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Abstract

Our subjective experience of the world is ‘unitary coherent’
(UC). ‘Unitary’ means we only perceive one interpretation at a
time rather than a blur of multiple possible worlds. ‘Coherent’
means that we almost always perceive scenes that do not con-
tain contradictory parts. While this form of first-person per-
ceptual experience may seem obvious, it is in opposition to the
requirements of optimal decision making, and to some forms
of the ‘Bayesian brain’ hypothesis. We hypothesise that there
are at least three types of ‘Bayesian’ action selection occur-
ring in cognition, including a ‘maximum utility (MU) percept’
strategy that makes use of UC percepts. We give evidence from
a video game experiment that is compatible with MU/UC per-
ception and action selection, and is incompatible with optimal
actions. Furthermore, it is compatible with the presence of
utility bias in MU/UC perception: by changing the available
actions we may be able to manipulate the subject’s percept of
a fixed ambiguous stimulus.
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A paradox about perception

Our subjective experience of the world is ‘unitary coherent’.
Unitary means we only perceive one interpretation at a time
(e.g. either a faceor a vase in the Rubin Vase illusion) rather
than a blur of multiple possible interpretations (never theface
and vase together).Coherent means that we almost always
perceive scenes that do not contain contradictory parts. (e.g
we do not see part face and part vase). While the UC nature of
perception may seem obvious from subjective experience, it
is in opposition to the requirements of optimal decision mak-
ing, which require consideration ofall possible interpreta-
tions of sensory data (Bernardo & Smith, 2000). In particular,
the ‘Bayesian brain’ hypothesis (Doya, Ishii, Pouget, & Rao,
2007) views perception as computing probabilities of many
interpretations, and optimal actions would be found by inte-
grating out the utility of all actions under all percepts. Ifboth
Bayesian brain research and optimal action theory (Körding
& Wolpert, 2004) suggest that perception should operate us-
ing a distribution, or ‘Bayesian blur’ of possible percepts,
why then is our subjective experience limited to a unitary co-
herent percept instead? And which unitary coherent percept
do we perceive: the most probable one or the most useful
one? This study argues that as full Bayesian perception and
action selection is computationally hard, an approximation
which we call ‘maximum utility (MU)’ perception is a useful
surrogate. It then presents evidence in support of the maxi-
mum utility perception hypothesis using a video game style
experiment.

Types of perception and action selection
When a unitary coherent percept is required in machine per-
ception, such as the output of a machine vision (Felzenszwalb
& Huttenlocher, 2005) or speech recognition system (Young
et al., 2006), the maximum a posteriori (MAP) state is often
used by system engineers,

sMAP = args maxP(s|d), (1)

wheres are world states andd is the available data. However
real-world agents are often required to make actions as wellas
– or instead of – reporting percepts. In these cases, perceiving
the MAP state does not necessarily lead to the best action if
the following naive action-selection rule is used as a separate
stage following MAP perception,

anaive = arga maxU(a,sMAP), (2)

whereU is utility, a are actions. Instead, optimal actions are
obtained (Bernardo & Smith, 2000) by maximisingexpected
utility (MEU), which requires integrating over the ‘Bayesian
blur’ of possible worlds,

aMEU = arga max
∫

s
U(a,s)P(s|d)ds. (3)

MEU action selection has no role for unitary coherent per-
cepts. Instead it must considerevery interpretations. Com-
putational approximations to this integral might ignore some
improbable interpretations (Spiegelhalter, Thomas, Best, &
Gilks, 2008), but still sum over aset of possible world states
s rather than privileging any particular unitary state.

In many cases humans have been claimed to make optimal
actions (Griffiths & Tenenbaum, 2006). This may occur for
low-level, rapid stimulus-response type actions, and for high-
level cognitive decisions such as business and financial de-
cisions. Much recent work in ‘Bayesian Cognitive Science’
proceeds byassuming an MEU framework, then reasoning
backwards from observed actions to report human priors on
various stimuli (Stone, Kerrigan, & Porrill, 2009).

