Online learning of causal structure in a dynamic game situation
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Abstract

Agents situated in a dynamic environment with an ini-
tially unknown causal structure, which, moreover, links
certain behavioral choices to rewards, must be able to
learn such structure incrementally on the fly. We report
an experimental study that characterizes human learn-
ing in a controlled dynamic game environment, and de-
scribe a computational model that is capable of similar
learning. The model learns by building up a represen-
tation of the hypothesized causes and effects, including
estimates of the strength of each causal interaction. It is
driven initially by simple guesses regarding such inter-
actions, inspired by events occurring in close temporal
succession. The model maintains its structure dynam-
ically (including omitting or even reversing the current
best-guess dependencies, if warranted by new evidence),
and estimates the projected probability of possible out-
comes by performing inference on the resulting Bayesian
network. The model reproduces the human performance
in the present dynamical task.

Keywords: Temporal learning, causality, structure
learning, Dynamic Bayesian graphical model, STDP.

Introduction

There are many types of cues that an agent can use to
learn the causal structure of its interactions with the
environment, such as prior knowledge (which constrains
the hypothesis space), statistical relations, intervention,
and temporal ordering (Lagnado et al., 2007). Among
these, temporal ordering is particularly intriguing. First,
proximity among cues appears to play a central role in
learning structure in time and space (Goldstein et al.,
2010). Second, in causal learning, temporal ordering,
similarly to intervention, carries with it information re-
garding the direction of causality, which is crucial for pre-
diction. Finally, putative causal relationships between
ordered events that occur in close temporal proximity
can be registered by relatively well-understood compu-
tational mechanisms akin to those that support synaptic
modification in nervous systems.

Both the learning of causal structure (as in model se-
lection) and the modification of its parameters (as in
classical schemes such as AP, PowerPC, and Rescorla-
Wagner) can be put on a rational basis (Griffiths and
Tenenbaum, 2009; Holyoak and Cheng, 2011). Given
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the special appeal of temporal proximity as a cue to
causal structure and strength, a simple, incremental,
heuristic approach to causal learning based on this cue
is, however, worth exploring — particularly if such an
approach proves effective in dealing with dynamical sce-
narios where irrelevant variables abound and where the
model may need to be modifiable on the fly. In this
paper, we describe a dynamical causal Bayesian model
that uses temporal proximity among cues to learn its
structure and parameters from a continuous stream of
observations and action-related rewards in a computer
game-related scenario.

Dynamic causal Bayesian modeling

Consider a dynamic situation described by a set of binary
variables X = { X1, Xo,..., X}, whose values occasion-
ally change over time, and where X; = 1 indicates the
presence of some item or feature and X; = 0 its absence.
The causal relationships among the variables in X, if
any, are initially unknown; each one could be a cause,
an effect, or neither. Our approach integrates bottom-
up, event-driven learning with top-down revisions as dic-
tated by the model’s self-maintained track record in pre-
dicting impending events or the outcomes of actions.
The graph representing the model’s current hypothe-
sis regarding the causal relationships over the members
of X, which serve as its vertices, has initially no edges.
As time progresses, edges are added to the graph ac-
cording to the temporal order of the observed events and
any interventions (the outcomes of model’s own actions).
As new edges, corresponding to pairwise hypothesized
causal dependencies, are added, the model attempts to
integrate the subgraphs they form — “twigs” (Figure 1,
left) each consisting of a pair of vertices joined by a di-
rected edge — into a larger (eventually, global) structure.
Note that the twigs are supposed to capture causal
“strength,” which we operationalize via a Hebb-like
learning mechanism (detailed below), while the final
causal model is intended to support probabilistic in-
ference, by being treated as a Bayesian network. The
Union operation (Figure 2, left), which combines twigs
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Figure 1: Left: the two possible Twig structures for two
variables X; and X;. The weights w; represent causal
strength. Right: a new Twig is added to the model if
a prior event involving some X; is found within a short
time window At of a triggering event involving Xj.
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Figure 2: Left: the Union operation. In this example,
there are four possible DCBN outcomes: causal chains
U, and U,, a common effect structure Us, and a com-
mon cause structure Uy. Right: for each case where a
binary effect is driven by a real-valued “strength” link,
the Union operation adds a hidden softmaz node, as il-
lustrated here for Us by the frame drawn around R; ;
and E (Lu et al., 2008).

into a dynamic causal Bayesian network (DCBN), me-
diates between these two aspects of the model by in-
serting as needed “hidden” variables that convert real-
valued strength variables into probability distributions
(Figure 2, right).

