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Abstract 

Previous research suggests that comparing multiple specific 
examples of a general concept can promote knowledge 
transfer. The present study investigated whether this approach 
could be made more effective by systematic variation in the 
semantic content of the specific examples. Participants 
received instruction in a mathematical concept in the context 
of several examples, which instantiated either a single 
semantic schema (non-varied condition) or two different 
schemas (varied condition). Schema-level variation during 
instruction led to better knowledge transfer, as predicted. 
However, this advantage was limited to participants with 
relatively high performance before instruction. Variation also 
improved participants’ ability to describe the target concept in 
abstract terms. Surprisingly, however, this ability was not 
associated with successful knowledge transfer. 
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Introduction 

Part of the power of mathematics lies in its generality. The 

same mathematical formulae may be used to understand the 

growth of slime molds or the accumulation of interest from 

investments, the probabilities of hands in poker or outcomes 

of scientific experiments, and the oscillations of mechanical 

or electromagnetic systems. In order to fully realize this 

power, however, learners must be able to recognize and 

apply mathematical concepts in contexts different from 

those in which they were learned – that is, to transfer their 

mathematical knowledge from learned to novel contexts. 

Learners’ difficulties in achieving such transfer are well-

documented (Novick & Holyoak, 1991; Ross, 1987). One 

reason may be that, when a general idea is learned in the 

context of specific examples, learners’ concepts become tied 

to the details of the examples, inhibiting their ability to 

recall the concept or apply it correctly when faced with 

cases that do not share similar details (Ross, 1987). This 

difficulty may be especially strong when the examples are 

presented in a perceptually detailed format (Kaminski, 

Sloutsky, & Heckler, 2008), and is likely to be more serious 

for domain novices than experts (Novick & Holyoak, 1991). 

One way to address this difficulty is to present 

mathematical ideas in abstract form, without specific 

examples. Such an approach has indeed been shown to 

promote transfer in some cases (Kaminski et al., 2008). 

However, in other cases, learners have experienced serious 

difficulties with abstractly-presented mathematics, despite 

being competent with the same mathematics encountered in 

familiar contexts (Nuñes, Schliemann, & Carraher, 1993). 

In such contexts, learners can apply intuitions from 

everyday life to help in understanding the mathematical 

ideas involved. Abstract presentation of mathematical ideas 

therefore risks sacrificing learning for the sake of transfer. 

It may, then, be desirable for learners to encounter 

mathematical ideas in a way that leverages their intuitive 

understanding of specific examples, while also drawing 

attention to the abstract structure present in those examples. 

Research on analogy suggests that this goal might be 

achieved through presentation of multiple specific examples 

followed by comparison (Gentner, Loewenstein, & 

Thompson, 2003; Gick & Holyoak, 1983). Comparing 

examples encourages learners to align their corresponding 

elements, and thereby to notice their common relational 

structure. Awareness of this structure, in turn, can facilitate 

understanding of new cases with the same structure. Thus, 

learning mathematical ideas by studying and then 

comparing multiple examples may enable learners to gain 

intuitive accessibility without losing generality. 

The question then arises as to how the examples which 

will instantiate a mathematical concept during learning are 

to be chosen. Central to this question is the issue of how 

much, and in what ways, the examples should differ from 

each other. If, as the above research suggests, learners 

induce concepts that incorporate commonalities among the 

examples, it seems desirable that the examples should share 

the mathematical structure in question, but should not share 

other extraneous details. Extraneous commonalities might 

be misunderstood as part of the concept to be learned, 

limiting learners’ ability to generalize (Medin & Ross, 

1989), and so defeating the purpose of using multiple 

examples in the first place. These observations suggest that 

extraneous aspects should be systematically varied across 

examples, while holding mathematical structure constant. 

The present study investigates the effects on mathematical 

concept learning of a particular type of variation among 

examples: variation at the level of “semantic schemas.”  