So why then do we bother to perceive UC percepts? Do
they have some functional significance as well as being corre-
lates of subjective experience? If they do have a function, this
would suggest that Bayesian Cognitive Science’s assumption
of optimal action is flawed, and could potentially invalidate
some of its reported human priors.

Bayesian inference and hence MEU decision making is
generally an NP-hard problem (Cooper, 1990) so is imprac-
tical for all but the most constrained percepts and actions.
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Figure 1: 3D environment used in the training phase of the
game. A joystick moves the missile launcher around a 2D
(x,z) plane on the ground. Pressing and holding the joystick
button fires a missile (not shown) vertically upwards (y axis).
Releasing the button detonates the missile. Points are scored
for detonation close to the target(s) shown by white crosses.
The training phase shown here includes colour, overlap, per-
spective and support cues to make the cube’s configuration
unambiguous. These cues are removed in the test phase to
leave an ambiguous Necker cube, with ambiguous 3D target
positions. Figure is best viewed in colour.

It has been suggested (Gigerenzer & Todd, 1999; Goldstein
& Gigerenzer, 2002) that making actions based on a single
‘best’ percept (such as the ‘take the best’ heuristic and ‘less
if more; effect) could be a useful heuristic to speed up the de-
cision making process at the expense of optimality. However
the ‘percepts’ in these cases are high level logical states of
the word rather than actual perceptual objects in three dimen-
sional space.

We propose an alternative form of perception and action se-
lection to MAP perception and MEU action selection, which
we callmaximum utility perception (MU). In MU we choose
a UC state and action together,

(sMU ,aMU ) = args,a maxU(a,s)P(s|d) (4)

which yields the best possible action assuming that only a
single world state can be considered.

The MU Hypothesis
We hypothesise that humans have at leastthree kinds of deci-
sion making behaviour, moving from fast and simple to slow
and accurate:

1. Immediate stimulus-response (S-R). A fast association
from input data directly to an action. Such mappings do not
need to build a UC percept. The could be implemented neu-
rally at the sub-cortical level, such as direct links from supe-

rior colliculus to basal ganglia (Redgrave, Prescott, & Gur-
ney, 1999). For simple mappings, it is possible that simple
computational structures such as small neural networks could
learn to perform near-optimal action selection, as has been
demonstrated by computational experiments (Ramamoorthy
& Verguts, 2012). Near-optimal performance in fast, low-
level tasks such as reaching and pointingquickly at spheres
having different locations and utilities (Kording & Wolpert,
2007); and ‘simple heuristics’ (Kahneman, Slovic, & Tver-
sky, 1982; Gigerenzer & Todd, 1999) would be candidates
for this mechanism. For simple tasks this method would give
MEU-like results but without explicitly performing the MEU
integration.

2. Fast MU/UC percept-response (P-R) which achieves
suboptimal MU action in reasonable computation time. UC
perception could be implemented cortically, with high-level
perceptual areas computing a single mostuseful percept of
the world, jointly with action selection under utility bias. Ev-
idence for UC perception is found in binocular rivalry ex-
periments (Srinivasan & Nunez, 2006), and in computational
models (Riesenhuber & Poggio, 1999) as well as in everyday
subjective experience. This paper gives evidence for MU/UC
perception.

3. Full MEU action selection, via conscious sequential
consideration of many possible percepts and responses. This
slow type of decision making would occur for example when
making a business decision, where several minutes (or even
hours or days) are set aside to consciously perceive one possi-
ble world at a time, and the effects of many possible actions in
them are simulated, and the resulting utilities averaged over.
Humans are well-known to be poor at this kind of computa-
tion (Kahneman, 2003), and real-life action selection of this
type is often performed in the business world by specialised
operations researchers making use of computers to calculate
the expected utilities (Pourret, Naı̈m, & Marcot, 2008), rather
than relying on their own cognitive faculties.

