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Abstract Types of perception and action selection

When a unitary coherent percept is required in machine per-
Our subjective experience of the world is ‘unitary coherent  ception, such as the output of a machine vision (Felzengzwal

(UC). ‘Unitary’ means we only perceive one interpretatioa g Huttenlocher, 2005) or speech recognition system (Young
time rather than a blur of multiple possible worlds. ‘Cohmte f = .

means that we almost always perceive scenes that do not con- €t al., 2006), the maximum a posteriori (MAP) state is often
tain contradictory parts. While this form of first-persorr-pe used by system engineers,

ceptual experience may seem obvious, it is in oppositiohdo t

requirements of optimal decision making, and to some forms _

of(zhe ‘Bayesian brr)ain‘ hypothesis. We r?ypothesise thatethe Suap = argmaxP(sd), (1)

are at least three types of ‘Bayesian’ action selection mccu

ring in cognition, including a ‘maximum utility (MU) percép wheres are world states andlis the available data. However
strategy that makes use of UC percepts. We give evidence from real-world agents are often required to make actions asasell
a video game experiment that is compatible with MU/UC per-  _ o instead of — reporting percepts. In these cases, pérgeiv

ception and action selection, and is incompatible withropti . .
acﬁons_ Furthermore, it is compatible Wﬁh the preseﬁce of the MAP state does not necessarily lead to the best action if

utility bias in MU/UC perception: by changing the available the following naive action-selection rule is used as a s&par
actions we may be able to manipulate the subject's percept of stage following MAP perception
a fixed ambiguous stimulus. '

Keywords: Bayesian; psychophysics; utility; bias; perception anaive = arg;maxu (a, suar), (2)

whereU is utility, a are actions. Instead, optimal actions are
A paradox about perception obtained (Bernardo & Smith, 2000) by maximisiegected
utility (MEU), which requires integrating over the ‘Bayasi
Our subjective experience of the world is ‘unitary cohetent blur’ of possible worlds,
Unitary means we only perceive one interpretation at a time
(e.g. either a facer a vase in the Rubin Vase illusion) rather aMeu = argamax/U (a,s)P(s|d)ds. ?3)
than a blur of multiple possible interpretations (neverfdoe S
and vase together)Coherent means that we almost always  MEU action selection has no role for unitary coherent per-
perceive scenes that do not contain contradictory partg. (ecepts. Instead it must considewery interpretations. Com-
we do not see part face and part vase). While the UC nature gfutational approximations to this integral might ignorengo
perception may seem obvious from subjective experience, improbable interpretations (Spiegelhalter, Thomas, ,B&st
is in opposition to the requirements of optimal decision mak Gilks, 2008), but still sum over set of possible world states
ing, which require consideration @l possible interpreta- srather than privileging any particular unitary state.
tions of sensory data (Bernardo & Smith, 2000). In particula  In many cases humans have been claimed to make optimal
the ‘Bayesian brain’ hypothesis (Doya, Ishii, Pouget, & Rao actions (Griffiths & Tenenbaum, 2006). This may occur for
2007) views perception as computing probabilities of manylow-level, rapid stimulus-response type actions, and figih-h
interpretations, and optimal actions would be found by-inte level cognitive decisions such as business and financial de-
grating out the utility of all actions under all perceptsbéith  cisions. Much recent work in ‘Bayesian Cognitive Science’
Bayesian brain research and optimal action theory (K@rdin proceeds byassuming an MEU framework, then reasoning
& Wolpert, 2004) suggest that perception should operate udsackwards from observed actions to report human priors on
ing a distribution, or ‘Bayesian blur’ of possible percepts various stimuli (Stone, Kerrigan, & Porrill, 2009).
why then is our subjective experience limited to a unitary co  So why then do we bother to perceive UC percepts? Do
herent percept instead? And which unitary coherent percephey have some functional significance as well as being €orre
do we perceive: the most probable one or the most usefdates of subjective experience? If they do have a functhus, t
one? This study argues that as full Bayesian perception angould suggest that Bayesian Cognitive Science’s assumptio
action selection is computationally hard, an approximmtio of optimal action is flawed, and could potentially invalidat
which we call ‘maximum utility (MU)’ perception is a useful some of its reported human priors.
surrogate. It then presents evidence in support of the maxi- Bayesian inference and hence MEU decision making is
mum utility perception hypothesis using a video game stylegenerally an NP-hard problem (Cooper, 1990) so is imprac-
experiment. tical for all but the most constrained percepts and actions.
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rior colliculus to basal ganglia (Redgrave, Prescott, &-Gur
ney, 1999). For simple mappings, it is possible that simple
computational structures such as small neural networkisicou
learn to perform near-optimal action selection, as has been
demonstrated by computational experiments (Ramamoorthy
& Verguts, 2012). Near-optimal performance in fast, low-
level tasks such as reaching and pointiuickly at spheres
having different locations and utilities (Kording & Wolger
2007); and ‘simple heuristics’ (Kahneman, Slovic, & Tver-
sky, 1982; Gigerenzer & Todd, 1999) would be candidates
for this mechanism. For simple tasks this method would give
MEU-like results but without explicitly performing the MEU
integration.