This term here refers to structures more general than 

specific examples but less general than mathematical 

structure. Consider the three combinatorics problems shown 

in Figure 1. Problems (a) and (b) share a schema, termed 

“Objects Selected in Sequence” (OSS), in which a sequence 

of selections is made from a fixed set of options. Problem 

(c), by contrast, belongs to a different schema, termed 

“People Choosing Options” (PCO), in which several people 

each choose once from a fixed set of options. 
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Figure 1. Three combinatorics problems. 

 

Of course, all three problems share the same 

mathematical structure (discussed further in the Methods 

section), and the differences between them would likely not 

seem important to a mathematics expert. For mathematics 

novices, however, semantic schemas are known to exert a 

strong influence on the mathematical interpretation of 

contextualized problems. For example, Bassok, Wu, and 

Olseth (1995) found that learners were more likely to solve 

correctly problems in which schematic and mathematical 

roles were matched consistently with their default 

expectations than problems in which such matches were 

inconsistent. In light of the preceding discussion, learning 

about a mathematical structure via several examples based 

on the same schema might lead learners to induce concepts 

tied to that particular schema, and thus to perform poorly on 

problems involving other schemas. Conversely, systematic 

variation of the schemas encountered during learning should 

lead to induction of more general concepts and thus to more 

successful transfer to novel problems. 

This hypothesis was investigated in the present study. 

Combinatorics problems were used as the domain for study 

and transfer for several reasons. First, the discovery of better 

methods for learning and teaching combinatorics would 

have considerable practical value due to the foundational 

role of combinatorics in applied mathematics – in particular, 

probability and statistics. Second, mathematics learners are 

known to have considerable difficulty correctly applying 

combinatorics methods to novel problems (Bassok et al., 

1995; Ross, 1987). Finally, semantic schemas are known to 

play a role in the mathematical interpretation of 

combinatorics problems (Bassok et al., 1995). 

Methods 

Participants 

Participants were 109 Indiana University undergraduate 

students, who participated in partial fulfillment of a course 

requirement. 

Materials 

Sixteen story problems were constructed as stimuli. All of 

the problems had the same mathematical structure: 

Sampling with Replacement (SWR), in which multiple 

selections are made from a fixed set. The number of 

possible joint outcomes in such a case is given by the 

expression mn, where m is the number of elements of the set 

and n is the number of selections, or sampling events. 

The sixteen problems belonged to four different schema 

categories. The first two categories were those already 

illustrated above: PCO and OSS (OSS: Figure 1a-b, PCO: 

Figure 1c). Problems in these categories were used as 

learning examples. The other two categories were Options 

Assigned to Places (OAPlc) and Objects Assigned to People 

(OAPpl), illustrated below (Figures 2a and 2b respectively). 

OAPlc and OAPpl problems served as pretest and transfer 

problems. Note that in the learning examples (OSS and 

PCO) and OAPlc problems, people are either doing the 

choosing or are not mentioned at all. In OAPpl, by contrast, 

people are being chosen instead of choosing. Due to this 

role reversal relative to the learning examples, transfer to 

OAPpl problems was expected to be particularly difficult, as 

found in previous research (Ross, 1987). 

 

 
 

Figure 2. Combinatorics problems from the (a) OAPlc and 

(b) OAPpl categories. 

 

Each problem category contained two pairs of problems, 

for a total of four problems. The problems within a pair 

involved the same back story but different numbers, while 

the two pairs within each category involved different back 

stories (and different numbers from each other). The order 

in which the two critical numbers, i.e. the size of the 

sampled set and the number of sampling events, were 

presented was varied among questions so that it could not 

serve as a cue to match the numbers to their respective roles. 

 

 
 

Figure 3. Summary of experimental design. 
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The experiment employed a pretest-training-posttest 

design, summarized in Figure 3. The pretest consisted of 

one OAPlc problem pair and one OAPpl problem pair, for 

four problems altogether. The posttest consisted of the other 

OAPlc problem pair followed by the other OAPpl problem 

pair. Thus, all eight OAPlc and OAPpl problems appeared 

in either the pretest or the posttest. 

The training consisted of worked solutions to four 

problems drawn from the PCO and OSS categories. 