If multiple decision making systems exist, it seems likely
that the basal ganglia system is used to switch between them,
for example taking account of time pressures for the type of
decision to be made (Lengyel & Dayan, 2008; Redgrave et
al., 1999; Daw, Niv, & Dayan, 2005). Strong support for
the existence of at least two systems comes from the Ebbing-
house illusion, which produces different perceptual reports in
verbal and stimulus-response type actions. It has been shown
(Goodale & Milner, 1992) that the motor actions are consis-
tent with optimal MEU-like decisions in thesame subjects
that make incorrect verbal reports.

While research on near-Bayesian optimal decisions of the
S-R and Full MEU types abounds, there has been compara-
tively little work on the role of unitary-coherent perception
in decision making. While our subjective experience tells us
very clearly thatsomething in the brain is computing a UC
percept (which is incidentally presented to our conscious ex-
perience), and researchers have modelled how MAP percepts
could be computed in this way (Riesenhuber & Poggio, 1999)
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there has been little study of how this type of perception could
be used in action selection as a replacement for S-R and MEU
behaviour. Our hypothesis is that MU perception and action
is in fact the dominant mode of everyday, aware, perception
and action – the type of cognition that occurs consciously but
not deliberatively.

It is difficult to design experiments to isolate this middle,
MU, level of perception, because as soon as subjects know
their performance is being monitored they tend to start de-
liberating as in Full MEU, rather than performing ‘everyday’
perception and action selection. Conversely, if tasks are too
low-level and fast-paced, they will use rapid S-R behaviour.
Perhaps that is why few experiments have noticed MU effects
before. To this end, we have carefully designed a simple 3D
perception task, and examine two hypotheses:

Hypothesis H1 is that there are examples of human be-
haviour that are consistent with UC perception and incon-
sistent with both Full MEU (deliberative) and approximate
MEU (S-R). A positive result here would stimulate further
research into delimiting the circumstances in which the dif-
ferent behaviour types are employed.

Hypothesis H2 is that the particular kind of UC used in
human perception is the MU percept. To find evidence for
this stronger hypothesis, we will examine if it is possible to
bias the percept from equally a priori probably percepts by
altering the available action set, as predicted by MU.

Methods
A video game – loosely based on “space invaders” – was de-
signed and implemented1, having optimal MEU actions that
require consideration of multiple scene interpretations,and
having MU actions giving suboptimal rewards. If human be-
haviour in this (or any other) game could be shown to deviate
from MEU behaviour and be consistent with MU, then evi-
dence is provided for H1. Further, if the human behaviour is
consistent with predictions made by MU selection, then evi-
dence is provided for H2. An overview of the phases of the
game is given here, followed by details of each phase.

In phase one of the game, shown in fig. 1, subjects were
trained in several rounds to fire missiles from a launcher in
a 2D plane, in an unambiguous simulated 3D environment.
They received rewards according to how close to aerial targets
(shown as white crosses in the figure) they get. After demon-
strating that they understand the utility function and controls
by passing a second, ‘examination’ phase, they are then tested
(phase three) in an ambiguous bi-stable environment. A true
MEU strategy would consider both interpretations of this en-
vironment, whereas a UC based strategy would use only one
and lead to a different action. Phase one consists of several
rounds which teach the subject about the game. The choice
of tasks here is fairly arbitrary, as the logic of the experiment
is thatif subjects can pass the phase two examthen they have
demonstrated an understanding of the rules sufficient to play
the real test game in phase three. Phases one and two may

1in Python, source code available on request.

be repeated in any order as many times as the subject desires,
until the exam is passed successfully.