As the network forms, the model becomes ready for
generating predictions (inference). Given the state of
observations at time ¢, it can be used to predict the
most likely value for variables of interest at a later time.
During this phase, inference is alternated with learning,
with the latter being driven by the model’s monitoring
of its own predictions and by comparing those to the
observed outcomes. The resulting changes may include
the model’s representation of the causal structure of the
environment: for instance, the direction of some of the
twigs (cause-and-effect subgraphs) may be reversed.

Structure and strength learning. We now proceed
to describe the operation of the model in some detail,
starting with twig learning. Every elementary subgraph,
or Twig = {C, E,w}, consists of a single cause C, a sin-
gle effect E, and the strength or weight w of their causal
connection. Initially, no connections between variables
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exist. Similarly to how humans seem to handle causal
cues such as temporal ordering and proximity of notable
events (Lagnado et al., 2007), the model only seeks to
form a T'wig when some item or feature appears on the
scene (i.e., a variable changes state from 0 to 1). The
model then scans the recent past, up to a duration of
AT, for a potential cause of the event at hand, in the
form of the change in some other variable’s value. Any
variable that is on the record as having changed its value
(either from 0 to 1 or from 1 to 0) is labeled as a potential
causes for the event, forming a Twig (Figure 1).

The weight w is modified via Hebbian learning, specif-
ically, spike timing dependent plasticity (STDP; Capo-
rale and Dan, 2008). This family of temporally asym-
metric Hebbian rules affords quick (exponential) learn-
ing, as well as unlearning (in “negative” trials, in which
the purported effect precedes the cause):

Awy = Ay exp(—At/AT)
Aw_ = A_exp(At/AT)
w(t + 1) = min (w (t) + A'LU, wmaa:)

(1)

where the + and — subscripts denote positive and
negative trials (E following or preceding C, respec-
tively). We set Ay = 1 and A_ = 0.5, thus giving
more weight to positive evidence. If some Twig ele-
ments share a common variable, the model attempts to
combine them by applying the Union operation, as in
(Figure 2), adding, as needed, hidden variables, as de-
scribed below.

Learning the softmax parameters. To integrate
a representation of causal strength into a probabilistic
(Bayesian) model, we follow Lu et al. (2008) by endow-
ing the model with internal states, or hidden variables:
R; and R; in Figure 2, right. The state of each R; is
related to that of its parent node X; through a Gaussian
distribution parameterized by the weight w;:

P(R; | w;, X;) o e~ (BimwiXi)/207 (2)

The binary effect variable E = e;, e; being the ith dis-
crete value of E, is driven, in turn, by R through a
softmax function:

exp (W (i)' R+b (Z))
3, exp (w(s,) R+ D ()

where R is the vector that comprises R; and R;, and
w and b are parameters that are learned as the model
is exposed to data, using an iteratively reweighted least
squares (IRLS) algorithm (Green, 1984).

P(E:€i|R):

Inference. We illustrate the inference process, in
which the model is used to generate predictions for some



Algorithm 1 Dynamic causal Bayesian model (DCBN)

1: INITIAL LEARNING
2: Given: variables X'; window AT.
3: Note: |X| = n is the number of variables.
4: Note: t is the current time.
5: fort=1—ndo
6: if X! ==1and X!"' ==0 then
7 for j=1—ndo
8 if X; preceded X; by At < AT then
9: if No Twig(X;, X;,w;;) exists then
10: Compute w;; (eq. 1);
11: Create Twig(X;, X;, wij);
12: else
13: Update w;; (eq. 1);
14: end if
15: end if
16: end for
17: end if
18: Compute Union over Twigs to form DCBN;
19: Train softmax (eq. 3) for hidden variables;
20: end for
21: INFERENCE AND FURTHER LEARNING
22: while True do
23: Perform inference on DCBN;
24: if inference deviates from observation then
25: Modify Twig weights w (eq. 1);
26: for every Twig do
27: if w < 0 then
28: Reverse the edge;
29: Re-learn w;
30: end if
31: end for
32: If structure changed, recompute Union;
33: end if
34: Retrain softmax parameters;
35: end while

variable values, given others, on an example with an ef-
fect E that depends on two causes, X o (Figure 2, right).
Given the values of X; o, inference requires integration
over the hidden variables:

P(E|’LU1,U/2,X1,X2): (4)
2
= //P(E | Rl,Rg) HP(Rl | wi,Xi)P(Xi)deng
i=1
Because R; are unobserved and continuous and their
descendants are discrete, exact inference is impossible
(Lerner et al., 2001; Murphy, 1999). As an approxima-
tion, we sample each R;, conditioned on its parent X;
and weight w;. Specifically, if X; = 1, we sample from
the Gaussian distribution associated with it (eq. 2); if
X; =0, we sample from a zero-mean Gaussian distribu-
tion, which is the same for all the variables.
We then discretize the integral, with a step size of 0.1
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and lower and upper bounds set to L = miny,(—40;)
and U = maxy, (w; X; + 40;), respectively:

P(E"LU]_,’U)Q,XMXQ): (5)

U U 2

Ri=L Ry=L i=1

When the predicted value of F yielded by the inference
step matches the observed value with a high confidence,
the model is not modified. Every time the prediction
falters, the model learns; both its structure and its pa-
rameters can be modified, as described in Algorithm 1.

The experiments

To evaluate the model, we tested it in an experiment
that involved learning in a dynamically unfolding game
situation.! For the same experiment, we also collected
performance data from human subjects.

Most of the published studies of causal learning to
date have been conducted in somewhat artificial behav-
ioral settings. In many studies, the task consists of a
series of trials, in each of which the subject is presented
with a few stimuli — often just two or three items on a
blank screen, along with choices that can be made via
a key press (e.g., Steyvers, Tenenbaum, Wagenmakers,
and Blum, 2003). More elaborate tasks may involve a
contraption that displays a few objects whose behaviors
may be causally interlinked (e.g., Kushnir, Gopnik, Lu-
cas, and Schulz, 2010). The narrative context that de-
fines the task for the subjects is often couched in causal
language (as in “Can you tell what makes the box go?”).
In comparison, in the present study the behavioral task
involved an arguably more natural situation: playing a
computer game, which unfolds in real time, and requires
that the subject drive down a track surrounded by vari-
ous objects, while attempting to accumulate rewards.

The experimental platform we used is an adaptation of
a car-racing computer game.? The virtual environment
through which the subject is driving consists of tracks
surrounded by scenes whose composition is controlled.
It is flexible enough to support various types of cues
to causal structure, including interventions (Lagnado
et al., 2007). Moreover, because the game can be played
against another subject or against a computer program,
it affords the study of social effects in learning (Goldstein
et al., 2010).3

In a separate study, we used the model to replicate
successfully some of the standard effects in causal learning,
such as forward and backward blocking (Holyoak and Cheng,
2011).

Zhttp://supertuxkart.sourceforge.net/ (public domain). We
modified the game to support Wiimote and to incorporate our
tracks, scenes, and reporting. The modified code is available
upon request.

3Note that instructions that the subject receives from the
experimenter may be considered a kind of social cue.
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* Green arrows and red boxes will not appear in the game. Those are shown here only for the purpose of clarification.

Figure 3: A typical game scene, as presented to the sub-
jects as part of the instructions for the experiment.

scene type crate dog cat for box contents
1 1 [0] 1 0  [plunger]:s

2 1 m 1 0  [cake]it

3 1 [0] 1 1 [plunger]i+

4 1 m 1 1 [cake]it

5 0 0 1 0  [plunger]:s

6 0 1 1 0  [cake]i+

Table 1: The six scene types in the experiment, with the
presence or absence of various objects indicated by 1/0.
When crate is present, dog is hidden inside it (bracketed,
[])- The contents of the surprise box (cake or plunger)
become visible only if the subject actively “takes” it (sig-
nified by [-]s+). Note that dog perfectly predicts [cake]; 4,
but subjects who miss the significance of crate will be
unable to distinguish between scenes 1 and 2, or 3 and 4.

