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Abstract

Other people are the most important source of information in
a child’s life, and one important channel for social information
is faces. Faces can convey affective, linguistic, and referential
information through expressions, speech, and eye-gaze. But
in order for children to apprehend this information, it must
be accessible. How much of the time can children actually
see the faces of the people around them? We use data from
a head-mounted camera, in combination with face-detection
methods from computer vision, to address this question in a
scalable, automatic fashion. We develop a detection system
using off-the-shelf methods and show that it produces robust
results. Data from a single child’s visual experience suggest
the possibility of systematic changes in the visibility of faces
across the first year, possibly due to postural shifts.
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Introduction

Faces are perhaps the most important source of social infor-
mation for young children. Infants show a preference for
faces and face-like configurations from birth (Johnson, Dz-
iurawiec, Ellis, & Morton, 1991; Farroni et al., 2005), and
they will fixate faces to the exclusion of nearly everything
else when attending to complex naturalistic stimuli (Frank,
Vul, & Johnson, 2009; Frank, Vul, & Saxe, 2011). By their
first birthday, they are sensitive to facial information about
emotion (Cohn & Tronick, 1983) and social group (Kelly et
al., 2005), and they will readily follow gaze to an attended
target (Scaife & Bruner, 1975). As they begin to speak and
understand language, joint attention becomes a powerful cue
for learning the meanings of words (Baldwin, 1991).

To extract all of this important information in the natu-
ral environment, infants and children must attend to people’s
faces. Nearly all of what we know about children’s atten-
tion to—and understanding of—faces comes from tightly-
controlled lab experiments. In such experiments, the stimuli
are typically presented in a very accessible format: at eye-
level, large enough so that all details can be appreciated. How
often do children actually see the faces of the people around
them, though? And how often are the faces large enough to
discern details from?

Head-mounted cameras provide a new technique for mea-
suring access to faces during development. While the method
of placing a miniature camera on the head of an infant or
young child is still relatively new, a number of investiga-
tors have begun using it to record children’s first-person per-
spective (Yoshida & Smith, 2008; Aslin, 2009; Smith, Yu,
& Pereira, in press). Some studies have even used head-
mounted eye-trackers to measure what part of the visual scene
the child is fixating, a good proxy for what parts of the world
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the child is attending to (Franchak, Kretch, Soska, Babcock,
& Adolph, 2010).

Of particular interest is the result, reported by Franchak et
al. (2010), that 14-month-olds rarely fixated their mother’s
face, even when she spoke to them directly. They looked in-
stead at her hands or other parts of her body. The authors
speculated that this result might have been due to the mother’s
location, usually high above the child. When mothers were
sitting down, their faces were much more visible to their chil-
dren. In our current investigation we follow up on this sug-
gestion, investigating the possibility that the posture of care-
givers and the infant’s own posture work together to cause
developmental changes in the accessibility of social informa-
tion.

The introduction of these new methods mean that for the
first time, we can see what babies are looking at as they in-
teract with—and learn from—the people around them. This
development opens up many new questions for investigation.
Yet work of this type is hindered by the tremendously slow
and resource-intensive task of manually annotating videos,
frame by frame. Up until now, only a few research groups
have grappled with the task of how to analyze the massive
datasets captured using these methods.

The current study thus serves two purposes. First, it is de-
signed to measure the accessibility of social information—in
the form of faces—to infants. To investigate this question
across development, we make use of a previously-described
dataset (Aslin, 2009), in which a head-mounted camera
recorded 2 — 3 hours of the visual experience of a single child
at ages 3, 8, and 12 months (sample frames shown in Figure
1). Second, we investigate the possibility of using automated
face detection to measure social information. It might in prin-
ciple be possible to hand-annotate the presence of faces in
each of the million-odd frames in our dataset (such annotation
can be done around 4-8 times slower than real-time, yielding
around 25-50 hours of total annotation time). For any larger
study with more participants, annotation costs would quickly
become prohibitive. Our study thus was designed to serve as
proof-of-concept for the automated strategy.

Detection of upright faces in static images is widely con-
sidered to be a solved problem in computer vision, with the
work of Viola and Jones (2004) providing a computationally-
efficient solution that is now used in a wide variety of systems
and consumer electronics. Nevertheless, the dataset we used
presents a distinct set of challenges for such methods. In what
follows, we describe our method for handling these chal-
lenges using a collection of out-of-the-box techniques from
computer vision and machine learning. We end by describing
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Figure 1: Sample frames showing head-camera data plotted along with face detector data. A separate rectangle is plotted for
each active detector. Frames were selected in which annotations and model predictions matched.

developmental changes in the prevalence and size of faces
in the field of view of the infant we studied. These changes
suggest that there may be a number of important factors in-
fluencing the accessibility of social information during early
development.