Participants were assigned randomly to one of two training 

condition. In the varied condition, participants were shown 

one pair of problems from each category, either PCO 

followed by OSS or vice versa (these two possible orders 

were balanced across participants). In the non-varied 

condition, participants were shown two pairs of problems 

from the same category, either both PCO or both OSS 

(again, the two possibilities were balanced across 

participants). If a certain problem category was shown in a 

given position (either first pair or second pair), it was 

always the same problem pair regardless of condition. For 

example, if PCO problems were shown first in the varied 

condition, they were the same problems that were shown 

first in the non-varied condition. An important consequence 

of this design is that each training problem was shown 

equally often across the two conditions. 

Procedure 

Participants were randomly assigned to receive one set of 

OAPlc / OAPpl problems as pretest. The pretest problems 

were displayed to participants on a computer monitor 

together with a virtual calculator, which participants were 

encouraged to use as needed. Only one problem appeared on 

the screen at a time. Two spaces were provided below each 

problem: one in which to show work, and another in which 

to write the final answer. Participants were required to show 

their work and enter some number as their final answer 

before they could proceed to the next question. 

After the pretest, answers were scored for correctness, and 

participants were classified as high pretest performers if 

they answered at least 50% of the pretest problems correctly 

and low pretest performers otherwise. They were then 

assigned randomly to one of the two training conditions 

with the constraint that, at each level of pretest performance, 

the number of participants in each condition was balanced. 

This manipulation was intended to reduce differences in 

pretest scores between training conditions. 

The training problems corresponding to participant’s 

training conditions were then presented in the same way as 

the pretest problems. However, after completing each 

problem, participants were shown the correct answer 

together with a brief explanation of how the answer was 

calculated and why this calculation was appropriate. These 

explanations utilized exponential notation but did not show 

the general expression mn. Instead, they only showed 

specific versions of this expression instantiated with the 

numbers used in the problem. The explanation for a given 

problem did not differ between training conditions. 

After completing each pair of training problems, 

participants were asked to choose from a list of options the 

correct method of solving problems like those just seen, 

independent of the specific numbers involved. For example, 

the correct answer to this question after the problems 

involving pizza flavors (Figure 1c above) was “Multiply the 

number of pizza flavors by itself as many times as there are 

consumers.”  Participants who chose incorrectly were not 

allowed to proceed until they chose the correct answer. 

After answering the above question for the second pair of 

training problems (only), participants were asked to choose 

from a list of options the correct mapping between elements 

of the preceding two problem pairs. For example, the correct 

answer to this question if the preceding problem pairs 

involved a website generating passwords and consumers 

tasting pizza flavors (Figure 1b and 1c) was “The length of 

the note sequences corresponds to the number of consumers, 

and the number of possible notes corresponds to the number 

of pizza flavors.”  The purpose of this question was to 

encourage participants to think about the shared structure of 

the training problem pairs. After answering this question, 

participants were asked to describe, in free-response format, 

a general method for solving problems like those just seen. 

No feedback was given for either of these questions. 

Finally, participants were administered the posttest. The 

posttest utilized whichever set of OAPlc / OAPpl problems 

had not been presented during the pretest, and the procedure 

was in all ways the same as for the pretest. 

Coding 

For each problem, participants were assigned a score of 1 if 

their answer was correct and 0 otherwise. 

Responses to the free-response question regarding a 

general solution method posed at the end of the training 

were coded on a 0-2 scale in each of two respects. For the 

first respect, Correctness, responses were assigned a score 

of 2 if they indicated that the number of elements in the 

sampled set should be raised to the power of the number of 

sampling events (or multiplied by itself as many times as the 

latter). Responses which implicated exponentiation but did 

not correctly identify the base and exponent were assigned a 

score of 1, and all other responses received a score of 0. The 

second respect, Abstractness, was intended to measure how 

well participants had generalized beyond the specific details 

of the learning examples. Responses were assigned a score 

of 2 if they referred to the two numbers using general 

words, such as “the options” (for the size of the sampled set) 

or “the number of times they are able to be chosen” (for the 

number of sampling events). Responses which used general 

words for one but not the other number were assigned a 

score of 1, and all other responses received a score of 0. All 

responses were coded by two independent coders, and all 

disagreements were resolved through discussion. In the 

analyses detailed below, scores of 0 and 1 were combined 

for both correctness and abstractness, so that responses were 

classified as either correct (2) or not correct (0 or 1) and 

abstract (2) or not abstract (0 or 1). 
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Results 

Average pretest and posttest scores are shown in Figure 4. 

