Yz) (4)

whereη is a learning rate (assuming simultaneous updates).
For comparison with performing Bayesian inference, we

can derive the estimate forz that we would obtain by as-
suming a Gaussian prior and finding the posterior mean (or
the maximum a posteriori value, as they are the same in this
case). The Bayesian estimate is

ẑ = (YT Y +
σ2

x

σ2
z
I)−1YT x (5)

whereσ2
x is the assumed noise variance inx.

Inspecting these two equations, we can see that they use
two different forms ofregularization – approaches to control-
ling the complexity of the solution found by learning. Neural
network training typically starts with weights close to zero, so
weights grow over successive passes through the data. Stop-
ping early keeps weights smaller. In the Bayesian solution,
the ratio ofσ2

x to σ2
z controls the size of the weights: Ifσ2

z is
small relative toσ2

x (i.e., we are more confident in our prior

403

beliefs than the observed data), the corresponding term can
dominate the matrix that is inverted, reducing the weights
proportionally. Despite this difference in regularization style,
there are cases where they will produce similar results: Ifz is
close to zero andYT Y is close tocI , thenẑ will equal z after

one pass of gradient descent withη = 1/(c+ σ2
x

σ2
z
).

More generally, it is possible to show that the solution pro-
duced by a linear neural network trained by gradient descent
with early stopping is equivalent to generating a Bayesian es-
timate with a Gaussian prior (Fleming, 1990; Santos, 1996).
When applied to Equation 4, these results indicate that fol-
lowing this learning rule is equivalent to assuming a Gaussian
prior onz with mean zero and a covariance determined byY
and the number of iterations of learning.

While the analysis presented so far has focused onZ, the
linearity of the network means that learningY can be ana-
lyzed in the same way. A Gaussian prior onY implies that the
implicit prior onYYT assumed by a neural network trained by
gradient descent with early stopping is a Wishart distribution,
the distribution obtained by taking the product of two matri-
ces drawn from a multivariate Gaussian (Muirhead, 1982).

Summary of mathematical results

The key results of the mathematical analyses presented in this
section are that the generalization performance of the KT09
model can be approximated by a linear neural network model
with continuous representations, and that the inductive bias
induced by training the neural network by gradient descent
with early stopping should be similar to that of Bayesian in-
ference with a Wishart prior on covariance matrices. These
results make two clear predictions: Neural networks should
perform best when learning from data whose covariance ma-
trices are Wishart distributed, and we should expect them to
perform more similarly to Bayesian models that use a Wishart
prior than to models with other priors.

These results also raise a question: How similar is the
Wishart distribution to distributions that are based on discrete
representations? If the distributions are similar, then the in-
ductive biases of neural networks and probabilistic models
with discrete representations will also be similar, meaning
that these approaches need not be seen as lying in opposition
to one another. If the distributions are different, then there
are opportunities to empirically separate these accounts and
we cannot view simple neural networks as a scheme for ap-
proximating the solutions identified by probabilistic models.

Simulations
We explored the issues raised by our mathematical analy-
ses through simulations comparing the performance of neural
networks and Bayesian models with different prior distribu-
tions. The set of priors that we used included the Wishart
distribution as well as several distributions based on dis-
crete structures. Following the KT09 model, we included
distributions on covariance matrices by defining a distribu-
tion on graphsG and then deriving a covariance matrix for

each graph. The distributions on graphs we considered were
stochastic graph grammars that generate trees, chains, grids,
and partitions (Nagl, 1986; Kemp & Tenenbaum, 2008) and
Erdös-Ŕenyi random graphs (Erdös & Rényi, 1959).

Our analysis proceeded as follows. For each prior distri-
bution over covariance matrices, we generatedT samples of
N ×N covariance matricesΣ1, . . . ,ΣT . From each covariance
matrix, we sampled aN ×M matrix X containing the values

of M features for each of theN objects (X = [x1, . . . ,xM],xi
iid
∼

N(0,Σ)). We then computed the marginal probability of these
samples under a Wishart distribution, integrating over itspa-
rameters. This let us determine how closely different priors
relate to the Wishart distribution.