Methods

Although in principle a single joint detection and tracking
system could be constructed to detect faces in head-camera
video, in practice such as system would be complex and
computationally-intensive. Thus, we pursued a two-step ap-
proach to face-detection (Figure 2). We first preprocessed
each frame of our data separately using simple but noisy de-
tectors, which find faces in static images. We then tested a
number of supervised post-processing models on their perfor-
mance in picking frames with successful rather than spurious
detections.

Because of this two-step scheme, conventional annotations
of a gold standard training sample (e.g. face/no face) were not
maximally effective. If the detectors did not find a face in a

frame, training the post-processing model that the frame con-
tained a face would be counterproductive. Instead, our strat-
egy was to create two annotated sets. The first was a training
set that indicated whether, for each frame, the detectors had
correctly identified a face. The second was a generalization
dataset that indicated whether a face was in fact present in the
frame, allowing us to test what proportion of faces our models
identified on a completely independent dataset (different clips
from the same corpus). In addition, we annotated the child’s
posture in each video of the corpus. These annotations (along
with the details of the dataset) are described below.

Data and annotation

Aslin (2009) head-camera dataset Data for the study con-
sisted of videos collected on three days during the infancy
of a single child, at ages 3, 8, and 12 months. This dataset
was originally collected by Aslin (2009); the data are de-
scribed in detail in Cicchino, Aslin, and Rakison (2010). The
method of collection was a small wireless camera mounted
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Figure 2: Schematic of our face-processing approach. Step 1:
process frames with noisy Haar-style detectors. Step 2: filter
detections with conditional random field (CRF) model.

on the infant’s head, allowing recording of a large portion of
the infant’s visual field. The camera was a Sony 480TVL
CCD “bullet” camera, embedded in a headband and wire-
lessly transmitted to a digital video recorder. Videos were
approximately 126, 190, and 140 minutes long for the seg-
ments collected at 3, 8, and 12 months, respectively. Record-
ings were made while the infant was in a number of different
locations, including in the home, on a shopping trip, on a
walk, and at a playgroup. Due to the variation in activities
across ages, the natural statistics of these three samples were
unmatched (likely due to both sampling issues and true dif-
ferences in the distribution of activities across ages); thus we
will not attempt to compare across activity types.

Annotation of detectors (training set) We annotated a
sample of videos to provide training data for our models. For
this annotation effort our goal was to select frames in which
the raw face detectors had correctly selected a face (and reject
those for which the detections were incorrect). We classed a
frame as containing a correct detection if there was at least
one detector around the face of a person (thus a frame could
still contain some spurious detections, though in practice this
was relatively rare). We annotated nine clips of one minute
each (16k frames). Three minute-long clips were selected for
each age group randomly, with the caveat that they included
some correct face detections in each.

Annotation of face presence (generalization set) We ad-
ditionally performed frame-by-frame annotations of whether
a face was present in the video frame. We selected 3—4 one-
minute clips at each of the three ages for a total of 11 min-
utes of video at 30 frames per second (20k frames). One-
minute clips were selected randomly, again with the caveat
that they needed to contain at least some instances of faces.
We counted a frame as containing a face when a face was fully
visible with no occlusions at three-quarter view or greater
(both eyes visible). This stringent annotation criterion was
used because occluded or profile-view faces are much less
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Figure 3: Time spent in each coded posture at each age.

likely to be useful for inferring eye-gaze direction, emotional
state, or other social information.

Posture annotation We additionally annotated the posture
of the child during the videos, in order to use this factor in our
analysis of position and size of detected faces. We attempted
to estimate the child’s posture wherever possible, categoriz-
ing it as lying, sitting, standing, crawling, or being held. Fig-
ure 3 shows descriptive data for this measure. Annotation of
this measure was somewhat subjective, but inter-rater agree-
ment was relatively high with k = .72 for five categories.

Models

Although face detection is generally considered to be a solved
problem (Viola & Jones, 2004), face detection in develop-
mental, first-person data presents a number of challenges
that do not usually occur in static photographs or standard
videos. First, faces are often occluded and at odd orientations
for children. Second, in our case, the video was transmit-
ted wirelessly and contained some artifacts due to the trans-
mission method. Third, the head-mounted camera was sub-
ject to quick movements as the child moved his head, mean-
ing that many methods applicable for scene segmentation or
motion tracking in static-camera applications could not be
used here. Our modeling goal in this project was to com-
bine computationally-inexpensive techniques to address these
challenges.

