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Abstract
Although  the  study  of  how  learners  approach  emergent 
phenomena  is  relatively  new,  a  consistent  set  of 
misconceptions  associated  with  emergence  have  been 
documented. However, little consideration has been given as 
to whether some misconceptions manifest more frequently in 
one  domain  than  another,  or  take  on  a  different  character 
depending  on  the  agents  or  phenomenon  involved.  We 
examined participants' explanations of emergent phenomena 
from  three  domains.  We  found  significant  differences 
between  domains,  showing  greater  or  lesser  evidence  of 
misconceptions.  We  propose  that  that  novices  bring  prior 
knowledge,  folk  psychology,  and  folk  biology  to  bear  in 
determining  the  capabilities  of  the  agents  involved  in  a 
phenomenon, and that these beliefs guide their explanations. 
We believe that the study of how people perceive emergence 
would benefit from drawing upon research on folk theories, 
anthropomorphism,  developmental  constraints,  and  other 
areas that will  help us understand how learners characterize 
agents, environments, and their interactions.

Keywords: emergence;  complexity  theory; 
misconceptions;  science  education;  folk  biology;  folk 
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Introduction

We live in a complex world. Not just in the everyday sense, 
but in a mathematical, or scientific, sense. Many of the 
phenomena we encounter in everyday life are of the 
emergent, or complex, sort. Emergent phenomena play a 

central role in every scientific discipline. Color and 
convection are emergent phenomena, as are weather 
patterns, earthquakes, and the evolution of galaxies. The 
activities carried out by ant colonies, bee hives, and 
American voters exhibit emergence, as does the co-
evolution of flowers and bees. There is, therefore, potential 
for great benefit in developing an understanding of how 
emergent systems arise and behave, but this is a difficult 
task for learners.

In non-complex, or “direct,” systems, the overall behavior 
of the system and its outcomes tends to be deterministic, 
linear, and predictable, often organized by a centralized 
process or individual leader. The circulatory system (Chi, 
2005, in press) follows a clear path, each step having a clear 
purpose in a system that is regulated by nerves keeping the 
heart beating at a regular pace. A problem in Newtonian 
mechanics, say, the building of a bridge, involves 
identifying forces that sum to indicate the stresses on a 
particular element of the bridge, stressors which can be 
offset directly by adding new elements in a cumulative way, 
or inventing new structures that alter how the forces sum. 

In contrast, complex systems are unpredictable, nonlinear, 
and give rise to novel, or emergent, behavior (Holland, 
1999). Even when the exact rules governing each agent are 
fully specified, the resulting phenomenon will be 
unpredictable and irreducible, and adding new elements 
multiplies the possible interactions between agents, leading 
to unexpected, non-replicable outcomes. There are no set 
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leaders or controllers; an agent may appear to have such 
powers, such as the lead goose in a flock, but they are in the 
lead simply because the other geese fell in line with them.

It is not surprising that the naïve learner struggles when 
faced with explaining and understanding emergent 
phenomena. Previous studies have well-documented the 
challenges that emergent systems present for learners 
(Jacobson, 2001; Hmelo-Silver & Azevedo, 2006). Learners 
new to emergent systems are likely to expect clear patterns 
of cause-and-effect, purposeful encounters between agents, 
and a central control system that oversees their movements 
and actions (Chi, 2005; Resnick, 1996). Complex systems 
introduce the notion that order can emerge out of random 
interactions; stochastic movements and actions are central to 
how emergent phenomena arise and evolve. This challenges 
the commonsense belief that ascribes purposefulness to 
events in the universe (Jacobson, 2001). In a deterministic, 
linear system, small changes to the starting conditions 
generally lead to small changes in outcomes. In a complex 
system, the smallest change can have a drastic effect on the 
outcome, as interactions amplify and reshape the actions of 
individual agents and their encounters with their 
environment. The learner tries to make sense of these 
patterns by invoking centralized control, in the form of a 
“queen” bee or other sort of leader, who has knowledge of 
the entire goings-on and can shift the pattern according to 
their needs or the needs of the group. But there is no leader 
to be found.

The study of how people perceive, explain, and 
understand emergent systems is a relatively new area, and 
both logistical considerations and underlying assumptions 
have led us, as researchers, to pursue our investigations 
through a close examination of single phenomenon (Chi,  in 
press), a single self-contained ecosystem (Hmelo-Silver & 
Pfeffer, 2004), or a small set of phenomena within a single 
domain, such as chemistry (e.g., Talanquer, 2008; 
Rappoport & Ashkenazi, 2008) or evolution (e.g., Evans, 
2001; Poling & Evans, 2004). 