To compare the different approaches to learning, we ap-
plied the neural network and Bayesian models to all of the
samples ofX we had produced. We foundYYT at differ-
ent stopping points and compared this to the true covariance
matrix for data generated from each of the different priors.
The goal of this first analysis was to evaluate whether the
neural network performed best with data whose covariance
matrix was Wishart distributed. For the second analysis, we
also obtained an estimate of the covariance matrix from each
sample using Bayesian inference with each of the different
prior distributions and calculated the distance between these
covariance matrices andYYT . This allowed us to examine
how the distance between the solutions produced by the neu-
ral network and Bayesian inference was related to the extent
to which the priors were similar to a Wishart distribution.

Calculating marginal Wishart probabilities
To perform our analysis, we must be able to calculate how
close a distribution is to a Wishart. We did this using the
marginal probability of a set of covariance matrices under a
Wishart, integrating over the parameters of the distribution.
The result is a measure of the “Wishartiness” of the covari-
ance matrices, which can be applied to samples from different
distributions in order to evaluate their similarity to a Wishart.

Assume we have a Wishart distribution with degrees of
freedomb and covariance centerS, and thatS is drawn from
an inverse-Wishart distribution with parametersa andΨ. We
draw covariance matricesΣ1, . . . ,ΣT from this distribution.
The marginal probability ofΣ1, . . . ,ΣT givena, b, andΨ is

p(Σ1, . . . ,ΣT) =
Z

dS p(S|a,Ψ)
T

∏
t=1

p(Σt |b,S)

which yields

p(Σ1, . . . ,ΣT) =
ΓN(1

2(a+bT))|Ψ|a/2 ∏T
t=1 |Σt |

(b−N−1)/2

ΓN(a/2)(ΓN(b/2))T
∣

∣Ψ+∑T
t=1 Σt

∣

∣

(a+bT)/2

whereΓN(·) is the multivariate gamma function,

ΓN(x) = πN(N−1)/4
N

∏
j=1

Γ(x+(1− j)/2)

404

0 500 1000 1500 2000
0

50

100

150

200

250

Training epochs

D
is

ta
n
ce

Average distance of YY
T from the true covariance matrix

Figure 1: Average distance between the true covariance ma-
trix and the covariance matrix learned by the neural network.

andΓ(x) is the generalized factorial function (Boas, 1983).
This is the ratio of the normalization constants for a Wishart
and an inverse-Wishart distribution, due to conjugacy.

Neural network learning
The linear neural network is defined by two matrices: aN×K
matrix Y that maps the properties into the latent space and a
K ×M matrixZ that maps the latent space to the objects. We
trained the neural network by gradient descent on error, with

∆y = η(x−yZ)ZT (6)

and Equation 4 as the weight update rules.K was set to one
more than the rank of the object matrixX. The weights were
initialized to normally distributed random values with mean
0 and variance 0.05. We used a learning rateη of 0.0025 and
2000 training epochs (full passes through the data), which
were determined by pilot simulations. At each possible stop-
ping point (epoch), we recordedYYT . Figure 1 shows the
average distance betweenYYT and the true covariance ma-
trix as a function of epoch, which initially decreases and then
rises again due to overfitting.

Priors and Bayesian inference
We considered eight different prior distributions, requiring us
to use three different algorithms for Bayesian inference.

Wishart prior. The first Bayesian model used a Wishart
prior with covariance centerI and degrees of freedomb =
1000. Unfortunately the Wishart is not conjugate to the mul-
tivariate Gaussian, so we found an estimate of the covariance
matrix under this prior using stochastic search with simu-
lated annealing. The state of the search (a covariance matrix)
was initialized to a random draw from the posterior distribu-
tion using an inverse-Wishart prior (for details, see Gelman,
Carlin, Stern, & Rubin, 1995). A new proposed state was
then drawn from a Wishart distribution centered at the current
state withb + N degrees of freedom. A Metropolis-Hastings
acceptance rule was used to decide whether to replace the
current state with the proposed state, based on the product
of two ratios of their (unnormalized) posterior probabilities

and the probability of generating the proposed state from the
current state and vice versa (Metropolis, Rosenbluth, Rosen-
bluth, Teller, & Teller, 1953). This probability was annealed
by raising the probability to the power 1/τ, with τ decreasing
according to a logarithmic schedule.