Participants demonstrated considerable improvement on 

posttest, but the amount of improvement varied by problem 

category.  The data were entered into a 2 (test section: 

pretest or posttest) x 2 (problem category: OAPlc or OAPpl) 

within-subjects ANOVA. The main effects of both factors 

and the interaction between them were all significant (test 

section: F(1,108)=69.8, p<.001; problem category: 

F(1,108)=14.6, p<.001; interaction: F(1,108)=16.4, p<.001). 

Participants improved from pretest (0.216) to posttest 

(0.489), but this improvement was greater for OAPlc (0.225 

to 0.638) than for OAPpl (0.206 to 0.339). 

 

 
Figure 4. Pre and posttest accuracy by problem category1. 

 

Figure 5 shows average transfer scores, defined as the 

difference between posttest and pretest scores, for each 

training condition, among low and high pretest performers. 

Transfer scores were submitted to a 2x2x2 mixed ANOVA 

with training condition (varied vs. non-varied) and pretest 

performance (low or high) as between-subjects factors and 

problem category (OAPlc or OAPpl) as a within-subjects 

factor. The main effect of pretest performance was 

significant, F(1,105)=66.6, p<.001, indicating more 

improvement from pretest to posttest among low pretest 

performers (0.404) than high pretest performers (-0.056). 

Also, the effect of problem category was significant, 

F(1,105)=12.3, p=.001, indicating greater improvement on 

OAPlc (0.413) than on OAPpl (0.133). Problem category 

did not interact significantly with any of the other factors. 

 

 
Figure 5. Transfer by condition and pretest performance. 

                                                           
1 Here and elsewhere, error bars indicate standard errors. 

 

More importantly, the main effect of training condition 

was significant, F(1,105)=4.0, p=.049, indicating greater 

improvement in the varied (0.305) than in the non-varied 

(0.201) condition. However, this effect was qualified by a 

marginally significant condition by pretest performance 

interaction, F(1,105)=3.1, p=.08. Consequently, the same 

model (excluding the pretest performance factor) was 

applied separately to the data from low and high pretest 

performers. This analysis found a significant effect of 

training condition among high performers, F(1,29)=.706, 

p=.022, indicating higher transfer in the varied condition 

(0.047) than in the non-varied condition (-0.167), but no 

effect of training condition among low performers, 

F(1,76)=.042, p=.838 (varied: 0.410, non-varied: 0.397). 

In addition to the effect of training condition on transfer, 

we were also interested in whether training condition 

affected participants’ ability to induce a general method for 

solving SWR problems. The proportion of participants 

providing correct and abstract solution descriptions (i.e. 

receiving scores of 2 on the correctness and abstractness 

scales) within each training condition are shown in Figure 6. 

In the varied condition, 40% of participants’ solutions were 

scored as correct, 62% as abstract, and 29% as both correct 

and abstract. In the non-varied condition, 56% of 

participants’ solutions were scored as correct, 39% as 

abstract, and 20% as both correct and abstract. 

 

 
Figure 6. Percent generating correct or abstract general 

solutions by training condition. 