2. Fast MU/UC percept-response (P-R) which achieves
suboptimal MU action in reasonable computation time. UC
perception could be implemented cortically, with highdkev
perceptual areas computing a single massful percept of

Figure 1: 3D environment used in the training phase of thdhe world, jointly with action selection under utility biaBv-
game. A joystick moves the missile launcher around a 20dence for UC perception is found in binocular rivalry ex-
(x,2) plane on the ground. Pressing and holding the joysticko€riments _(Snmvasan & Nune_z, 2006), and in cor_nputatlonal
button fires a missile (not shown) vertically upwargsiis). ~ models (Riesenhuber & Poggio, 1999) as well as in everyday
Releasing the button detonates the missile. Points areccorSubjective experience. This paper gives evidence for MU/UC
for detonation close to the target(s) shown by white crosse$€rception.
The training phase shown here includes colour, overlap, per 3. Full MEU action selection, via conscious sequential
spective and support cues to make the cube’s configuratiotonsideration of many possible percepts and responses. Thi
unambiguous. These cues are removed in the test phase sww type of decision making would occur for example when
leave an ambiguous Necker cube, with ambiguous 3D targehaking a business decision, where several minutes (or even
positions. Figure is best viewed in colour. hours or days) are set aside to consciously perceive one poss
ble world at a time, and the effects of many possible actions i

) them are simulated, and the resulting utilities averagex.ov
It has been suggested (Gigerenzer & Todd, 1999; Goldsteipymans are well-known to be poor at this kind of computa-

& Gigerenzer, 2002) that making actions based on a singlgon (Kahneman, 2003), and real-life action selection af th
‘best percept (such as the ‘take the best’ heuristic anss'le 1y s often performed in the business world by specialised
if more; effect) could be a useful heuristic to speed up the degperations researchers making use of computers to caiculat
cision making process at the expense of optimality. Howevef,o expected utilities (Pourret, Naim, & Marcot, 2008)hex

the ‘percepts’ in these cases are high level logical states g5 relying on their own cognitive faculties.
the word rather than actual perceptual objects in threemime If multiple decision making systems exist, it seems likely

ional . : ; :
sionaf space . . . that the basal ganglia system is used to switch between them,
We propose an alternative form of perception and action se;

lection to MAP perception and MEU action selection, Whichfor example taking account of time pressures for the type of

we call maximum utility perception (MU). In MU we choose decision FO be ma(_je (Lengyel & Dayan, 2008; Redgrave et
. al., 1999; Daw, Niv, & Dayan, 2005). Strong support for
a UC state and action together,

the existence of at least two systems comes from the Ebbing-
(Swu,amu ) = arg, ;maxU (a,s)P(s|d) (4) house |IIu3|0n, which produces dlﬁereqt perceptual reior
’ verbal and stimulus-response type actions. It has beenrshow
which yields the best possible action assuming that only 4Goodale & Milner, 1992) that the motor actions are consis-

single world state can be considered. tent with optimal MEU-like decisions in theame subjects
_ that make incorrect verbal reports.
The MU Hypothesis While research on near-Bayesian optimal decisions of the