Graph grammar priors. We used four priors based on
graph grammars, defining distributions on graphs that corre-
pond to trees, grids, chains, and partitions (Nagl, 1986; Kemp
& Tenenbaum, 2008). These random graph grammars are
generative processes that start with a single node and then re-
place a random node in the current graph with two nodesJ
times, whereJ ∼ Geom(θ). Different graph structures result
from using different rules for connecting the parents and chil-
dren of the old node to the new nodes (for the tree grammar,
there is also a latent node that cannot contain any objects),
and different rules for connecting the new nodes result in dif-
ferent generated graph structures.4 Afterwards, the objects
are assigned to nodes uniformly at random (except not to la-
tent nodes). For example, if the rule for node replacement
does not create any edges, then the random graph grammar
generates random partitions of the objects.

To convert the graph to a covariance matrix, we follow
Kemp and Tenenbaum (2008) by first forming an “entity”
graph containingN + L nodes, where the firstN nodes rep-
resent each object and are only directly connected with an
edge to their assigned node. Second, we complete the “entity”
graph by connecting the lastL nodes to each other accord-
ing to the result of the previous graph replacement process.
Next, we form aN + L×N + L adjacency matrixW, where
1/wi j ∼Exp(β) if there is an edge between nodesi and j (rep-
resenting how close nodesi and j are). Otherwise,wi j = 0.
This specifies aN +L×N +L covariance matrix for the mul-
tivariate Gaussian distribution over the latent and observed

variables,
(

E−W + 1
σ2 I

)−1
whereE is aN +K ×N +K di-

agonal matrix witheii = ∑ j wi j and I is theN + K ×N + K
identity matrix. The hidden nodes can be marginalized out
analytically, resulting in theN objects being normally dis-
tributed with covariance matrix given by the firstN ×N ele-
ments of the original covariance matrix.5 Bayesian inference
was performed with code fromhttp://charleskemp.com,
which uses stochastic search to find an estimated maximuma
posteriori covariance matrix for a given set of data.6

Erdös-Ŕenyi priors. In addition to the four random graph
generators from Kemp and Tenenbaum (2008), we used a
standard random graph generator: the Erdös-Ŕenyi random
graph (Erd̈os & Rényi, 1959). Each object is represented by
a node. Unlike the node replacement grammars, we gener-

4For simplicity, we assumed the graph structures are undirected.
5It is important to note that this is not equivalent to the firstN×N

elements of the inverse covariance matrix.
6The parameters were set toβ = 0.4 (edge length parameter),

σ2 = 0.4 (covariance matrix regularization parameter), andθ = 1−
e−3 (simplicity bias), which are similar to the values used by Kemp
and Tenenbaum (2008). We used the “45” speed setting.

405

ate random graphs by directly connect pairs of objects with
an edge with probabilityp. Once the graph is generated,
the implied covariance matrix is found by the same proce-
dure as before (except we do not need to perform the ad-
ditional marginalization step as the initial covariance matrix
is alreadyN × N). We considered priors corresponding to
p ∈ {0.1,0.5,0.9}. Covariance matrices with these priors
were estimated using stochastic search by simulated anneal-
ing. The covariance matrix was initialized to a random Erdös-
Rényi covariance matrix and proposals were generated from
the current state by removing or deleting a random number of
edges (such that the number of edges in the proposals were
binomially distributed). The search procedure and annealing
schedule were otherwise the same as for the Wishart prior.

The distance between covariance matrices
To analyze the results produced by the neural network and
Bayesian models, we needed a measure of the similarity
of two matrices. We used a distance metric between posi-
tive definite matrices (valid covariance matrices) defined by
Förstner and Moonen (1999)

d(Σ1,Σ2) =

√

n

∑
i=1

ln2λi(Σ1,Σ2), (7)

whereλi(Σ1,Σ2) are the generalized eigenvalues ofΣ1 and
Σ2, being the roots of|λΣ1−Σ2| = 0. When computing these
distances, we used the best stopping point for the neural net-
work (the one resulting in minimal distance). Looking across
epochs, we found the value ofYYT with the minimal distance
to the true covariance matrix and to the eight covariance ma-
trices estimated by Bayesian models with different priors.