Logistically, this approach has been fostered by the fact 
there are only a few tools for modeling emergent systems 
(e.g., Colella, Klopfer & Resnick, 2001; Tisue & Wilensky, 
2004), and creating such models is highly time-consuming. 
Data collection is similarly time-consuming, and research 
has focused heavily on case studies and close observation of 
small groups in complex settings (e.g., Charles & 
d'Apollonia, 2004; Wilensky & Resnick, 1999), or larger 
groups interacting with a single aspect of a phenomena. We 
have spent little time looking at whether and how learners' 
actions and ideas change from one domain to the next.

Theoretically, too, there is a basic reason why we might 
believe that, with time, these individual studies would come 
together to create a fuller account of how learners perceive, 
represent, and think about emergent systems. To be 
considered an emergent system, a phenomenon must meet 
specific mathematically-defined criteria. At the 
mathematical level, diffusion, chemical bonds, and traffic 
jams have a great deal in common; emergent phenomenon 

belong to a class that is unaffected by features specific to a 
particular domain.

It remains to be seen, then, to what degree the abstract 
features and behaviors of an emergent system actually do 
cross domain boundaries for learners. If I become proficient 
in understanding diffusion, for example, will this make 
learning about traffic jams or chemical bonds any easier for 
me? We not only do not have such comparisons, we lack 
assessments that allow us to directly compare a learner's 
understanding of the principles of emergence in one domain 
to their understanding in another.

Our goal for the project we describe here was to create an 
assessment of key aspects of emergent systems that could be 
applied across topics. Learners' understanding of each 
phenomenon was assessed using an instrument that had 
identical stems representing each component of emergence, 
into which the particular phenomenon could be inserted. If 
learners respond to the basic patterns that underlie the 
phenomenon, they should show similar levels of 
understanding (or misunderstanding) across domains. If a 
person showed a low understanding of diffusion, they 
should show a similarly low understanding of geese 
flocking, as the same basic principles are needed to make 
sense of these two phenomena. Thus, we can determine 
whether their knowledge is tied to a particular system, or is 
available at a more abstract level. 

If domain knowledge plays a role, however, then 
responses may be influenced by folk theories that ascribe 
greater capacity for volition, control, and decision making to 
certain sorts of entities, and less to others. A bacterium may 
be seen as relatively incapable of engaging in goal-oriented 
behavior, of communicating with other bacteria, or of 
choosing a course of action. A goose, given that it has a 
brain and nervous system, may be seen as more capable. 
The social behavior of ants, likewise, may cause us to 
assume they are more intentional and communicative, and 
less driven by instinct and environment. Given people's bias 
to find centralized, intentional causes for emergent patterns, 
it may be harder to believe that animals with greater 
neurological development are subject to random processes, 
do not engage in communication and group planning, and 
do not make choices when they act.

We therefore decided to test our domain-general stems in 
the context of three different domains: unicellular slime 
molds aggregating before sporing, ants, a social animal, 
foraging for food, and geese, the most “advanced” 
neurologically, flocking. These three entities not only come 
from different locations on the phylogenetic tree, they differ 
in the ways that we describe above. 

We designed a study in which participants watched 
simulations of three phenomena. Participants responded to 
an open-ended written protocol that used the same questions 
for each domain, altered only to refer to the domain at hand. 
We then coded participants' responses and compared their 
conceptualizations of each phenomena.

If misconceptions arise due to the features that all 
emergent phenomenon have in common, we would expect 
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responses to our probes to be roughly the same across the 
simulations. If, however, domain-specific considerations 
come into play, we expect to see misconceptions arising 
more often in some domains than in others. In particular, we 
predicted that misconceptions would be invoked less often 
with regard to slime molds than ants or geese. In addition, 
we predicted ants would give rise to the greatest number of 
misconceptions due to the familiarity of their social nature.

Methods

Participants 

Forty participants, undergraduates from a large 
Southwestern University, completed the written protocol, 
receiving $20 in compensation. None had formal training in 
emergence or complexity theory. The protocol took 
approximately 60 minutes to complete.

Materials and Procedure

The participants completed a written protocol posing 
questions about three emergent phenomena: geese flocking, 
ants foraging for food, and slime molds aggregating to 
spore. The order in which the phenomena were presented 
was counterbalanced across participants.