The behavioral experiment

Given the novelty and the potential difficulty of the dy-
namical learning scenario, in this study we opted for a
maximally simple dependency to be learned: a single
causal link between two variables. Each scene in the
experiment could include any or all of the following ob-
jects: a dog, a cat, a fox, and a crate (Figure 3). In ad-
dition, in each scene there was a “surprise” box which,
if the subject chose to “take” it, revealed the reward: a
cake or a plunger, depending on the appearance of other
objects in the scene. The subjects were instructed to
collect as many cakes as possible, while refraining from
taking plungers. Altogether, each subject encountered
252 scenes: 6 different racetracks x 3 laps x 14 scenes
drawn at random for each track from among the scene
types listed in Table 1.

The subjects’ task is best seen? as learning a directed

4The question of what the relationship between dog and
cake in this simple scenario really s, causal or associative,
is best avoided, given the philosophical issues surrounding
causality (Schaffer, 2009). Somewhat paradoxically, the dis-
tinction is easier for more complex networks of dependencies
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or causal (rather than an undirected or merely associa-
tive) relationship, for two reasons: the asymmetry in
the temporal structure of each scene encounter and in
the functional significance of its components. First, the
reward never co-occurred with any of the other vari-
ables: rather, it always followed them temporally, and
then only if the subject actively intervened by opening
the surprise box. Second, it made no sense for the sub-
jects to hypothesize symmetrical functional roles for the
reward and for the other variables, given that their goal
was formulated exclusively in terms of the reward. In
any case, no causal language was used in the instruc-
tions given to subjects, which makes the present exper-
imental set up arguably more natural as a platform for
exploring simple learning in the wild than those that ex-
plicitly require the subjects to seek causal explanations
for behavioral outcomes.

Eighteen subjects, recruited online from the Cornell
University subject pool, participated in the study for
course credit. The dependent variable, Correct, was de-
fined as equal to 1 in trials where the subject opened
a box with cake or refrained from opening a box with
plunger. A mixed model analysis using the Imer pack-
age (Bates, 2005), with a binomial linking function,
and with Subject, Track, and Scene as random factors,
yielded a significant effect of Lap on Correct (z = 7.53,
p = 5.1 x 107™). Averaged over tracks, the subjects’
Correct rate reached 0.61 in the third lap. The far from
perfect performance is understandable, given that the
inconsequential parts of the game environment (such as
a stable with horses, bales of hay, etc.), as well as of the
surprise-box scenes themselves, made it difficult for sub-
jects to home in on the truly predictive variable (dog).
Moreover, in scene types 1 through 4, the dog appears
inside a crate and is thus not visible, unless the subject
drives through the crate (something that few subjects
ventured to do).

The evolution of subjects’ performance over time is il-
lustrated for each scene type in Figure 4, right. Debrief-
ing indicated that subjects generally assumed correctly
that the contents of the surprise box could be antici-
pated by noting which of the other objects were present
in the scene. Many of the subjects did not, however, al-
low for the possibility that a cause may be hidden, which
prompted them to invent incorrect explanations for the
difference between scene types (1,2) and (3,4). Some
subjects also tried to find patterns in the irrelevant vari-
ables such as the distances among objects, the curving
of the track, and the location of the box with respect to
other items.

