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Abstract

Learning new concepts is critical to making sense of the
world. Research on analogical reasoning suggests structure
mapping and schema induction can enable discovery of new
relational concepts. However, existing theories of schema
induction and refinement are insufficient to explain
acquisition of rich, compositional hierarchies of relational
concepts. This paper offers a proposal for this sort of

representation  construction, founded on reinforcement
learning to evaluate the predictive usefulness of higher-order
relations, together with a mechanism of relational

consolidation by which systems of relations (schemas) can be
chunked into unitary entities. A computational model of these
ideas is outlined and partially tested in simulations and human

experiments. Implications and moderating factors for
relational consolidation are considered.
Keywords: Relational Consolidation; Analogy; Schema

Induction; Predication; Refinement; Concept Learning

Introduction

Consider a second-order same-different task, in which the
subject is presented with two pairs of objects and must
recognize whether the pairs match in terms of whether their
objects are the same or different. The pairs match if both
are instances of sameness (e.g., A-A, B-B) or if both are
instances of difference (e.g., A-B, C-D), and they mismatch
if one is an instance of sameness and the other an instance
of difference (e.g., A-A, B-C). Thompson, Oden, and
Boyson (1997) tested naive chimpanzees on this task and
found them unable to learn it, unless they were first trained
on a first-order same-different task. In the first-order task, a
single pair of objects was presented, and subjects learned to
associate sameness and difference to two plastic tokens
(e.g., a yellow triangle and a red circle, respectively).
Thompson et al. argued this training enabled subjects to
reduce the second-order same-different task to a first-order
task, by mentally replacing each pair of objects with its
associated token, and then determining whether those tokens
matched (see also Clark, 2006).

Learning higher-order relations, such as in the second-
order same-different task, is arguably critical to abstract
conceptual development. In this paper, we argue that many
concepts reside in relational hierarchies (relations among
relations, and so on), and we investigate how such concepts
might be learned. Our basic premises are that much
structure in the world (or at least its mental representation)
is hierarchically compositional, and that discovering (or
creating) this structure is a powerful cognitive mechanism
for both learning and designing complex systems.

For example, computer architecture, mathematical
functions, and natural languages all exemplify multiple
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levels of abstraction by chunking systems of relations at one
level into building blocks at the next level. In computer
architecture, digital logic gates are composed to form
adders, which are composed with other digital circuits to
form an arithmetic logic unit (ALU), which is a building
block in a computer’s CPU. Software design manages
complexity by continuing this hierarchy, composing
primitive functions into more complex functions, and from
there to objects and design patterns. The conceptual
progression in mathematics proceeds similarly, composing
the counting operation to define adding, which is further
composed to form multiplying, and then exponentiation. In
traditional views of linguistics, phonemes, morphemes,
words, and sentences form another example of a relational
hierarchy.'

These examples motivate our basic research questions.
How are relational hierarchies mentally represented? How
are these representations learned or constructed through
experience? Once a relational concept is learned, how can
one discover the higher-order relations in which it can
participate?

Here we consider the proposal that much of concept
learning is driven by recognizing relational structure
through analogy. Research on analogical reasoning has
converged on a view that episodes or scenarios are
represented as patterns of role binding, in which objects are
bound to roles of relations (Gentner, 1983; Hummel &
Holyoak, 2003). For example, the fact that the earth
revolves around the sun is represented by binding earth and
sun to the first and second roles of a revolves around
relation. An analogy between two scenarios constitutes a
determination that they share a common pattern of role
binding. For example, in the analogy between the solar
system and the atom (Gentner, 1983), each system has the
property that the object playing role 1 of revolves_around is
the same as the object playing role 2 of more_massive than.