We hypothesise that humans have at Igarge kinds of deci-  S-R and Full MEU types abounds, there has been compara-
sion making behaviour, moving from fast and simple to slowtively little work on the role of unitary-coherent percepti
and accurate: in decision making. While our subjective experience tefis u

1. Immediate stimulus-response (S-R). A fast association very clearly thatsomething in the brain is computing a UC
from input data directly to an action. Such mappings do nopercept (which is incidentally presented to our consciouds e
need to build a UC percept. The could be implemented neuperience), and researchers have modelled how MAP percepts
rally at the sub-cortical level, such as direct links frompesu  could be computed in this way (Riesenhuber & Poggio, 1999)
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there has been little study of how this type of perceptioidou be repeated in any order as many times as the subject desires,
be used in action selection as a replacement for S-R and MEUntil the exam is passed successfully.
behaviour. Our hypothesis is that MU perception and action .
is in fact the dominant mode of everyday, aware, perceptiofh Nase 1. exploratory training round
and action — the type of cognition that occurs consciousty buThe game environment consists of a visible 2D horizontal
not deliberatively. plane on which a missile base can move around, a wire-frame
It is difficult to design experiments to isolate this middle, cube in the 3D space above the plane, and one or two targets
MU, level of perception, because as soon as subjects knolecated at vertices of the cube. The environment is drawn us-
their performance is being monitored they tend to start deing very strong perspectiveand the vertices of the cube are
liberating as in Full MEU, rather than performing ‘everyday connected vertically to the plane by lines to make their 3D
perception and action selection. Conversely, if tasks@we t locations unambiguous. In addition, edges of the cube are
low-level and fast-paced, they will use rapid S-R behaviourdrawn with think lines of different colours, producing addi
Perhaps that is why few experiments have noticed MU effectional disambiguation cues where one lines is seen to cnoss i
before. To this end, we have carefully designed a simple 3@ront of another.
perception task, and examine two hypotheses: Subjects control th€x, z) position of a missile base using
Hypothesis H1 is that there are examples of human be-an analogue joystick (Logitech Extreme 3D Pro) and fire a
haviour that are consistent with UC perception and inconmissile by pressing and holding the joystick trigger. Once
sistent with both Full MEU (deliberative) and approximate fired, the missile moves upwards (thedirection) until the
MEU (S-R). A positive result here would stimulate further trigger is released. The missile then explodes at positiea
research into delimiting the circumstances in which the dif (my,my,m;). N € 1,2 targets are present in the environment
ferent behaviour types are employed. at positiong' = (t},t}.t}),i = 1:N, and a Gaussian rewaRl
Hypothesis H2 is that the particular kind of UC used in is received and displayed centre-screen after the explpsio
human perception is the MU percept. To find evidence for

this stronger hypothesis, we will examine if it is possile t R_ N _ 5
bias the percept from equally a priori probably percepts by o £ fis )
altering the available action set, as predicted by MU.
(m—tH(m-H)T
Methods ri =100x expr. (6)

A video game — loosely based on “space invaders” —was de- The spreadg was fixed at a large enough value €
signed and implementédhaving optimal MEU actions that  2,/3/,/2In2) so that if two targets are present, the score is
require consideration of multiple scene interpretati@rs]  a\ways highest when firing at the point between them than
having MU actions giving suboptimal rewards. If human be-ywhen firing directly at one of the targets.
haviour in this (or any other) game could be shown to deviate |n the exploratory round, single targets are presented-at di
from MEU behaviour and be consistent with MU, then evi- ferent vertices of a fixed cube. Subjects have unlimited time
dence is provided for H1. Further, if the human behaviour isq position the missile base and fire. They are then repre-
consistent with predictions made by MU selection, then evisented with a visual display of the reward, then the next tar-
dence is provided for H2. An overview of the phases of theget is presented. They are given 50 such targets to practice
game is given here, followed by details of each phase. with, no cumulative score display, and are encouraged to ex-
In phase one of the game, shown in fig. 1, subjects wergeriment to learn about the rewards available at differast d

trained in several rounds to fire missiles from a launcher inances from the target by an introductory message.
a 2D plane, in an unambiguous simulated 3D environment.