Each phenomenon was illustrated with a NetLogo 
simulation that had been video-captured, so that the same 
run could be shown to all participants. Agents were 
represented by icons that captured the basic appearance of 
the real entity (i.e., ant, slime mold, goose), and participants 
were told before the simulation began what symbols would 
be used, and what they would mean. 

Each simulation lasted approximately 90 seconds, and 
were roughly divided into three phases. First, there was a 
brief section that allowed participants to orient themselves 
to the simulation, the symbols used for the agents and 
environmental objects, and the agents' behavior. Next, the 
behavior began to develop emergent properties, i.e., patterns 
began to form at the group level. Finally, the simulation 
reached equilibrium (in the case of the flocking and slime 
mold simulations) or the agents achieved their goal (of 
finding food, in the ant simulation). Pilot runs of the 
simulations and the responses of the participants suggested 
that few had any difficulties mapping the real phenomenon 
onto the simulation.

There were a total of 7 questions. We began each of the 
three protocol sections with broad questions (e.g., #1 and #2 
below), moving to more specific questions that capture key 
aspects of emergent phenomena (e.g., #3 and #4 below). 
The questions were designed to be as similar as possible 
across entities, substituting in the appropriate phrases:

1. Describe the patterns that the ants/geese/slime mold  
organisms make in as much detail as possible.

2. What do you think causes the ants/geese/slime  
molds to make the patterns you see?

3. Do you think that there are special leader 
ants/geese/slime molds that signal the others to 
follow them/ follow them/ come to them and form 
clusters?

4. If we make a new video with the same ants and 
food/geese/slime molds in the same starting 
positions, how similar do you think the patterns 
they form will be?

We instructed participants to write as much as they could, 
giving as much detail as they could provide. They were told 
to answer the questions in the order they were given, and 
not to go back and change any of their answers.

 
Results

To create the coding system used to categorize 
participants' answers, two of the authors (SKB and GSS), 
conducted an open coding of the data, allowing codes to 
emerge, rather than searching for codes based on existing 
expectations and hypotheses. We iteratively coded sections 
of the data and discussed our codes, coming to agreement 
on 13 themes that were present across all domains. No 
theme arose that was not present at least once in each 
domain. Two of the other authors (RR and BH) who did not 
have contact with GSS and SKB during the development of 
the codes, applied the codes to the data. Both were blind to 
the hypotheses regarding the relationship between a given 
domain and possible patterns for that domain. They applied 
the codes with 94.5% agreement, resolving disagreements 
through discussion. Less than 5% of the answers were 
deemed uncodable. Multiple codes could be applied to a 
single answer, if all of the criteria for each code was met.

Although we arrived at 13 themes, not all of these codes 
spoke to the issue of misconceptions about emergence. 
Some were not directly relevant (e.g. “descriptive,” used 
when for a play-by-play description of the simulation, 
without interpretation, or “external factors,” when 
characteristics of the simulation itself were the focus, 
instead of the content.) Other codes proved complex and 
potentially misleading because they captured different 
concepts for different individuals (this is further discussed 
below).

We chose to focus on the codes that, based on prior 
research, are most central to identifying whether participants 
hold a misconception or correct representation. We chose 
four that directly invoke misconceptions well-documented 
in the literature, and two providing evidence that the 
participant held a correct representation of the phenomenon 
(see Table 1 for a description of the codes, and a sample 
response). Regarding the misconceptions, people tend to 
assume that there is a controlling force directing the agents, 
that the agents are communicating and cooperating, that 
certain agents have special powers that allow them to direct 
the pattern, and that all of the agents are acting out of a 
sense of purpose. In contrast, the last two suggest 
understanding of two basic principles of emergence: the 
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lack of centralized control, and the role of stochastic 
processes.

Table 1: Codes Used in The Analysis

Code Description Example

Centralized 
Control

Reference to a group 
member determining, 
directing, or guiding 
the actions of the rest 
of the members.

The slime mold 
that produces  
more pheromones  
will signal the  
others to come 
and cluster  
around them. 

Cooperation Agents 
cooperatively 
determine their 
behavior, or work 
together as a group.

Each geese are 
telling each other  
where to move

Differentiation Members have 
different abilities, 
roles, or attributes 
from one another.

Maybe the ones  
clustered have a 
similar 
pheromone (sic).  
Also the levels of  
what they give off  
could be different.

Goal-oriented Specifies a behavior 
being performed to 
fulfill a specific, 
stated purpose.

He takes the path 
he does because  
he’s searching for  
food.

Lack of 
Central Control 

Refers to lack of a 
group member 
determining, 
directing, or guiding 
the actions of other 
members.