Analogy formation can thus be viewed as a search for a
pattern of linkage among relations (i.e., in terms of how they
are bound to shared objects) that holds in two different
scenarios. This linkage pattern is a type of higher-order
relation among the linked relations. Theories of schema
induction (e.g., Doumas, Hummel, & Sandhofer, 2008)
offer one way for such higher-order relations to be learned.
When an analogy is formed, an abstract schema is created
that captures the common structure discovered by the

! Relational hierarchies are not taxonomic hierarchies. In a
taxonomic hierarchy, each concept or category is a union of lower-
level categories. In a relational hierarchy, each instance of a
concept is a configuration of instances of lower-order concepts.



analogy. The schema can act as a new relational concept, in
that it can be analogically aligned with future instances of
the higher-order relation it embodies.

Although we agree with theories of schema induction, we
argue it is insufficient to explain human relational learning.
Schemas are explicit relational structures, and thus they
cannot be bound to roles of yet-higher-order relations in the
way unitary objects and relations can. The Thompson et al.
(1997) study suggests that newly learned relations can only
fill roles of other relations if they can be represented as
atomic entities.  Therefore, to explain acquisition of
relational hierarchies, we put forward the hypothesis that
useful schemas are eventually replaced (or supplemented)
with unitary representations. Thus, a concept that was
represented as a system of relations (via the schema) can
now be represented as an atomic entity, capable of entering
into relations itself. We label this process relational
consolidation, in a deliberate parallel to theories of episodic
memory consolidation (e.g., Squire & Alvarez, 1995).

We further propose that analogy, schema induction, and
relational consolidation form a cycle that, when iterated, can
produce relational hierarchies of arbitrary depth (height).
This form of learning leads to a dualist view of objects and
relations, in which (nearly) every concept is both a
relational structure among its components and an object
capable of participating in relations. The conceptual
systems built from this hierarchical relational chunking are
potentially quite powerful and flexible.

The remainder of this paper sketches a computational
model under development that formalizes these ideas. We
report experimental tests and discuss implications of human
learning of higher-order relational structures.

Model

We propose a computational model for learning hierarchies
of relational concepts, named APEC for Analogy,
Predication, Evaluation, and Consolidation. The first two
stages (A, P) of the model draw on prior work on analogy
and schema induction (Doumas et al., 2008; Forbus,
Gentner, & Law, 1995; Larkey & Love, 2003). The last two
stages make new proposals for how schemas are selected
(E) and consolidated (C) into new concepts. Altogether, the
model progresses through parallel processes of analogy
formation, predication of relational structure by schema
induction, evaluation and refinement of schemas in a
reinforcement-learning setting, and consolidation of useful
schemas into new atomic relations. Consolidated relations
enter into new analogies, allowing the entire learning
process to iterate.

The goal of the model is to identify new higher-order
relations that are useful for making predictions and guiding
behavior. There are an infinite number of higher-order
relations that could be learned from any episode, and thus
the challenge is selecting those that carry useful information
(analogous to the problem of selecting configural cues in
feature-based learning; e.g., Gluck & Bower, 1988). The
present model addresses this problem in two ways. First,
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analogical mapping identifies higher-order relations that
recur across multiple episodes, to determine which schemas
to induce (a form of unsupervised learning). Second,
schema evaluation determines how useful each higher-order
relation is for predicting outcomes or reward, to determine
which schemas to consolidate (a form of reinforcement
learning).

The model is currently being implemented within
Conway’s Game of Life (Gardner, 1970), a cellular
automaton exhibiting hierarchical emergent structure, to test
its ability to discover that structure. The model produces
interesting patterns of schema formation and evolution,
which will be reported elsewhere. Here we lay out the
model’s basic architecture and formulation.

Analogy

APEC represents episodes as systems of role binding among
entities, each of which is an instance of a known concept.
Every entity is eligible to be bound to a role of one or more
other entities, and all entities except primitive objects (used
to seed the model) have roles that other entities can bind to.
The goal of the analogy component of the model is to find
correspondences between episodes that maximally preserve
these role-filler relationships (i.e., parallel connectivity).

