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Abstract

When engaging in counterfactual thought, people must
imagine changes to the actual state of the world. In this study,
we investigated how people reason about counterfactual
scenarios by asking participants to make counterfactual
inferences about a series of causal devices (i.e., answer
questions such as If component X had not operated [had
failed], would components Y, Z, and W have operated?) and
to explain their reasoning. Participants avoided breaking
deterministic causal links (i.e., W always causes X), but were
willing to break probabilistic causal links (i.e., W sometimes
causes X) to keep prior causal events in the same states as in
the actual world. Participants’ explanations supported this
pattern of inferences. When the causal links were
deterministic, participants reasoned diagnostically to infer that
the states of prior causal events would have been different in
the counterfactual world. In contrast, when the links were
probabilistic, participants cited the links’ unreliability as an
explanation for why the states of prior causal events would
have been the same as in the actual world. Additionally,
participants who were told that a component “had failed” (vs.
“had not operated”) were more likely to attribute the state of
that component to it being “internally broken” and infer that
causally upstream components would have operated. Our
results suggest that people use their explanation of the
antecedent event (the “if” clause) to guide their counterfactual
inferences. We discuss the implications of these findings for
two rival Bayes-net theories of counterfactual reasoning:
Pearl’s (2000) and Hiddleston’s (2005).
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Introduction

People often engage in counterfactual reasoning (e.g., If /
hadn’t partied the night before the exam, then I would have
passed the exam) to second-guess decisions, attribute credit
or blame, and diagnose causal relations (see Byrne, 2005,
for a review). Reasoning about counterfactual scenarios
such as the preceding example requires imagining changes
to the actual state of the world—for instance, imagining a
counterfactual world in which I hadn’t partied the night
before the exam. One of the central issues in the study of
counterfactual reasoning is how people re-imagine the world
to satisfy the antecedent of a counterfactual scenario. (The
antecedent is the “if”” clause, and we will refer to the “then”
clause as the consequent.) In particular, what types of events
do people keep the same in the actual and counterfactual
worlds and what types of events do people change?

One way people might reason about counterfactual
scenarios, which we will call pruning theory, is by using an
intervention to change the state of the antecedent event from
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the actual state to the counterfactual state and then tracing
the consequences of that intervention (Pearl, 2000; see also
Woodward, 2003). The intervention severs the causal link
between the antecedent and its immediate causes, and as a
result of this “graph surgery,” the counterfactual states of
upstream events would be the same as in the actual world.
However, downstream events that are a consequence of the
antecedent would change states according to the causal laws
governing the system. To illustrate this approach, consider a
causal chain 4 — B — C and a counterfactual antecedent /f
B had not occurred... (in the actual world, 4, B, and C all
occurred). A person using pruning theory would intervene
on B to change the state of B from present to absent. Since
upstream events (4) are unaffected by this intervention, 4
would still have been present in the counterfactual world.
But since C is an effect of B, B’s absence would in turn
cause C to be absent.

Pruning theory might appeal to reasoners in two ways.
First, by keeping all the events that are causally prior to the
antecedent in the same states as in the actual world, pruning
theory creates a counterfactual world that is maximally
similar to the actual world with respect to these prior events.
Second, the pruning approach makes counterfactual thinking
computationally easy. The strategy of always keeping prior
events in their original states allows reasoners to avoid the
cognitively challenging process of reasoning backwards to
determine the counterfactual states of upstream causes.