Our preprocessing step made use of off-the-shelf Haar-
style detectors from the OpenCV package (Bradski &
Kaehler, 2008). Each frame was processed with four separate
detectors: three full-face and one profile detector. These de-
tectors were noisy, capturing many faces but also spuriously
identifying many background elements as faces as well (e.g.
doorknobs, high contrast windowpanes, see Figure 4). This
processing step ran at approx. 10% of real time on a quad-
core machine, taking around 4 days to process all detectors.

Next, we trained post-processing models to discriminate
valid detections from invalid detections, using our detector-
annotated training set. Our primary model of interest was a
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Figure 4: Frames in which CRF model incorrectly predicted
that the detectors had correctly identified a face.

conditional random field (CRF) model (Lafferty, McCallum,
& Pereira, 2001). CRFs are discriminative sequence mod-
els: they take input data of sequences of observations (with
some feature set describing each observation) and return a
classification of each observation in the sequence. Their key
difference from feature-based classifiers (e.g. Naive Bayes or
MaxEnt) is their ability to use sequential information; like-
wise, their key difference from sequence models (e.g. hidden
Markov models) is their ability to incorporate rich featural
information about each observation. They have been applied
successfully to a number of tasks including natural language
processing and computer vision. For this application, we used
the Matlab CRF toolbox (Schmidt & Swersky, 2008).

We included two other simpler models for comparison:
a Naive Bayes (NB) classifier and a hidden Markov model
(HMM). The classifier made use of exactly the same feature
set but considered each frame in isolation (neglecting sequen-
tial dependencies). The HMM considered only the sequence
of decisions and the number of detectors that were active.
Thus, the difference in performance between the CRF and
the classifier provides a rough measure of the contribution of
sequential information (provided by the video), while the dif-
ference between CRF and HMM provides an estimate of the
gain due to adding featural information.

We created a set of binary features to describe the detec-
tions in each frame. These included a separate feature for
whether each detector was active, a feature for each detec-
tor pair to indicate whether the detector centers fell within a
certain threshold (5 pixels) of one another, and features for
each detector indicating whether it changed in size or disap-
peared in either the preceding or following frame. We used
this feature set to train the models to classify the training data
as containing correct or incorrect detections.

Table 1: Model performance on detector-annotated training
dataset (“Tr,” 9 minutes, only frames with successful de-
tections) and generalization dataset (“Gen,” 11 minutes, all
frames with human-visible faces). P = precision, R = recall,
F = F-score (harmonic mean of precision and recall).

TrP TrR TrF | GenP GenR GenF
NB .64 .82 72 .76 .55 .64
HMM | .72 .85 78 .81 .57 .67
CRF 85 77 81 .85 .53 .65

Table 2: CRF model performance on generalization training
set by age. Prop. faces refers to the proportion of total faces
in the gold-standard dataset for that age.

3 months 8 months 12 months
Precision .92 .89 33
Recall .60 A48 .35
F-score 73 .62 34
Prop. faces 46 45 .07
Results

Table 1 shows evaluation results for each of the models on
the two datasets we annotated, the detector-annotated training
dataset and the gold-standard generalization dataset. (Rather
than using a technique like cross-validation to test generaliza-
tion performance, we report results on both the training data
and an independent generalization set that was never used
for training). The CRF model performed best on the train-
ing data, capturing a slightly better tradeoff between preci-
sion and recall. The gain in performance was relatively slight
from the HMM to the CREF, indicating that the majority of
the value of the CRF was due to the sequential dependencies
enforced by the model. Knowing that a previous frame con-
tained a successful detection was helpful in deciding whether
the current one did as well.

When we applied the three models to the generalization
dataset, F-scores were within a small range of one another,
with the HMM outperforming the CRF, perhaps indicating
some overfitting of feature weights to the training data. Nev-
ertheless, the CRF produced the highest precision on the gen-
eralization dataset. Because our aim was to measure the quan-
tity and spatial distribution of faces at each age, we judged
precision more valuable than recall and chose the CRF model
for our analysis (though we note that results do not change
meaningfully if the other models are chosen).

Performance on the generalization set was highly asym-
metric across the three ages, with high precision and recall
for the 3-month data, mid-level performance on the 8-month
data, and very low performance on the 12-month data (Table
2). A number of experiments attempting age-specific training
failed to find major gains in performance by training only on
e.g. 12-month data. There were few faces in the 12-month
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Figure 5: Heat maps showing probability of finding a face in each location of the camera field for 3, 8, and 12-month-old data.