Formation of an analogy is achieved by a dynamic
process of structure mapping. APEC’s mapping dynamics
are based on a simplified version of the Connectionist
Analogy Builder (CAB; Larkey & Love, 2003). For every
pair of entities (say, a; in episode 1 and b; in episode 2), a
mapping weight (m;) is defined. Mapping weights evolve
according to excitatory and inhibitory dynamics. The raw
evidence, R, for mapping weight m;; is derived by summing
the excitation received from all other weights:

R; = Ewijklmkl
K
The excitation weight w;; equals 1 if m; and my correspond
to immediately adjacent and compatible mapping

connections (e.g., a; plays role r in a;, and b, plays role r in
b)), and it equals 0 otherwise. The raw evidence is filtered
through additional inhibitory mechanisms that encourage
one-to-one mappings, and the result determines the
incremental change to the mapping weights.  These
dynamics continue until all mapping weights converge to 0
orl.

Following the MAC/FAC model of analogical retrieval
(Forbus et al, 1995), APEC uses a measure of structural
match to determine the quality of an analogy. An initial
score is assigned to every matched pair of nodes to enforce a
size preference. A preference for deep analogies
(systematicity) is implemented via a trickle-down method,
whereby initial match scores are passed down to increment
the scores of matching components. The match scores are
summed to get a global measure of structural match quality.

Predication

If the analogy achieves a minimum match quality, a schema
is induced that represents the structural commonalities of



the analogues and encodes the shared pattern of role binding
embodied by the analogy. Specifically, an abstract entity is
created for every mapping weight in the analogy, and these
entities are role-bound to each other if the corresponding
entities in the analogues are so bound. Once created,
schemas are treated identically to episodes (they are just
more abstract). This simple mechanism is drawn from prior
work on schema induction (Gick & Holyoak, 1983; Doumas
et al., 2008; Kuehne et al., 2000). A schema can be thought
of as codifying the higher-order relation embodied by the
analogy, hence turning it into an explicit predicate.
Aligning the schema with any new episode enables a test of
whether that episode instantiates the higher-order relation.

Evaluation

When a schema is retrieved and compared to a new episode,
it is refined, by abstracting the common structure between
schema and episode (Doumas et al., 2008). This process is
a form of intersection discovery, where the intersection of
the set of relations in a schema and episode are encoded as a
new schema. In this way, schemas shrink in size because
the variability between episodes is abstracted over, leaving
only the structure that is consistent across episodes.
However, there may also be a need for schema elaboration,
where schemas can grow in size (Corral & Jones, in press).
We are currently exploring implementing schema
elaboration in the model.

In parallel with schema refinement, schemas are evaluated
as candidates for consolidation as new relational concepts.
New concepts are useful because they can facilitate
generalization. Learning about one instance of a concept
can be applied to other instances. Jones & Cafias (2010)
show how representations can be learned by improving
generalization in a reinforcement-learning framework. The
basic idea is that reward prediction error (TD error) can be
used to determine when generalization from some past
stimulus to the current stimulus was or was not helpful. In
the present context, if a learner encounters an episode that is
alignable with some stored schema, then analogical
inference from that schema enables generalization from past
instances of that schema. If this inference leads to improved
prediction or behavior, then the schema is strengthened, and
if not it is weakened. This process tunes generalization to
depend more on higher-order relations that are predictive
and less on those that are not.

Consolidation

Relational consolidation is the process of a schema
becoming chunked into a unitary concept that can be
recognized automatically, retrieved from memory in
parallel, and represented as an element of yet-higher-order
relations. As summarized in Table 1, consolidation is
hypothesized to confer properties to a concept that are not
true of (unconsolidated) schemas, because consolidated
concepts are recognizable perceptually, without explicit
(working-memory dependent) structure mapping.

Table 1. Predicted consequences of consolidation

Not Consolidated Consolidated
More affected by WM Less affected by WM
demands demands

Quicker at analogical
inference, because structure
mapping is active

Easier to learn higher-order
structure, because instances
can be represented by tokens

Serial retrieval Parallel retrieval
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It is important to note that consolidation is not a change in
the declarative knowledge embodied by a concept. Rather,
it is a proceduralization of the concept that enables future
changes in knowledge — similar to the interaction between
declarative and procedural knowledge in production systems
(Anderson & Lebiere, 1998).