However, other researchers have questioned whether the
type of change pruning theory proposes is necessarily the
most reasonable way to modify the causal system in the
counterfactual situation (e.g., Hiddleston, 2005). One
criticism of pruning theory is that it is very disruptive to the
structure of a causal system and can require reasoners to
violate causal laws. Consider a deterministic causal system
in which 4, without exception, always causes B. In this
setting, one might be reluctant to imagine a counterfactual
world in which 4 occurred, but B did not occur (e.g., in
answering the question If' B had not occurred, would A have
occurred?). Thus, when reasoning about this counterfactual
scenario, one might be more likely to infer that the reason B
did not occur was that 4 did not occur, and the absence of 4
caused B to be absent too (Hiddleston, 2005). We will call
this alternative minimal-network theory. When the causal
links are probabilistic (i.e., A sometimes causes B), however,
minimal-network theory proposes that 4 might or might not
have occurred, since either possibility is “legal” in
accordance with the system’s causal laws.



Table 1 compares the predictions of pruning theory and
minimal-network theory for a device in which component
A’s operating usually causes component B to operate and
component B’s operating always causes component C to
operate (at present, all three components are operating). The
device’s structure is illustrated as follows:

®——@——0

Table 1: Comparison of Pruning Theory and Minimal-
network Theory

If component B had | If component C had
not operated, would | not operated, would
component A have | component B have
operated? operated?

Pruning Yes Yes

Theory

Minimal- Maybe No

network

Theory

Previous empirical work has explored whether people’s
counterfactual inferences are consistent with either of these
two theories of counterfactual reasoning. In one experiment,
Sloman and Lagnado (2005) presented people with causal
information about a simple rocket-ship device with the
causal structure 4 — B and asked them a variety of
counterfactual questions. Sloman and Lagnado found
evidence that people engaged in pruning when they were
told that a component was prevented from operating, but not
when told that the component was observed not to have
operated. However, subtle differences in wording across
their experiments led to significantly different patterns of
counterfactual inferences, making it difficult to generalize
from the data. In another study, Rips (2010) asked people
counterfactual questions about three- and four-component
mechanical devices. Although participants’ counterfactual
inferences did not provide strong support for either pruning
theory or minimal-network theory, their inferences were
more closely aligned with minimal-network theory (see also
Dehghani, Iliev, & Kaufmann, 2012).

In the two experiments in this study, we presented
participants with counterfactual questions for which pruning
theory and minimal-network theory make different
predictions. The wording of these questions was
manipulated across two between-subjects conditions. One
group of participants was told that a component of a
mechanical device “had not operated,” and another group
was told that the component “had failed”
Component B had not operated/had failed...). The neutral
“had not operated” wording does not suggest a particular
explanation for the state of the component; however, the
“had failed” wording suggests an explanation that is local to
the component (e.g., the component is internally broken).
Thus, we predict that participants in the not operated and
failed conditions will make different counterfactual

(eg., If

inferences about the operating states of the other
components. Specifically, we predict that participants in the
not operated condition will reason diagnostically about the
states of the other components based on the device’s causal
structure, consistent with minimal-network theory. In
contrast, we predict that participants in the failed condition
will reason that since the antecedent component is broken,
its operating state is not diagnostic of the states of the other
components. Thus, participants will break the causal links
between the antecedent and its causes and infer that causally
prior components would have operated in the counterfactual
situation, consistent with pruning theory. In addition to
examining participants’ inferences about which components
would and would not have operated in the counterfactual
situation, we analyzed participants’ explanations of their
reasoning. In Experiment 1, we analyzed people’s
explanations of why they thought the non-antecedent
components would or would not have operated. In
Experiment 2, we analyzed people’s explanations of why
the antecedent event would have occurred.

Experiment 1

Participants in this experiment received a series of problems
about a set of eight hypothetical devices, each with four
components. For each device, they answered counterfactual
questions of the form If component X had not operated [had
failed], would components Y, Z, and W have operated? and
provided explanations justifying their reasoning.

Method

Materials. The questionnaire booklets contained three
pages of instructions followed by 24 pages of questions. The
instructions explained the experimental task and told
participants how to interpret the diagrams of the causal
devices on the following pages. Each question page
contained a written description of how a device operated
(e.g., Component A’s operating always causes component B
to operate, etc.), which was accompanied by the
corresponding diagram in Figure 1.