They received rewards according to how close to aerialtarge Phase 1: utility training round

(shown as white crosses in the figure) they get. After demonm the exploratory round, subjects obtained high scoresrby fi
strating that they understand the utility function and eolist  jng as close to the target as possible. To help them learrtabou
by passing a second, ‘examination’ phase, they are thestitest the shape of the Gaussian utility function, a series of reund
(phase three) in an ambiguous bi-stable environment. A trugykes place in which fixed cubes are shown and the subject is
MEU strategy would consider both interpretations of this en 3sked to deliberately scooaly 50,70 or 90 points. Thus they

vironment, whereas a UC based strategy would use only ongre encouraged to try aiming at locations at different dista
and lead to a different action. Phase one consists of severghm the target.

rounds which teach the subject about the game. The choice o
of tasks here is fairly arbitrary, as the logic of the expenin  Phase 1: double target training

is thatif subjects can pass the phase two exaen they have  Thjs round is similar to the first exploratory round, but uses
demonstrated an understanding of the rules sufficient o plagwo targets presented together at each trial. By constmicti
the real test game in phase three. Phases one and two may
_ 20penGL: gluPerspective(45, 1.0*width/height, 0.1, 10000u-

Lin Python, source code available on request. LookAt(7,0.05,7, 0,-1.25,0, 0,1,0). Cube faces are 2*2quni
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(choice ofa), the optimal action is now always to aim at the a
point midway between the targets.

Phase 1: blackout training rounds 10

Two further training rounds take place. In the first, the lowe
half (x+z > 0) of the missile-launching area is ‘blacked out'.

It is coloured red, and the joystick is unable to move into
the red area. In the second round, the situation is reversed
at the top half of the gridq+ z < 0) is blacked out. Subjects

0.0

-0.5

-1.0

-15

2.0,

learn that that optimal strategy when faced with a targeién t 720 -15 10 ~o5 0005 10 15 20
blacked out region is to fire from a position as close to it as
possible that is on the centre line. Figure 2: Example of a single-target traik,z) plane. The

Phase 2: examination round viewer's posmon isin top rlght corner. Blue crosses _shbwt
o _ two ambiguous target positions resulting from a single tar-
The purpose of the examination round is to demonstrate thgfet vertex on a Necker cube. The red cross shows the firing
the subject has learned the optimal actions for single ane do yosition. Black lines show the centre line and the two clas-
ble targets, as well as possessing sufficient motor skills Wjfication boundaries, dividing the launching area intornea

control the game using the joystick. 20 trails are presenteg o right), centre and far (bottom-left) firing regions.
in rapid succession (one every 5s) and a cumulative score is

maintained. If subjects fail to score 2170 points or moreyth
are sent back to the exploratory phases then made to repdarocessing

the examination (or allowed to leave the experiment). The,g o hiects were tested. Of these, 20 completed the exam and
qualifying score was chosen such that it can only be Obta'ne‘[fjroceeded to generate data in the test phases. In debriefing,

by using the optimal strategy of aimi“g clos_er_tq the centrg,, subjects reported awareness of the ambiguity in the Necke
of each pair of double targets than to either individualéarg . ,hes. For each trial, the 3D positions of both ambiguous

Thus by passing the examination phase, subjects demanstray,tions of the target or targets were computed. This was
knowledge of this strategy. achieved by transforming the z joystick co-ordinates into

Phase 3: Ambiguous test round a horizontal and depth pairéh,d), then flipping the depth
In trials within this round, a bi-stable ambiguous (Necker)coordmate' h X

cube is presented to the subject very quickly, at random ori- [ d ] =H [ 7 ] ) (7)
entations. In some (80% of) trials there is one target at a

random vertex. In others there are two targets, which mayvhereH is the Hadamard matrix,

be at opposite (10% of trails) or non-opposite (10% of tri-

als) vertices. The percept is made ambiguous by switching H = 1 [ 10 ] ) (8)
the projection from perspective to orthographic, dropytirey v2[ 0 -1

vertex-to-plane cues, and drawing all edges in white to re- h | i bi location is th
move overlap cues. To motivate subjects, they are told tha-[ € complementary ambiguous focation is thus

that their cumulative score from all rounds of phase thrdle wi NG [ h

be their reported result, and that the subject with the highe { y ] =H" { _d ] 9)

reported result will receive twenty UK pounds in cash. (Sub-

jects were undergraduate psychology students and were ngf,rthermore, the height coordinate was transformeg by
pald_ (_)the_rW|se; but received credit towards their degree foy—cd, wherec s a constantd= 0.9) which compensates for
participating.) the choice of viewing angle in the projection images.