Phase 1: exploratory training round
The game environment consists of a visible 2D horizontal
plane on which a missile base can move around, a wire-frame
cube in the 3D space above the plane, and one or two targets
located at vertices of the cube. The environment is drawn us-
ing very strong perspective2, and the vertices of the cube are
connected vertically to the plane by lines to make their 3D
locations unambiguous. In addition, edges of the cube are
drawn with think lines of different colours, producing addi-
tional disambiguation cues where one lines is seen to cross in
front of another.

Subjects control the(x,z) position of a missile base using
an analogue joystick (Logitech Extreme 3D Pro) and fire a
missile by pressing and holding the joystick trigger. Once
fired, the missile moves upwards (they direction) until the
trigger is released. The missile then explodes at positionm=
(mx,my,mz). N ∈ 1,2 targets are present in the environment
at positionsti = (t i

x, t
i
y, t

i
z), i = 1 : N, and a Gaussian rewardR

is received and displayed centre-screen after the explosion,

R =
N

∑
i=1

ri, (5)

ri = 100×exp− (m− t)(m-t)T

2σ2 . (6)

The spread,σ was fixed at a large enough value (σ =
2
√

3/
√

2ln2) so that if two targets are present, the score is
always highest when firing at the point between them than
when firing directly at one of the targets.

In the exploratory round, single targets are presented at dif-
ferent vertices of a fixed cube. Subjects have unlimited time
to position the missile base and fire. They are then repre-
sented with a visual display of the reward, then the next tar-
get is presented. They are given 50 such targets to practice
with, no cumulative score display, and are encouraged to ex-
periment to learn about the rewards available at different dis-
tances from the target by an introductory message.

Phase 1: utility training round
In the exploratory round, subjects obtained high scores by fir-
ing as close to the target as possible. To help them learn about
the shape of the Gaussian utility function, a series of rounds
takes place in which fixed cubes are shown and the subject is
asked to deliberately scoreonly 50,70 or 90 points. Thus they
are encouraged to try aiming at locations at different distances
from the target.

Phase 1: double target training
This round is similar to the first exploratory round, but uses
two targets presented together at each trial. By construction

2OpenGL: gluPerspective(45, 1.0*width/height, 0.1, 100.0); glu-
LookAt(7,0.05,7, 0,-1.25,0, 0,1,0). Cube faces are 2*2 units.
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(choice ofσ), the optimal action is now always to aim at the
point midway between the targets.

Phase 1: blackout training rounds
Two further training rounds take place. In the first, the lower
half (x+ z > 0) of the missile-launching area is ‘blacked out’.
It is coloured red, and the joystick is unable to move into
the red area. In the second round, the situation is reversed
at the top half of the grid (x+ z < 0) is blacked out. Subjects
learn that that optimal strategy when faced with a target in the
blacked out region is to fire from a position as close to it as
possible that is on the centre line.

Phase 2: examination round
The purpose of the examination round is to demonstrate that
the subject has learned the optimal actions for single and dou-
ble targets, as well as possessing sufficient motor skills to
control the game using the joystick. 20 trails are presented
in rapid succession (one every 5s) and a cumulative score is
maintained. If subjects fail to score 2170 points or more, they
are sent back to the exploratory phases then made to repeat
the examination (or allowed to leave the experiment). The
qualifying score was chosen such that it can only be obtained
by using the optimal strategy of aiming closer to the centre
of each pair of double targets than to either individual target.
Thus by passing the examination phase, subjects demonstrate
knowledge of this strategy.

Phase 3: Ambiguous test round
In trials within this round, a bi-stable ambiguous (Necker)
cube is presented to the subject very quickly, at random ori-
entations. In some (80% of) trials there is one target at a
random vertex. In others there are two targets, which may
be at opposite (10% of trails) or non-opposite (10% of tri-
als) vertices. The percept is made ambiguous by switching
the projection from perspective to orthographic, droppingthe
vertex-to-plane cues, and drawing all edges in white to re-
move overlap cues. To motivate subjects, they are told that
that their cumulative score from all rounds of phase three will
be their reported result, and that the subject with the highest
reported result will receive twenty UK pounds in cash. (Sub-
jects were undergraduate psychology students and were not
paid otherwise; but received credit towards their degree for
participating.)