As shown in Figure 1, there were eight different causal
devices, all of which had “diamond” structures. The devices
varied in whether the causal links between components were
deterministic (solid lines in Figure 1) or probabilistic
(dashed lines), and whether components B and C had to
operate together to cause D to operate (arc connecting links
in Figure 1) or could independently cause component D to
operate (no arc). The order of the devices was
counterbalanced across participants. We used devices with
diamond structures for two reasons. First, previous causal
reasoning studies have used diamond structures and have
found that people make accurate causal inferences about
these systems (Meder, Hagmayer, & Waldmann, 2008,
2009). Second, pruning theory and minimal-network theory
make different predictions for many of the counterfactual
questions about these devices.
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After learning how each device works, participants were
told the device’s current operating state, which was always
that “at present, components A, B, C, and D are all
operating.” Next, participants were asked a counterfactual
question about the device, such as If component B had not
operated, would components A, C, and D have operated?
For each of the eight devices, participants answered three
counterfactual questions, one question each with A, B, and
D as the antecedent component. Since the devices were
symmetric with respect to components B and C, we did not
ask a separate question in which C was the antecedent. The
order of the antecedent components for these questions
(ABD vs. DBA) was balanced across participants.

Figure 1: Causal Devices Used in Experiments 1 and 2
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In this figure, solid arrows indicate deterministic links
(e.g., A always causes B) and dashed arrows indicate
probabilistic links (e.g., A usually causes B). All causal
relationships are in the direction shown by the arrows.
The arcs indicate that component B and component C
operating together cause component D to operate, but
component B or component C operating alone never
causes component D to operate (jointly caused devices).
The absence of an arc indicates that component B or
component C operating alone causes component D to
operate (separately caused devices).

Participants were randomly assigned to one of two
experimental conditions. In the not operated condition,
participants learned that the antecedent component
(component B in the preceding example) “had not
operated.” In the failed condition, participants learned that
the antecedent component “had failed.”

320

For each counterfactual question, participants indicated
which of the three non-antecedent components would have
operated in the counterfactual state. For each component,
participants could say that the component (1) would have
operated, (2) would not have operated, or (3) might or might
not have operated. To gain insight into how participants
were reasoning about the counterfactual questions,
participants also indicated the order in which they reasoned
about the non-antecedent components. After making these
inferences, participants justified their answers by responding
to the prompt “Please explain why you answered in the way
you did.”

Procedure. Participants received the questionnaire booklet
from the experimenter and answered the questions at their
own pace. The experiment took approximately 30 minutes
to complete.

Participants. Participants were 32 undergraduate students
at Northwestern University. Participants received course
credit for their participation.

Results and Discussion

We analyzed participants’ answers to the counterfactual
questions (e.g., If component B had not operated, would
component A have operated?) to see if their inferences were
consistent with minimal-network theory or pruning theory.
Responses of “would have operated” were scored as +1,
responses of “would not have operated” were scored as -1,
and responses of “might or might not have operated” were
scored as 0. The mean score for participants was higher in
the failed condition (M = -0.14) than in the not operated
condition (M =-0.43), F(1,32)=7.07, MSe =7.29, p = .01.
In two cases, pruning theory and minimal-network theory
make the same predictions: (1) when component A was the
antecedent, and (2) for the devices in which components B
and C must both operate in order for component D to
operate (jointly caused devices), when component B was the
antecedent and component D was the consequent. In case
(1), both theories say that components B, C, and D would all
not have operated, and in case (2), both theories say that
component D would not have operated. For all the other
counterfactual questions, pruning theory predicts that the
consequent component definitely would have operated
(producing positive scores), whereas minimal-network
theory predicts that the consequent component either (a)
definitely would not have operated or (b) might or might not
have operated (producing negative or 0 scores respectively).
When we restricted our analysis to the cases in which
pruning theory and minimal-network theory make different
predictions, the mean score for participants in the failed
condition was 0.17 and the mean score for participants in
the not operated condition was -0.27. As was the case with
the entire data set, the difference between conditions was
significant, F(1, 32) = 11.96, MSe = 6.27, p =.002. The
mean score for the not operated condition was significantly
less than 0, #(17) = -4.50, p < .001; however, the mean score



for the failed condition was not significantly different from
0,#17)=1.68, n.s.