Modeling results
We simulated the behavioral experiment by feeding the
model incrementally the same sequence of observations

among variables, such as those explored by Blaisdell et al.
(2006).
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Figure 4: Left: the performance of the algorithm on
ground-truth data, for each of the six scene types. Right:
the performance of 18 runs of the algorithm (filled cir-
cles) and of the 18 subjects subjects in a real run (means
with 95% confidence intervals). The ups and downs in
the algorithm’s performance over time are due to its
sensitivity to the order of scene appearance (batch al-
gorithms do not exhibit this behavior).

encountered by the human subjects, namely, the values
of the four variables listed in Table 1, plus, in the cases
where the model decided to open the surprise box, the
value of reward. In the first lap (14 scenes; the “initial
learning” phase in Algorithm 1), the model was set to
open every box. Subsequently, if the model’s decision
whether or not to open the box could be made with 95%
confidence,” it chose the recommended action; otherwise
it flipped a coin. If the decision was to open the box, the
model used the outcome to adjust its parameters; if not,
it simulated an outcome by adding to the predicted value
of the reward a random number (distributed uniformly

5As decided by a binomial test with a confidence interval
of p£ z1_q/24/DP(1 — P)/n, where p is the sample proportion
of successes in the observed sequence of trials and z;_,/2 is
the 1—a/2 percentile of a standard normal distribution, with
« being the error percentile and n the sample size. For a 95%
confidence level, a = 5% and z;_,/2 = 1.96.

in [0, 1]) and used that outcome to learn.®

As can be seen in Figure 4, left, when fed ground-truth
data, the model learned quickly and reliably.” More to
the point, when presented with the real sequence of ob-
servations, it generally behaved similarly to human sub-
jects (Figure 4, right), reaching a comparable level of
performance: 0.66 accuracy in the third lap. As with
the human subjects, the effect of Lap was significant
(z = 256, p = 0.01). In Figure 4, right, in those
cases where the dog was hidden from view (scene types 1
through 4; see Table 1), the human subjects performed
poorly, and the algorithm too converged to a chance-level
performance.

Conclusions

Similarly to some other recent studies and models of
causal learning (Lu et al., 2008; Lagnado and Speeken-
brink, 2010; Bonawitz et al., 2011), the present work
focuses on sequential learning and inference. There are
also important differences. First, our behavioral setup
uses a dynamic video game that subjects readily relate
to. Second, the model we develop is rooted in some
basic intuitions regarding how animals learn the causal
structure of dynamic situation: (1) the importance of
close temporal succession of events and outcomes, (2)
the utility of neural-like mechanisms that may register
it, and (3) a heuristic approach to bootstrapping causal
learning from very simple pairwise dependencies gleaned
from the data. In those respects, the algorithm we offer
is a special-purpose model rather than a general learner.

To ascertain that subjects in our game scenario engage
in causal learning and inference, rather than in memo-
rization of contextual cues they believe to be associated
with particular outcomes, future experiments will need
to include explicit intervention-based tests (cf. Blaisdell,
Sawa, Leising, and Waldmann, 2006), including having
the subjects manipulate the variables of their choice to
test any hypotheses that they may have formed. It would
also be interesting to analyze the evolution over time
of the subjects’ choices in opening or avoiding reward
boxes: early in the experiment, it is rational to open
boxes, so as to gather data; as the subjects develop an
ability to predict the reward, they should become more
choosy. This sequential behavior can then be compared
to that of the model (Bonawitz et al., 2011).

The model itself can be improved and extended in
several ways. For instance, as it is tested on learning

SWithout some such mechanism, the model would have no
way of recovering from a string of “don’t open” decisions —
a problem that is peculiar to models that intersperse learning
with inference.

“In comparison, a straightforward model selection ap-
proach based on maximum likelihood or AIC/BIC optimiza-
tion, implemented with the Bayes Network Toolbox for Mat-
lab (Murphy, 2001), trained incrementally on the ground
truth data, did not converge to the right causal graph for
this experiment.
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tasks that involve more complex causal structure than
that in the present study, it may be necessary to in-
clude methods for detecting and “defusing” loops that
would otherwise complicate inference. Furthermore, the
model can be made to incorporate additional cues to
causal structure, in particular, interventions (Steyvers
et al., 2003), global contextual cues, and factors such as
eligibility traces (Izhikevich, 2007) that would allow it
to learn from such cues across multiple time scales. Fi-
nally, if equipped with a vision front end and real-valued
outputs, a model rooted in the present approach may
employ reinforcement learning (Fox et al., 2008; Hosoya,
2009) to master driving around the track and competing
directly with a human participant.
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