The DORA model of relational predication (Doumas et
al., 2008) has an operation similar to relational
consolidation, in which it recruits a new proposition node to
bind lower-order relations. This new node can be bound to
roles of yet-higher-order relations, but the relation is still
explicitly structured. In contrast, consolidation might be
viewed within the DORA framework as enabling the new
proposition node at the top of the relational structure to
evolve into a new semantic node at the bottom. We
conjecture this difference has important implications for
recognition and retrieval of instances of the concept.

Relational consolidation is best explained from the
perspective of the MAC/FAC model of analogical retrieval
(Forbus et al, 1995). MAC/FAC embodies the assumption
that verifying the lower-level elements of an episode (i.e.,
objects and relations) is fast and automatic, whereas
verifying relational structure is slower and requires
working-memory resources. In the first stage of analogical
retrieval (Many Are Called), the target episode is converted
to a flat feature vector that is used to probe all episodic
memories in parallel. Importantly, the dimensions in the
MAC feature vector are predefined, based on the concepts
the learner currently knows. Stored episodes that share
content (objects and relations) with the target are retrieved,
without regard for how those objects and relations are
connected by role binding. In the second stage (Few Are
Chosen), the episodes retrieved by the MAC stage are
filtered by structural alignment to the target. Only those
episodes that are alignable with the target survive this stage.

From the perspective of the MAC/FAC framework,
relational consolidation enables a higher-order relation to be
chunked and treated as a dimension of the feature vector
used for memory probing. Prior to consolidation, retrieval
of instances of a higher-order relation require something
like the FAC stage, in which subjects explicitly map
between those instances and the schema. Following
consolidation, retrieval can rely solely on the MAC stage,
thus operating much more rapidly and without requiring
working memory. We also propose a similar difference for
perceptual recognition of instances of the concept in the



Figure 1: The two ways a predicated relation can be
represented or recognized. (A) Before consolidation,
episodes must be structurally aligned to a schema. (B) After
consolidation, an instance of the concept is explicitly
represented and bound to the lower-order relations. The
labels on the nodes refer to Experiments 1 & 2.

environment, through the creation of a perceptual detector
for each consolidated concept. Figure 1 illustrates the
difference between recognizing an instance of a higher-
order relation that has versus has not been consolidated.

Experiments 1 & 2

The goal of the present experiments was to test learning of
categories defined purely by higher-order relations. That is,
the set of objects and relations present in instances of each
category were identical; only the way the relations were
linked into a higher-order structure differed. If people can
learn this type of category distinction, it would support our
basic proposal for how higher-order relations are defined in
constructing relational hierarchies.

Each trial showed animations of three spaceships racing
each other in pairs. The categories were defined by the two
logically possible structures these races could form: a cycle
(e.g., A beats B, B beats C, C beats A) and an ordering
(e.g., B beats A, B beats C, C beats A). The races are thus
first-order relations between spaceships, and cycle and
ordering are the possible higher-order relations (see Figure 1
for an example of the cycle structure).

According to APEC, three types of learning potentially
contribute to this task. First, analogical alignment between
episodes (trials) leads to induction of schemas capturing
their common structure or properties. Some of these
schemas will capture the true category structure, whereas
others will be based on irrelevant information (e.g., ship
color or spatial position). Second, feedback following each
trial is used to strengthen or weaken schemas that
contributed to each response, so that eventually the correct
higher-order relations should come to dominate
performance. Third, with sufficient learning, the correct
higher-order relations may become consolidated. The
results reported below primarily bear on the first of these
mechanisms.

Methods

110 and 62 undergraduates participated in Experiments 1
and 2, respectively. Subjects were told they would observe
alien spaceship races, in sessions of three races each. The
aliens were said to have two names for possible outcomes of
a session, and the subject’s task was to learn their meaning.
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On each trial, three spaceships (differing only in color)
raced in pairs in a sequence of three races. The subject
classified the session as “Dekal” or “Koplu” by typing D or
K. The correct answer was then displayed. The experiment
lasted until the subject met a learning criterion of 8 out of 10
trials correct, or until 25 minutes elapsed (50-70 trials).