Next, we examined the serial order (1, 2, or 3) in which
participants reasoned about the three non-antecedent
components. The most interesting case is the one in which
component B was the antecedent since participants could
work their way downstream (i.e., reason about component D
first) or upstream (i.e., reason about component A first).
Most participants (69%) started upstream, reasoning about
component A before component D (Binomial test, p <.001).
The mean serial position for component A was 1.44,
whereas the mean position for component D was 2.32. The
order in which participants reasoned about the components
did not differ across the failed and not operated conditions,.

We also examined participants’ explanations of their
counterfactual reasoning to see if the explanations were
consistent with pruning theory or minimal-network theory.
We classified explanations in two ways.

(1) Explanations were coded as causal backtracking if
participants used the state of the antecedent component to
reason diagnostically about the states of upstream
components. A sample causal-backtracking explanation was
“If B wasn’t operating that would mean A wasn’t working
since A always causes B.” Causal-backtracking explanations
are consistent with minimal-network theory.

(2) Explanations were coded as causes are independent of

effects if they suggested that the states of upstream “cause”
components are not affected by the states of downstream
“effect” components. A sample explanation was ‘“Neither A,
B, nor C are dependent on D so they all will have operated.”
Such an explanation is consistent with pruning theory.

Notice that these three types of explanations are only
applicable when there are components that are causally
upstream of the antecedent component. Thus, we restricted
the following analyses to the counterfactual questions in
which B or D was the antecedent. The data were coded by a
person who was unfamiliar with the experimental
hypotheses, and 25% of the data were coded independently
by a second coder. Inter-coder reliability was 90%.

Participants in the not operated condition were
significantly more likely to provide “causal-backtracking”
explanations than participants in the failed condition (65%
vs. 32% respectively, F(1,24) =12.9, MSe = 16.4, p = .001).
In contrast, participants in the failed condition were
significantly more likely to provide “causes are independent
of effects” explanations than participants in the not operated
condition (25% vs. 9% respectively, F(1, 21) = 5.57, MSe =
3.90, p = .03). Participants in the not operated condition
were significantly more likely to provide “causal-
backtracking” explanations than “causes are independent of
effects” explanations (#(14) = 6.33, p < .001); however,
participants in the failed condition did not significantly
prefer either type of explanation.

In sum, participants in the not operated and failed
conditions differed in their counterfactual inferences.
Participants in the not operated condition had a stronger
tendency to say that non-antecedent components would not
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have operated than participants in the failed condition, and
they made inferences that were better predicted by minimal-
network theory. The analysis of participants’ explanations
also showed that most participants in the not operated
condition used causal backtracking to diagnose the
counterfactual operating states of upstream components. In
contrast, participants in the failed condition were more
likely than participants in the not operated condition to say
that the operating states of upstream components were
independent of, and could not be diagnosed from the state of
the antecedent.

Experiment 2

The pattern of inferences and reasoning strategies in
Experiment 1 suggests that participants in the not operated
and failed conditions may have generated different
explanations for why the antecedent component had not
operated. We therefore performed a second experiment to
investigate the possible relationship between participants’
explanations of why the antecedent component had not
operated and their counterfactual inferences.

Method

The experiment contained two parts, an inference task and
an explanation task. The same eight causal devices from
Experiment 1 were used in Experiment 2 (see Figure 1). As
in Experiment 1, participants were randomly assigned to
either the not operated condition or the failed condition.

Materials.