Phase 3: Blackout test rounds
The ambiguous test round is repeated twice more, with
blacked out near and far regions as in the learning phase.

Debriefing
It is crucially important that subjects do not become aware
of the ambiguity, because this could allow high-level (Full
MEU) reasoning to aim in the centre, and destroy any UC-
revealing behavioural effects. For this reason, after phase 3,
subjects were told about Necker cubes and asked if they were
aware of the Necker ambiguity.

Figure 2: Example of a single-target trail,(x,z) plane. The
viewer’s position is in top right corner. Blue crosses show the
two ambiguous target positions resulting from a single tar-
get vertex on a Necker cube. The red cross shows the firing
position. Black lines show the centre line and the two clas-
sification boundaries, dividing the launching area into near
(top-right), centre and far (bottom-left) firing regions.

Processing

25 subjects were tested. Of these, 20 completed the exam and
proceeded to generate data in the test phases. In debriefing,
no subjects reported awareness of the ambiguity in the Necker
cubes. For each trial, the 3D positions of both ambiguous
locations of the target or targets were computed. This was
achieved by transforming thex,z joystick co-ordinates into
a horizontal and depth pairs,(h,d), then flipping the depth
coordinate,

[

h
d

]

= H

[

x
z

]

, (7)

whereH is the Hadamard matrix,

H =
1√
2

[

1 0
0 −1

]

. (8)

The complementary ambiguous location is thus

[

x′

z′

]

= H−1
[

h
−d

]

. (9)

Furthermore, the height coordinate was transformed byy′ =
y−cd, wherec is a constant (c = 0.9) which compensates for
the choice of viewing angle in the projection images.

All shots were classified into three regions (fig 2), accord-
ing to whether their(x,z) firing locations were closest to the
near ambiguous target location, the far ambiguous target lo-
cation, or the centre line.

Results
Non-blackout trials with single targets

In these trials, the MEU action by construction (i.e. choice
of σ as described in phase 1) is to fire at the point on the
centre line between the two possible ambiguous locations.
(fig. 2). In contrast, the MU action is to fire directly at a
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Figure 3: Results. Grey bars: observed frequency ratios, with Beta posterior, one-standard-deviation confidence intervals.
White: predictions for blocked firings under the null hypothesis. The null hypothesis is that the unblocked area is unchanged
from the ’single target, firing everywhere” case, while the centre is the sum of the centre and blocked firings from that case. All
error bars assume IID observations and ignore which observation came from which subject.

randomly-chosen single one of those locations. This is be-
cause the MEU action averages over the two possible states
of the world, which gives the same calculation as choosing
where to fire in an unambiguous double target case; whereas
the MU action picks just one interpretation of the target loca-
tion, then fires directly at it.

Fig. 3a shows the distribution into region classes, over all
subjects and trials of this type. Treating each action by each
subject as an independent observation (i.e. ignoring subject-
specific effects), and beginning with a flat Beta prior over the
ratio of shots in each region, we infer posterior ratios, along
with uncertainties. The figure shows the mean and one stan-
dard deviation error bars inferred about the population ratio of
shots fired of each type. Signal detection theory can be used
to obtain thep values, but broadly two ratios are significantly
different if pairs of error bars do not overlap.

The results of these trials are surprising but inconclusive.
Although target locations are perfectly ambiguous between
near and far positions, subjects show a preference for the far
target over the near one. That is, they are already interpreting
the Necker cubes percept in a biased way, to favour interpre-
tations with the target at the back of the scene.