I think the ants  
are generally just  
concerned with  
getting some food,  
so following a 
leader was not the  
goal. They all  
followed very  
similar paths  
because they  
shared a common 
goal.

Random 
Processes

Describes movement 
or other activity 
explicitly as 
“random.” Does not 
include descriptors 
such as “haphazard” 
or “scattered,” but 
only those which or 
seem to be referring 
to a reasonably 
accurate version of 
statistical 
randomness.

I think this is a  
random pattern 
while they search  
for food. The first  
makes random 
search while the  
followers more  
directly follow.

Our first step in analyzing the data was to calculate the 
means and standard errors for each domain on each of these 
6 codes (see Table 2 for descriptive and inferential 
statistics). We took a “token-counting” approach, adding up 
the number of times a particular code was used a participant 
in a domain. This gives a sense of how strongly the 
participants relied on a particular conception in providing 
their explanations for the phenomena. Since a participant 
could have invoked a particular concept or principle in 
answering each question, the maximum token score for each 
code is seven.

Table 2. Descriptives For Each Domain, By Code
(alpha corrected to account for experiment-wide error)
Code Slime Ants Geese F(2, 78)

Centralized Control 0.23
(.07)

3.35
(.27)

1.18
(.21)

64.22***

Cooperating Agents 1.08
(.17)

0.55
(.13)

1.50
(.27)

8.10**

Differentiated 1.05
(.22)

3.95
(.26)

1.85
(.28)

35.86**

Goal-Oriented 2.70
(.29)

3.77
(.25)

3.03
(.29)

5.34*

Lack Central Control 0.78
(.09)

0.32
(.17)

0.38
(.13)

3.40m

Random Processes 0.70
(.22)

0.48
(.14)

0.38
(.13)

1.51ns

We also calculated participants' use of these codes using a 
binary process; a score of “1” meant that the participant 
used the code at least once within that domain; “0” indicated 
they did not use the code at all in that domain. The results 
were quite similar; the same pattern of significant findings 
was found for all but two of the codes. In the case of “goal-
oriented,” the differences decreased, and the F-value fell to 
2.69 (non-significant). In the case of “lack of centralized 
control,” differences increased, and the F-value rose to 
16.98 (p < 0.01). We believe these differences are due to the 
following: in the case of goal-orientation, almost every 
participant invoked it at least once in every domain, 
restricting the range when using binary scoring. The 
opposite is true in the case of a lack of centralized control; 
so few participants invoked this, a binary analysis was able 
to detect differences that were swamped by non-responses 
in the token analysis.

Other Points of Interest 

As noted above, there were themes in the data that were not 
as central, but might shed some light on how participants 
conceptualized emergence. For example, in reviewing the 
protocols, we found that participants were expressing quite 
different ideas, even when using similar language. In one 
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case, we inquired as to whether the participants believed 
that the agents followed rules in carrying out their actions. 
The consensus seemed to favor that they did not follow 
rules (approximately 2/3 of the replies). 

However, we also discovered that participants had 
different ideas about what constituted a “rule.” For some, 
following a rule meant making a conscious decision based 
on a learned rule—we learn to stop at red lights, for 
example, and we (usually) follow that rule. For others, rules 
could also be innate or instinctual. Some even went so far as 
to explicitly state “if you mean conscious rules, no, but if 
you mean instincts, then yes, they follow instincts.” 

Because we could not go back and further probe to see 
what meaning of “rule” each participant used, we excluded 
it from further analysis, but we think this disagreement 
about what constitutes a rule is interesting, for reasons we 
will address in the discussion.

Discussion
As predicted, slime molds elicited fewer misconceptions 
overall than the other two entities, and produced the lowest 
level of misconception use in three of the four categories 
associated with misconceptions. Ants also elicited the 
predicted performance, with the highest use of 
misconceptions in three of the four categories. Trends in the 
two categories related to correct conceptions were unclear; 
reference to an explicit lack of centralized control was only 
significant in the binary coding of the data; this trend did 
favor our prediction, in that slime molds had the highest 
invocation of this correct concept. However, random 
processes produced no significant differences in either 
analysis.

The mathematical and scientific power of complexity 
theory and emergence comes from the ability of these 
theories to draw bridges between seemingly disparate 
disciplines. These isomorphisms, along with the tremendous 
overhead involved in modeling any phenomenon, have led 
educational researchers and cognitive scientists to focus on 
a small sub-set of emergent phenomena, reasonably 
inferring that the errors that crept up in one domain would 
appear in another, given the underlying similarities. Even if 
novices did not know the phenomena were isomorphs, the 
phenomena were governed by the same principles, manifest 
in similar ways, and created similar puzzles. 