Phase 3: Blackout test rounds All shots were classified into three regions (fig 2), accord-

ing to whether thei(x, z) firing locations were closest to the

The ambiguous test round_ IS repgated tW'C? more, Witheqy ambiguous target location, the far ambiguous target lo
blacked out near and far regions as in the learning phase. ..tion. or the centre line

Debriefing

It is crucially important that subjects do not become aware . o

of the ambiguity, because this could allow high-level (Full Non-blackout trials with single targets

MEU) reasoning to aim in the centre, and destroy any UC{n these trials, the MEU action by construction (i.e. choice
revealing behavioural effects. For this reason, after @l3&as of o as described in phase 1) is to fire at the point on the
subjects were told about Necker cubes and asked if they weientre line between the two possible ambiguous locations.
aware of the Necker ambiguity. (fig. 2). In contrast, the MU action is to fire directly at a

Results
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Figure 3: Results. Grey bars: observed frequency ratioth Beta posterior, one-standard-deviation confidenceviake
White: predictions for blocked firings under the null hypedis. The null hypothesis is that the unblocked area is urgdth
from the 'single target, firing everywhere” case, while tle@te is the sum of the centre and blocked firings from that.cal
error bars assume |ID observations and ignore which observeame from which subject.

randomly-chosen single one of those locations. This is beis incompatible with a pure MEU strategy, it can weakly be
cause the MEU action averages over the two possible statexplained from a MU perspective: A large number of shots
of the world, which gives the same calculation as choosingre fired from the centre line, which may be due to subjects
where to fire in an unambiguous double target case; wheredgsing all depth perception (i.e. not perceiving the cube as
the MU action picks just one interpretation of the targealoc 3D at all) and hedging by firing in the centre; they may also
tion, then fires directly at it. be due to limited depth perception resulting in a stable cube

Fig. 3a shows the distribution into region classes, over alpercept but an inaccurate joystick placement. (Some sisbjec
subjects and trials of this type. Treating each action bjneaccommented on the lack of training in the absence of the ver-
subject as an independent observation (i.e. ignoring stibje tical supports, and consequent loss of skill at pointing t
specific effects), and beginning with a flat Beta prior over th depth of the targets.) The near and far shots would be correct
ratio of shots in each region, we infer posterior ratiospglo MU actions, and the centre shots due to a problem with the
with uncertainties. The figure shows the mean and one starexperiment, requiring a better communication of the depth t
dard deviation error bars inferred about the populationft ~ the subjects in future versions whilst retaining the amitygu
shots fired of each type. Signal detection theory can be used i .
to obtain thep values, but broadly two ratios are significantly Blackout trials with single targets
different if pairs of error bars do not overlap. In these trials, the pure MEU actions8l to fire at the point

The results of these trials are surprising but inconclusiveon the centre line between the two possible ambiguous lo-
Although target locations are perfectly ambiguous betweemations. Points on the centre line are still available dygn
near and far positions, subjects show a preference for the fdlackout, so the optimal strategy is unchanged.
target over the near one. Thatis, they are already inténgret  Fig. 3b shows the results when the near-side is blacked out.
the Necker cubes percept in a biased way, to favour interpreFhe majority of shots are now fired in the far region. This is
tations with the target at the back of the scene. consistent with the MU strategy: actuafigrceiving and act-

If the MEU strategy was followed perfectly, we would see ing on the Necker cube in the configuration which enables
all shots fired in the centre and none in the near or far rethe target to be reached; an optimism bias. If we assume UC
gions. If the MU strategy was followed perfectly, we would perception and action, these new results then show MU-like
see all shots in the near and far regions and none in the centigias occurring within in. For comparison, we show in white
Unfortunately, we see shots in all three regions. Whilst thi the prediction of a null hypothesis. This is obtained taking
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