If the MEU strategy was followed perfectly, we would see
all shots fired in the centre and none in the near or far re-
gions. If the MU strategy was followed perfectly, we would
see all shots in the near and far regions and none in the centre.
Unfortunately, we see shots in all three regions. Whilst this

is incompatible with a pure MEU strategy, it can weakly be
explained from a MU perspective: A large number of shots
are fired from the centre line, which may be due to subjects
losing all depth perception (i.e. not perceiving the cube as
3D at all) and hedging by firing in the centre; they may also
be due to limited depth perception resulting in a stable cube
percept but an inaccurate joystick placement. (Some subjects
commented on the lack of training in the absence of the ver-
tical supports, and consequent loss of skill at pointing to the
depth of the targets.) The near and far shots would be correct
MU actions, and the centre shots due to a problem with the
experiment, requiring a better communication of the depth to
the subjects in future versions whilst retaining the ambiguity.

Blackout trials with single targets

In these trials, the pure MEU action isstill to fire at the point
on the centre line between the two possible ambiguous lo-
cations. Points on the centre line are still available during a
blackout, so the optimal strategy is unchanged.

Fig. 3b shows the results when the near-side is blacked out.
The majority of shots are now fired in the far region. This is
consistent with the MU strategy: actuallyperceiving and act-
ing on the Necker cube in the configuration which enables
the target to be reached; an optimism bias. If we assume UC
perception and action, these new results then show MU-like
bias occurring within in. For comparison, we show in white
the prediction of a null hypothesis. This is obtained taking
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the Single target histogram of fig. 3a and moving its near
mass to its centre mass, as would occur if UC percepts were
unchanged by the utility bias, and near shots were substituted
by firing on the centre line as close to blacked-out near targets
as possible. MEU theory is unable to explain why the ob-
served frequencies are so different from this null hypothesis.
MU theory explains it easily: there is no utility inperceiving
near targets; but if they are re-perceived as far targets, then an
increased utility can be obtained by firing at them.

Similarly, fig. 3c shows the results when the far-side is
blacked out. Again compared to a null hypothesis (white
bars) which moves the mass from the far region to the cen-
tre region from fig. 3a, we see a significant difference, again
suggesting the MU-like change in both percept and action to-
wards the obtainable (non-blacked-out) target position.

Fig. 3d is shown as a control. It is the distribution from
the non-blacked-out trials having two targets at opposite cube
vertices. In these cases, the MEU and MU strategies are the
same – fire in the dead centre of the grid, and the results show
a significantly increased rate of firing in the centre region over
that of fig. 3a. This again supports the presence of MU over
MEU, because MEU would give identical results in 3a and
3d but MU would give an increase in the centre region in 3d
over 3a, which we do see here.

Discussion

In informal discussions, we often argue that “perception is
obviously UC from subjective experience”. Operationalists
challenge this statement and would prefer us to cite an ex-
periment to demonstrate the claim in the third person. While
MEU actions are known to occur at both low-level psycho-
physical tasks and at high-level cognitive reasoning tasks, we
have here presented evidence for the existence of a largely
unexplored middle ground in which action selection is con-
sistent with MU, and inconsistent with both Full deliberative
and S-R approximate MEU, as in Hypothesis H1.

MU, but not MEU, can explain the deviations from the null
hypotheses seen in figs. 3b and 3c, and also the difference be-
tween figs. 3a and 3d. The match of the data to MU behaviour
in these cases gives some support for Hypothesis H2.

It was disappointing for the MU theory that fig. 3a did not
present conclusive evidence by itself of MU over MEU, as
pure MU would predict all shots to be fired in near and far
regions, not in the centre. One way to explain the data away
here is that the stimuli used were insufficiently informative to
give subjects a sense of space, so they fire in the centre by de-
fault in the absence of any meaningful percept. Future work
should try to refine the experiment to see if such hypothetical
null percepts can be replaced by true percepts, for example
by using different input and display systems while retaining
the ambiguity in the Necker cube itself. Finally, the assump-
tion that all shots by all subjects are mutually independentis
strong, and future work should employ more subjects so that
the assumption of independence of shots belonging to each
subject can be dropped in the analysis.
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