There was indeed some similarity in how the participants 
responded to phenomena; of the 13 themes we identified, 
every one was present at least once in each domain. That 
suggests a relatively high degree of consistency across 
domains in terms of how participants describe and explain 
phenomena.

However, we also believe that researchers have not been 
paying enough attention to the fact that each phenomenon is 
carried out by a different cast of characters—be it 
molecules, ants, geese, or air streams—and novices might 
rely on prior knowledge and beliefs in perceiving a 
phenomenon and devising an explanation for it. As a result, 
the likelihood of invoking a particular concept or 

misconception is not just due to the phenomenon’s abstract 
characteristics, but also what the novice brings to the 
phenomenon, perhaps in the form of specific knowledge of 
the entities, or perhaps in the form of folk theories.

The problem of interpreting participants' use of the word 
“rules” illustrates our account well. Differences in one's 
beliefs about what constitutes a rule, and whether an entity 
is capable of acting on rules created differences in the way 
participants responded. Most participants seem to think of 
rules as learned guides to appropriate behavior to which one 
consciously refers. They were reluctant to ascribe that 
ability to the entities we used in this study. Those who 
believed that instincts could be thought of as rules were 
much more willing to think of agents as following rules.

Similarly, we believe that the differences between the 
three domains on the codes we examined are driven less by 
specific knowledge of emergence, and more by one's beliefs 
about the entities' capacity for thinking, consciousness, and 
deliberate decision making. They invoked misconceptions 
less for slime molds, unicellular microorganisms, than for 
geese and ants, and there is some evidence that they were 
more likely to invoke a correct explanation for the slime 
molds, based on a lack of centralized control and random 
processes.

Their accounts of ants consistently showed the greatest 
number of misconceptions; only for cooperation did geese 
outperform ants. Anecdotally, a fair number of participants 
spontaneously stated that they knew how ants worked 
because (a) they have had extensive experience with ants, 
usually trying to get them out of their houses, and (b) 
because they had seen the movie 'Antz.' They were also 
inclined to mention that ants were social creatures, and that 
ability suggested organization, and the mental capacities 
needed to create organization.

At very least, this should serve as a warning to those of us 
engaging in research about complexity and emergence. By 
relying on one or a few phenomena to characterize how 
people perceive, explain, and understand emergence more 
generally, we may be greatly over or underestimating the 
abilities depending on the domains and agents we choose. 
Testing a model on a variety of phenomena, with agents at 
different levels of familiarity and perceived cognitive 
capacity would be a good step to take before deciding that a 
particular pattern of results arises because of the character of 
emergent systems generally, and because of to the specific 
properties of the agents and the activities they undertake.

We believe, however, that there is something more 
interesting going on here, and that a better understanding of 
how people experience emergence will require us to draw 
upon research into folk theories (Arico, Fiala, Goldberg & 
Nichols, 2011) developmental constraints (e.g., 
intentionality, teleology; Sinatra, Brem & Evans, 2008), 
anthropomorphism (Tamir & Zohar, 2006), and 
sociocultural accounts of the differences in ways that 
different groups of people characterize animals, people, and 
objects. We need a better sense of how people characterize 
agents and their abilities to exhibit volition, teleological 
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thinking, to communicate, and to control themselves, others, 
and their environment. 

We hypothesize that the greater the perceived capabilities 
of an agent or group of agents, the more likely it is that 
people will reject explanations that invoke emergence in 
favor of accounts that that give agents greater control over 
the events that occur. Alternatively, the differences between 
simulations were due to differences in the phenomena we 
chose. It may be, for example, that flocking seems to require 
greater mental skill than following a pheromone trail.

As a first step in addressing these hypotheses, we are 
currently running a study in which we present isomorphic 
phenomena across different levels of agents (physical, 
“lower animal,” “higher animal,” and human), and are also 
gathering data about the perceived capacities of each of 
these agent types. We believe that simulations depicting 
agents deemed more mentally capable will correlate with 
greater misconceptions, even when the underlying 
mechanisms are actually identical. However, if it is the type 
of phenomenon that drives the differences in our first study, 
this should surface in this study; responses should be more 
similar by phenomenon than by level of agent. 

In either case, having a better understanding of how 
perceptions of phenomena and agents vary, this should 
improve our ability to understand how people look at 
emergent phenomena, and suggest ways to dispel 
misconceptions.
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