Simulation procedure and results
For each prior, we generated 101 data sets that each con-
sisted ofT = 100 covariance matrices. From each matrix,
we sampled the values ofM = 100 features forN = 10 ob-
jects. We then computed the marginal probability of the co-
variance matrices generated by each prior under the assump-
tion they were drawn from a Wishart distribution, with the
median result shown in the top row of Table 1. As expected,
the Wishart prior was the most compatible with a Wishart dis-
tribution. The discrete priors produced results that were rea-
sonably consistent with the Wishart distribution, while the the
Erdös-Ŕenyi generative processes produced results that were
poorly characterized as Wishart. We used the data set with
the median Wishart value for the subsequent analyses.

Next, we trained neural networks on the object setX gen-
erated from each covariance matrix sampled from each of the
eight priors, and computed the distance betweenYYT and the
true covariance matrix. The results are shown in the second
row of Table 1. Performance was statistically significantly
better when the true covariance matrices were drawn from
the Wishart, consistent with our mathematical analysis.

Finally, we found Bayesian estimates of the covariance ma-
trix for each object setX using all eight priors. Stochas-
tic search was run for 20000 iterations in each case. We

−3000 −2500 −2000 −1500 −1000 −500
20

25

30

35

40

45

50

55

Log Wishart marginal likelihood

B
ay

es
−

N
N

 d
is

ta
n
ce

Average distance YYT from Bayesian estimators with different priors

Wishart

Partition

Chain

Grid

Tree

ER (p = 0.1)

ER (p = 0.9)

ER (p = 0.9)

Figure 2: Average (smallest possible) distance ofYYT from
the Bayesian estimates of the covariance matrix, plotted asa
function of the logarithm of the Wishart marginal likelihood
for the corresponding prior.

computed the distance betweenYYT and the Bayesian es-
timates for each object set, then averaged this quantity across
all object sets. The results are shown in the third row of
Table 1. As predicted, we found a negative correlation be-
tween the distance between estimates and the extent to which
the corresponding prior is consistent with a Wishart distri-
bution (as reflected by the marginal probabilities in the first
row of Table 1) withr = −0.92 andr = −0.83 for Pearson’s
product-moment and Spearman’s rank-order correlation, re-
spectively.7 A scatterplot showing the relationship between
these two quantities is shown in Figure 2.

The variation in how well the neural network approximated
the Bayesian estimates with different prior distributionsis
informative about the inductive biases of neural networks
and structured probabilistic models. The neural network was
closest in performance to Bayesian inference with a Wishart
prior, which is purely continuous. All priors based on dis-
crete structure, in the form of an underlying graph, resulted
in statistically significantly worse performance. Within these
discrete priors, those based on graph grammars were better
approximated than the Erdös-Ŕenyi priors. This pattern of
results is interesting from the perspective of the debate be-
tween probabilistic and connectionist accounts of property in-
duction, which has focused on discriminating the predictions
of probabilistic models using representations based on graph
grammars from neural networks. Our results suggest that this
may be harder than discriminating probabilistic models that
assume arbitrary discrete structure, as in the Erdös-Ŕenyi pri-
ors, from neural networks.

7We confirmed that this correlation could not be fully explained
by the norm of the matrices, but plan on running further simulations
to rule out other possible alternative explanations for our results.

406

Table 1: Properties of different priors and comparison of gradient descent and Bayesian learning

Graph grammar priors Erdös-Ŕenyi priors
Wishart Grid Chain Tree Partition p = 0.1 p = 0.5 p = 0.9

Marginal probability
under Wishart -567.87 -867.68 -884.95 -946.22 -1073.10 -2678.04 -2940.98 -2919.44

Distance ofYYT from
true covariance 14.15a 33.31b 34.18b 32.36b 33.97b 33.93b 31.73b 33.35b

Distance ofYYT from
Bayesian estimate 23.53a 36.04b 36.07b 36.03b 36.19b 50.21c 46.29d 53.23e

Note: In each row, different superscripts indicate statistically significant differences in scores (Bonferronip < .05).

Discussion

Our analysis of the relationship between probabilistic and
connectionist models in the context of property induction has
produced several interesting results. First, the generalization
performance of a probabilistic model with a discrete repre-
sentation can be approximated by an appropriately configured
linear neural network with continuous representations. Sec-
ond, training such a network by gradient descent with early
stopping is similar to performing Bayesian inference over co-
variance matrices with a Wishart prior. Finally, prior distribu-
tions that assume discrete structure vary in the extent to which
they resemble a Wishart prior, and this variation predicts how
well Bayesian inference using those prior distributions isap-
proximated by a neural network. However, all prior distribu-
tions using discrete structure that we considered resultedin
worse approximations than that given with a Wishart prior.