Inference task: The inference task was identical to
Experiment 1 except that participants did not provide
explanations of their counterfactual inferences during this
part of the experiment.

Explanation task: In the explanation task, participants
described why the antecedent component had not operated.
Note that this is a different type of explanation than the ones
participants provided in Experiment 1; in Experiment 1,
participants explained why the non-antecedent components
would or would not have operated. The explanation-task
booklet included three pages of instructions followed by 24
pages of questions. As in the inference task and Experiment
1, participants received information about how the causal
devices work and told that “at present, components A, B, C,
and D are all operating.” Participants in the not operated
condition were asked questions of the form If component X
had not operated, which of the following would best explain
why? Participants in the failed condition were asked a
question that was identical except that “not operated” was
replaced by “failed.” For each device, participants answered
this question for each of components A, B, and D as the
antecedent. For each participant, the order of the devices,
and within each device, the order of the antecedent
components, was the same in the inference and explanation
tasks.

When component B was the antecedent, participants
selected an explanation from the following list:



(1) Component B was internally broken.

(2) Factors external to the device prevented component B
from operating.

(3) Component B operates unreliably, and component B
just didn’t operate this time.

(4) Component A did not operate, which in turn caused
component B not to operate.

(5) Component A operated, but component B just didn’t
operate this time because the connection between
component A and component B is unreliable.

(6) Component A operated, but the connection between
component A and component B was broken.

The list of explanations was similar when component D
was the antecedent, except that “component D” was
substituted for “component B” and “component B and/or'
component C” was substituted for “component A.” When
component A was the antecedent, only the first three answer
choices were included since component A’s operation is not
caused by other components. The order of the answer
choices (above order vs. reverse order) was balanced across
participants.

After choosing an explanation, participants rated their
confidence on a 0-9 scale with one-point increments, where
0 = “not at all confident” and 9 = “extremely confident.”

Procedure. Half of the participants completed the inference
task followed by the explanation task and the remaining
participants completed the explanation task followed by the
inference task. Each task took approximately 20 minutes
with the entire experiment taking approximately 40 minutes.

Participants. Participants were 32 undergraduate students
at Northwestern University who had not participated in
Experiment 1. Participants received course credit for their
cooperation.

Results and Discussion

Inference Task. The inference task replicated the findings
of Experiment 1. The mean score for participants in the
failed condition was significantly higher than for
participants in the not operated condition. This was true for
all counterfactual questions (M = -0.16 vs. M = -0.48
respectively, F(1,30) = 14.47, MSe = 4.14, p <.001) and for
the subset of counterfactual questions for which pruning
theory and minimal-network theory make different
predictions (M = 0.27 vs. M = -0.25 respectively,
F(1,30)=19.27, MSe = 4.94, p < .001).

Explanation Task. Participants’ explanations were coded
as consistent with pruning theory, consistent with minimal-
network theory, or consistent with neither theory.
Explanations 1, 2, and 6 (see Method section) were

" If either component B or component C operating alone could
cause component D to operate, the “and” wording was used.
Otherwise, the “or” wording was used.
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classified as pruning explanations. When the links between
the antecedent and its causes were deterministic,
explanation 4 was classified as a minimal-network
explanation. When the links between the antecedent and its
causes were probabilistic, explanation 5 was classified as a
minimal-network explanation. All other responses were
classified as “other.” Since neither explanation 4 nor
explanation 5 (the two possible minimal-network
explanations) is applicable when component A was the
antecedent, the following analyses were conducted only for
the counterfactual questions in which component B or D
was the antecedent.

Participants were significantly more likely to choose
minimal-network explanations than pruning explanations
(61% vs. 21% respectively, #31) = 5.31, p < .001). This
pattern was observed in both the not operated (60% vs. 14%
respectively, #(15) = 4.92, p < .001) and failed conditions
(61% vs. 27% respectively, #(15) = 2.85, p = .01). Notice
that participants in the failed condition were significantly
more likely to choose pruning explanations than participants
in the not operated condition (£(1,29) =4.56, MSe =3.04, p
=.04). The results are shown in Figure 2.