 

The Breslow-Day test, a non-parametric test for stratified 

analysis of 2x2 tables, was applied to the frequencies of best 

(2) and other (0-1) scores within each training condition 

(varied or non-varied) for each aspect rated (correctness or 

abstractness). The relative frequencies of best vs. other 

scores between training conditions differed significantly 

according to aspect rated, p=.004. In other words, the 

effectiveness of varied relative to non-varied training was 

greater with respect to abstractness than with respect to 

correctness. To further clarify this effect, Pearson’s Chi-

square tests were applied to the contingency tables of best 

vs. other scores by training condition separately for each 

measurement respect. These analyses found that abstract 

solutions were more common in the varied than in the non-
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varied condition, p=.028, but the proportion of correct 

solutions did not differ by training condition, p=.152. 

Were participants who provided solutions that were 

abstract, correct, or both more likely to perform well on 

posttest?  Average posttest scores among participants 

displaying each combination of solution abstractness and 

correctness are shown in Figure 7. (Participants were 

approximately equally distributed over these combinations.) 

Scores were virtually identical for each of these 

combinations: 0.50 for both correct and abstract, 0.49 for 

neither abstract nor correct, 0.48 for abstract but not correct, 

and 0.48 for correct but not abstract. A mixed ANOVA 

applied to posttest scores with solution correctness (correct 

or not), solution abstractness (abstract or not), pretest 

performance, and training condition as between-subjects 

factors and problem category as a within-subjects factor 

found no significant main effects of solution correctness or 

abstractness, no significant interaction between them, and 

no significant interaction of either or both with any other 

factor. (None of these effects were significant when transfer 

rather than posttest scores were entered into the model.) 

 

 
Figure 7. Average transfer scores by correctness and 

abstractness of generated solution and test problem pair. 

Discussion 

This experiment investigated whether exposure to multiple 

examples of an abstract mathematical concept followed by 

comparison among them would lead to better induction of 

the general concept when the semantic schemas of the 

examples were systematically varied during learning than 

when all examples were based on the same schema. As 

predicted, participants in the varied condition both induced 

more abstract solution methods for SWR problems, and 

showed greater improvement on a transfer test requiring 

them to apply such methods. These results suggest that 

schema-level variation of examples can be an effective way 

to promote transfer. 

Caution is necessary in interpreting these results because 

the advantage of the varied over the non-varied condition in 

promoting transfer was almost entirely driven by high 

pretest performers. Low pretest performers did not benefit 

from the varied condition, although they were not hurt by it 

either. A possible reason is that the dissimilarity between 

examples in the varied condition made it difficult to notice 

their shared structure. This difficulty might be overcome by 

presenting several examples from the same schema, thus 

facilitating comparison and alignment of the examples,  

before introducing schema-level variation. Consistent with 

this view, Kotovsky and Gentner (1996) found that children 

initially presented with several examples sharing both 

abstract structure and superficial details were later able to 

notice shared structure even in the absence of superficial 

similarity. Similarly, Elio and Anderson (1984) found that 

category learning was better after a learning schedule 

beginning with low variation among exemplars and later 

progressing to more variation, as opposed to one beginning 

with and maintaining a high level of variability. 

Interestingly, Elio and Anderson (1984) also found that 

when learners were specifically instructed to take an 

analytical approach to category learning, the effectiveness 

of training with initially high variability improved. 

Similarly, high pretest performers in the present study, who 

may have been better equipped to take an analytical 

approach to learning the SWR concept, derived greater 

benefits from varied relative to non-varied training. One 

account for this result is that good learners are more 

attentive to the features and relations that are relevant to 

domain principles. Consequently, good learners would be 

less likely to be distracted by – and more likely to benefit 

from – variation in extraneous features and relations. 

Considering this conclusion together with the previous one 

regarding weaker learners, the best instructional approach 

might be an adaptive one, beginning with examples drawn 

from a single schema and transitioning to schema-level 

variation once learners demonstrate understanding of the 

target concept in the context of the initial schema.  This 

interesting possibility deserves further investigation. 