There are limitations in the analyses presented here that we
hope to address in future work. As noted earlier, the assump-
tion of linearity in the neural network deviates from stan-
dard practice in connectionist modeling. While we do not
expect that this will substantially change our results (given
that early stopping enforces small weights, effects of the non-
linearity should be minimized), further simulations should be
conducted to confirm that this is the case. We would also like
to explore more sophisticated learning algorithms, such as
cascade correlation (Fahlman & Lebiere, 1990), which may
result in different inductive biases.

Returning to the questions that motivated our investigation,
our results provide a mixed set of answers as to the potential
for neural networks to be viewed as a continuous approxi-
mation to Bayesian inference over discrete representations.
While specific neural networks can always be constructed that
emulate the generalization performance of probabilistic mod-
els using discrete representations and the inductive biases of
neural networks can be expressed in a form that is consistent
with Bayesian inference, these inductive biases are quite dif-
ferent from those of Bayesian models using priors defined on
discrete objects. Our results suggest that there is room to em-
pirically separate these two approaches, and that identifying
neural systems that can approximate arbitrary Bayesian mod-

els may require going beyond simple neural networks that use
general-purpose learning algorithms.

Acknowledgments.We thank Noah Goodman, Surya Ganguli, and
Jay McClelland for discussions and grant number FA-9550-10-1-
0232 from the Air Force Office of Scientific Research and a fellow-
ship from the Fonds de Recherche du Québec to VGB for funding.

References
Boas, M. L. (1983).Mathematical methods in the physical sciences

(2nd ed.). New York: Wiley.
Erdös, P., & Ŕenyi, A. (1959). On random graphs, I.Publicationes

Mathematicae, 6, 290-297.
Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learn-

ing architecture. InAdvances in Neural Information Processing
Systems 2.

Fleming, H. E. (1990). Equivalence of regularization and truncated
iteration in the solution of ill-posed image reconstruction prob-
lems.Linear Algebra and its Applications, 130, 133-150.

Förstner, W., & Moonen, B. (1999). A metric for covariance matri-
ces. In F. Krumm & V. S. Schwarze (Eds.),Qua vadis geodisa...?
festschrift for Erik W. Grafarend on the occasion of his 60th birth-
day (p. 113-128). Stuttgart, Germany: Stuttgart University.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995).
Bayesian data analysis. New York: Chapman & Hall.

Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum,
J. B. (2010). Probabilistic models of cognition: exploring rep-
resentations and inductive biases.Trends in Cognitive Sciences,
14(8), 357-364.

Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural
form. Proceedings of the National Academy of Sciences, USA,
105, 10687-10692.

Kemp, C., & Tenenbaum, J. B. (2009). Structured statistical models
of inductive reasoning.Psychological Review, 116(1), 20-58.

Marr, D. (1982).Vision. San Francisco, CA: W. H. Freeman.
McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C.,

Rogers, T. T., Seidenberg, M. S., et al. (2010). Letting struc-
ture emerge: connectionist and dynamical systems approaches to
cognition.Trends in Cognitive Sciences, 14(8), 348-356.

Metropolis, A. W., Rosenbluth, A. W., Rosenbluth, M. N., Teller,
A. H., & Teller, E. (1953). Equations of state calculations by fast
computing machines.Journal of Chemical Physics, 21, 1087-
1092.

Muirhead, R. J. (1982).Aspects of multivariate statistical theory.
New York: John Wiley & Sons.

Nagl, M. (1986). Set theoretic approaches to graph grammars.
In Proceedings of the 3rd international workshop on graph-
grammars and their application to computer science (p. 41-54).
London, UK: Springer.

Rogers, T., & McClelland, J. (2004).Semantic cognition: A parallel
distributed processing approach. Cambridge, MA: MIT Press.

Santos, R. J. (1996). Equivalence of regularization and truncated
iteration for general ill-posed problems.Linear Algebra and its
Applications, 236, 25-33.

407