Figure 2: Percent of Minimal-Network and Pruning
Explanations by Condition
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Interestingly, when the causal links between the
antecedent and its causes were probabilistic, participants in
both conditions were significantly more likely to choose a
minimal-network explanation (e.g., Component A operated,
but component B just didn’t operate this time because the
connection between component A and component B is
unreliable) than a pruning explanation (e.g., Component B
was internally broken; Factors external to the device
prevented component B from operating; Component A
operated, but the connection between component A and
component B was broken), (Not operated condition: #15) =
5.81, p <.001, Failed condition: #(15) = 5.00, p <.001). All
these explanations (both the pruning and minimal-network
explanations) imply, and in some cases state explicitly, that
causally upstream components would have operated. Even



though this counterfactual state is consistent with both
pruning theory and minimal-network theory, participants in
both conditions preferred minimal-network explanations.

As in Experiment 1, minimal-network theory better
explained the inferences of participants in the not operated
condition compared to pruning theory. While participants in
the failed condition were more likely than participants in the
not operated condition to say that non-antecedent
components would have operated, participants in both
conditions preferred minimal-network explanations over
pruning explanations. Thus, Experiment 2 suggests that
minimal-network theory might provide a starting point for a
good psychological theory of counterfactual reasoning.

General Discussion

In the two experiments in this paper, we examined (1)
participants’ counterfactual inferences about the states of
variables in a causal system and (2) participants’
explanations of their reasoning. Alternative theories of
counterfactual reasoning such as pruning theory and
minimal-network theory make different predictions about
how people should modify (or preserve) the system’s causal
structure when reasoning about a counterfactual scenario.

A defining characteristic of pruning theory is the proposal
that people treat counterfactuals as interventions. Under this
account, people should simulate the counterfactual state by
intervening on the causal system, and we would expect them
to break both probabilistic and deterministic causal links
and say that upstream components would have operated.
Furthermore, they should endorse an interventionist
explanation for the counterfactual state of the antecedent
component, such as “factors external to the device prevented
the antecedent component from operating.”

Our data provide evidence against this hypothesis.
Participants in the neutrally worded not operated condition
made counterfactual inferences that preserved deterministic
causal relationships between components’ operating states.
When the causal links between the antecedent component
and its causes were deterministic, participants inferred that
the antecedent component’s causes would not have
operated, which in turn caused the antecedent component
not to operate. However, when the causal links were
probabilistic, participants inferred that the antecedent
component’s causes would have operated, but the
antecedent component would not have operated because the
links were unreliable. These inferences and explanations are
consistent with minimal-network theory, which proposes
that people should prefer “legal” counterfactual states that
preserve the system’s (deterministic) causal laws, but they
are inconsistent with pruning theory.

We also found that participants in the not operated and
failed  conditions reasoned differently about the
counterfactual scenarios. The failed wording suggested to
participants that the antecedent component was internally
broken. Accordingly, these participants modified the
devices’ causal structure by breaking the causal links
between the antecedent and its causes, and they inferred that
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upstream components would have operated. Other studies
that have varied the wording of counterfactual questions
have found similar effects (Sloman & Lagnado, 2005).

Each type of wording supports a particular (and different)
explanation for the counterfactual antecedent. The
differences in participants’ explanations across conditions
suggest that these explanations may in turn shape
participants’ counterfactual inferences. Hempel (1965)
famously proposed that causal explanations support
predictive inferences, and our data suggest such a
connection between explanation and inference in
counterfactual reasoning (Goodman, 1955). Specifically, we
propose that when engaging in counterfactual reasoning,
people integrate their explanation of the counterfactual
antecedent with their knowledge of the system’s causal
structure to infer the system’s counterfactual state.
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