Each experiment included two orthogonal manipulations
designed to bias attention between objects (spaceships),
relations (races), and higher-order relations. In Experiment
1, the trials were described as either “tournaments” or
“sessions”. In addition, the main task was preceded by a
series of footraces among 5 cartoon characters, after which
subjects were asked either which character had done best
overall or which of two characters had won a specific race.
The tournament label and overall-winner question were
predicted to make rankings salient, thus shifting attention to
higher-order relations.

In Experiment 2, half the subjects were given a first-
person perspective by adding a gold star to mark “your
ship” on each trial. In addition, the three colors used for the
spaceships were either constant or variable from trial to
trial. The marked ship and constant colors were predicted to
make individual objects more salient, thus shifting attention
away from higher-order relations.

Results

There were no differences across conditions in either
experiment in meeting the learning criterion or number of
trials to criterion. All subsequent analyses are based on
collapsing the groups of both experiments.

The results demonstrate that subjects could learn the
difference in categories. 113 subjects (65.7%) met the
learning criterion. Figure 2A shows the distribution of trials
to criterion for these subjects (M = 30.9). Ten subjects
learned without making a single error; they were excluded
from the remaining analyses, which are based on errors.

Figure 2B shows a backward learning curve, aligned on
each subject’s last error (for subjects who solved the task
but made at least one error). Performance prior to the last
error is only slightly above chance, indicating learning was
nearly all-or-none. This is consistent with our hypothesis
that learning is triggered by inducing the correct schema.

10 20

Frequency

\/V\

0

Proportion Correct

5 6 4 2 0
Trial from Last Error

Trials to Criterion

Figure 2. A: Distribution of trials to criterion, for subjects
solving the task. B: Backward learning curve.



If learning depends on analogical mapping, then it should
be most evident following consecutive stimuli in the same
category (assuming subjects most often compare stimuli
from consecutive trials). Assuming the schema was induced
following the trial of the last error (f.), this predicts the
stimuli on trials #, — 1 and #, should tend to be of the
same category (see Figure 3). This prediction holds for 59
of the 103 subjects (p = .084, one-tailed binomial test). If
we relax the all-or-none assumption and examine
performance of all subjects on all trials #, we find a highly
reliable advantage when trials # — 2 and ¢ — 1 are of the same
category (mean difference 4.3%, paired t1g9 = 3.42, p <
.001).> This suggests comparison of recent stimuli from the
same category had a significant effect on performance.

CANANOAN
— =

Matched
Trials

tlastv-1 tiast

Mismatched
Trials

Figure 3. Example sequence of trial types and the most
likely moment of schema induction. Triangles indicate
ordering trials and circles indicate cycle trials.

Discussion

Analogy and metaphor are pervasive in cognition
(Hofstadter, 2001; Lakoff, 1980) and play a critical role in
abstract reasoning. The past three decades of research have
led to a strong consensus that analogy hinges on recognition
of common relational structure between two or more
situations (e.g., Gentner, 1983; Hummel & Holyoak, 2003).
This suggests that acquisition of new higher-order relations
plays a critical role in human conceptual development.

We propose that many (if not most) abstract concepts
exist in relational hierarchies, in which entities are at once
relational structures among their components and elements
of higher-order relations. The structure-mapping process of
analogy (Gentner, 1983) can be viewed as a search for
relations among relations, in the sense of how relations are
connected to one another by operating on the same objects.
Successful analogies—those that lead to useful inferences or
predictions—might thus be treated as candidates for new
relational concepts.

Our approach builds on models of analogical retrieval
(Forbus et al., 1995), structure mapping (Falkenhainer, et
al., 1989; Hummel & Holyoak, 1996; Larkey & Love,
2003), predication, and refinement (Doumas et al., 2008).
Importantly, our model goes beyond previous models of
schema induction (Doumas et al., 2008) by positing
relational consolidation as a means for learning new
relational concepts. A further contribution of our approach
is embedding predication within a reinforcement-learning
framework in order to modify analogical similarity, and thus

% Two additional subjects were excluded because they experienced
no alternation trials before meeting the learning criterion.
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328

generalization, by representation change (Jones & Cafias,
2010; see also Tomlinson & Love, 2006).