However, the observed advantage of the varied training 

for high pretest performers must also be interpreted with 

caution. Transfer scores among high pretest performers 

were rather low, averaging around zero in the varied 

condition and below zero in the non-varied condition. One 

interpretation of these data is that varied training merely 

helped to avoid negative transfer, and did not actually 

benefit learners. On the other hand, high pretest performers 

might be expected to show regression to the mean on 

posttest, resulting in negative scores on our measure of 

transfer. In this case, the actual (slightly above zero) transfer 

scores in the varied condition would represent a positive 

effect of training. It is difficult to disambiguate between 

these possibilities due to the lack of a control condition in 

the present study. Also, the inclusion of particularly difficult 

transfer problems, i.e. those in the OAPpl category, may 

have obscured the presence of positive transfer by bringing 

down the overall average. The beneficial effects of schema-

level variation might be better explored in future studies by 

using a wider range of relatively easy transfer problems. 

In addition to their differing effects on transfer, the varied 

and non-varied training conditions also led to differing 

levels of success in describing general solutions for SWR 

problems. In particular, while participants in both conditions 

were equally able to describe correct solutions, those in the 

varied condition were better able to characterize the 

elements of those solutions in abstract, general terms. 
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Previous research has demonstrated that comparison 

between multiple analogous examples can lead participants 

to induce their shared abstract structure (Gentner et al., 

2003; Gick & Holyoak, 1983). The present findings build 

on that principle by suggesting that if the examples in 

question share semantic content not intrinsic to the desired 

structure, learners may induce a more limited, less general 

concept than if such extraneous semantic content is 

systematically varied across learning examples. Moreover, 

not only superficial elements but also more abstract 

semantic structures, such as the schemas of the present 

study, can count as extraneous content in this context. This 

conclusion implies that instructional design in mathematics 

could benefit from attention to variation of semantic 

schemas across examples of a given concept. 

Although the varied condition led both to more abstract 

described solutions and to better transfer performance, the 

former effect did not mediate the latter as expected. In fact, 

participants who succeeded in describing general solutions 

were not more likely than other participants actually to 

demonstrate successful transfer. This result is surprising in 

light of previous research, in which the quality of 

participants’ generalizations following exposure to multiple 

examples of a concept did predict their ability to apply the 

concept to novel cases (Gick & Holyoak, 1983; Novick & 

Holyoak, 1991). Several explanations are possible for this 

dissociation of described solution methods and problem-

solving performance. 

First, participants may not have attempted to apply their 

described solutions during the transfer test, possibly due to 

failure to recall the solutions or failure to recognize their 

relevance. However, these possibilities seem unlikely given 

that the transfer test was administered immediately after 

participants described their general solutions, and that the 

problems in the transfer test were presented in the same 

format and with very similar wording to those in the 

training. Second, participants may have attempted to apply 

their solutions, but failed to do so successfully on either or 

both pairs of transfer problems. Such failure might have 

been due either to inability to map the elements of the 

transfer problems to the roles mentioned in their solutions, 

or to inability to apply the solution procedure despite having 

correctly mapped the corresponding elements. Both of these 

issues have been implicated in failures of analogical transfer 

in mathematics learning (Novick & Holyoak, 1991). Future 

research might disambiguate between these possibilities by, 

on the one hand, directly testing whether participants could 

map elements in the transfer problems to those in training 

problems, and on the other hand, testing the effects of 

providing such a mapping to participants. 

Regardless of why posttest performance was not predicted 

by participants’ ability to describe correct and general 

solution methods, it is clear that such ability was not the 

cause of the superior transfer observed in the varied over the 

non-varied condition. The question then arises: what was 

the cause for that advantage in transfer?  Because this 

advantage was dissociated from explicit, articulable 

knowledge of how to solve the problems, it seems likely to 

relate to some form of implicit knowledge, e.g. improved 

perception / encoding of problems or improved procedural 

skill. Because the procedures required were essentially the 

same across problems and conditions, the perceptual 

explanation seems more likely. The varied condition may 

have encouraged learners to encode the elements of the 

problems in terms of their general roles in the mathematical 

structure of SWR, rather than in terms of their more specific 

roles in one or another semantic schema. Such improved 

encoding could, in turn, have facilitated application of the 

solution procedures learned during training to the transfer 

problems. This explanation is admittedly speculative, but 

offers a promising direction for future research. 
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