Dotted lines show the vertical locations of maxima.
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Figure 6: Proportion of faces detected by CRF model at each
age. Error bars show standard error across video clips.

data (7% of frames, compared with 46% of frames in the 3-
month data), and those that were present were very hard to
detect correctly, perhaps because of their small size. Figure
4 shows frames in which the CRF model incorrectly reported
a face; these typically showed consistent spurious detections
for some superficially face-like configuration of objects.

We evaluated the CRF model on the entire dataset, using
the settings established in training. Congruent with the gen-
eralization data, we found very few faces in the 12-month data
relative to the other two ages. Figure 6 shows the estimated
proportion of face-containing frames across clips at each age.
Nevertheless, we should be cautious in interpreting these re-
sults, due to the relatively small amount of data available in
this dataset. It may be the case that these results are skewed
due to, e.g., participating in a play-group at 8 months with
many children present.

Figure 5 shows a heat map of the probability of finding a
face at each location in the camera’s field for each of the three
samples.! Faces were higher in the image plane at 8 and 12

IFor this and the remaining analyses, we averaged across all de-
tections for each frame, potentially including some noise due to spu-
rious detectors in correct frames. Future work should look estimate
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months than at 3 months. This shift could potentially be due
to postural differences: the child was more likely to be held
or lying down at 3 months and more likely to be sitting or
standing at 8 and 12 months. In a sitting or standing position,
faces tend to be higher in the visual field than when lying
down and looking up over the edge of the crib.

Faces were also different sizes in the older videos. The
3-month videos had a qualitatively different distribution of
detected face sizes (Figure 7). We cannot completely rule out
the possibility that some of the smaller faces in the 8- and 12-
month videos were spurious detections. Nevertheless, the rel-
atively similar distribution for each of these (compared with
the drop in precision from 8 to 12 months) suggests that de-
creasing precision of detections was not the only factor here.
Though speculative, a postural explanation for the shift in
size might also be proposed: at older ages, the child was less
likely to be lying or being held close to the face of a care-
giver. Instead, in a seated or standing position, the faces of
others would be further away.

Our final analysis directly measured size and vertical posi-
tion of faces by posture (due to the limited overlap in postures
between ages, regression analysis was not possible). The ly-
ing posture, seen only at 3 months, had a much larger face
size than the other postures (almost 9% of camera field, as op-
posed to 2.5% for holding, 3% for sitting, and 4% for stand-
ing). Both lying and being held also had lower average ver-
tical positions (.50 and .52 respectively, where 1 was the top
of the screen) than sitting and standing (.60 and .57, respec-
tively).

General Discussion

We investigated the possibility of using automated face de-
tection techniques to measure the accessibility of social infor-
mation to infants. With head-mounted videos from a single
infant at 3, 8, and 12 months, we constructed a discrimina-
tive model of face-detection that made use of inexpensive but
noisy detectors and a secondary filtering step using a condi-
tional random field model. This approach was relatively suc-

the location of correct detections as well as frames in which they
occur.
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Figure 7: Smoothed histogram of detected face sizes at 3,
8, and 12 months. Height shows proportion of detections at
each size; horizontal axis is scaled in log proportion of cam-
era field. Dashed lines give means.

cessful in picking out correct detections for the dataset as a
whole.

The face-detector data revealed a surprising pattern. Faces
were far less frequent in the 12-month data (and harder to de-
tect, providing a potential caveat to our descriptive results).
In addition, those faces that were detected in the older part
of the dataset were both smaller and higher in the visual field
of the infant. These differences seemed related to the distri-
bution of postures across different ages, and indeed size and
horizontal position did vary with posture. Nevertheless, fur-
ther research (and considerably more data) will be necessary
to check these conclusions.

The speculative picture that emerges is nevertheless con-
gruent with previous work (Franchak et al., 2010). As chil-
dren grow and become more adept at locomotion, they create
a situation where the faces of others in their environment are
further away from them and less visible. While the young in-
fant is constantly having the faces of others pressed into his,
the toddler lives in a world populated by knees.

More broadly, the methodological upshot of this work is
that head-camera footage may be an extremely valuable tool
for studying social attention and access to social information
“in the wild.” Nevertheless, this work cannot proceed if hand-
annotation is the only solution. Computer vision methods that
are appropriate for data of this type must be developed, and
this study took a first step in that direction, revealing sugges-
tive developmental differences.
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