Taken together, these ideas lead to a model, APEC, which
iterates the Analogy, Predication, Evaluation, and
Consolidation stages to build relational hierarchies in a
long-term conceptual learning system. Our eventual aim for
the model is a system that can autonomously discover useful
structure in its environment by construction of these
relational hierarchies.

Although the present experimental results indicate a role
for analogical comparison and schema induction, we do not
have strong evidence here for consolidation. Indeed, we
believe it more likely that the categories were learned only
as schemas. The experiments do provide a test of one
fundamental assumption of the model: that people can learn
higher-order relations defined solely by the configuration of
shared role binding among lower-order relations.

Future experiments could build the tournaments into
third-order structures that require consolidation of the
tournament type in order to solve the task. Another future
experiment is to test transfer of learned relational structure
to an alternate domain with different lower-order relations.
The lack of effect of our manipulations suggest it is an open
question what factors influence the kind of learning tested in
these experiments.

Evidence for relational consolidation could also come
from process dissociation between the two modes of
representation outlined in Table 1. Other evidence may
come from neurological studies. = We speculate that
relational consolidation is implemented neurally by a
process of hippocampal-to-cortical feedforward training, in
line with models of episodic memory consolidation (Gluck
& Myers, 1993; McClelland, McNoughton, & O'Reilly,
1995). The hippocampus is well suited for storing schemas,
which are inherently structured, given the conjunctive and
localist nature of hippocampal representations.

Relational consolidation is similar to the career-of-
metaphor hypothesis, by which a metaphor is originally an
analogical mapping between the base and target domain, but
it can become conventionalized so that the target is
recognized immediately as an instance of the base category
(Gentner et al., 2001). This transition from novel to
conventional metaphor resembles the transition from non-
consolidated to consolidated relations, in that both involve a
transition from recognition via structure mapping to more
automatic, perceptual recognition. The major difference is
that in the career of metaphor, the base concept was already
consolidated, and the conceptual change is a form of sense
extension of that base concept. The conventionalization
process does not create new concepts; it just extends their
meaning. Therefore it does not function to build up
relational hierarchies. Nevertheless, the two ideas seem
intimitely linked, in that the career-of-metaphor mechanism
might play an important role in extending and refining the
meaning of concepts after they have been consolidated.

Language is almost certainly an important factor in
relational consolidation. Thompson et al.’s (1997) finding



of chimps learning higher-order relations depended on
initial training with material tokens. In humans, words can
act as linguistic tokens (Clark, 2006) and have been shown
to aid category learning (Lupyan, Rakison, & McClelland
2007). Son, Doumas, and Goldstone (2010) offer two
possible roles of language in relational learning: “(1) words
invite learners to compare, highlight, and represent relations
(the Generic Tokens [GT] hypothesis), and/or (2) words
carry semantic cues to common structure (the Cues to
Specific Meaning [CSM] hypothesis)” (p. 55). The lack of
significant effect of the CSM manipulation in our
Experiment 1 could be explained by the cue word appearing
only at the start of the experiment, or by the relatively subtle
difference in semantics evoked by the cues “tournament” vs.
“session”. A stronger test of CSM would be to cue subjects
with category labels whose meanings structurally match or
mismatch the category schema.

Finally, we do not claim that relational consolidation is
the only mechanism for acquiring new relational concepts.
Research on basic-level objects (Rosch et al., 1976)
suggests there are truly primitive object concepts that are
not originally constructed as relational systems. Clearly a
lot of discovery comes from analyzing the substructure of
objects, and that process should be included in any complete
model. For example, categories can be induced for objects
that fill the same roles (Jones & Love 2007). Although we
have been working on concept learning through
mechanisms of synthesis, a future goal is to explore how
combinations of analytic and synthetic mechanisms of
relational learning might be more powerful than both alone.
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