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Abstract

Previous research suggests that comparing multiple specific
examples of a general concept can promote knowledge
transfer. The present study investigated whether this approach
could be made more effective by systematic variation in the
semantic content of the specific examples. Participants
received instruction in a mathematical concept in the context
of several examples, which instantiated either a single
semantic schema (non-varied condition) or two different
schemas (varied condition). Schema-level variation during
instruction led to better knowledge transfer, as predicted.
However, this advantage was limited to participants with
relatively high performance before instruction. Variation also
improved participants’ ability to describe the target concept in
abstract terms. Surprisingly, however, this ability was not
associated with successful knowledge transfer.
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Introduction

Part of the power of mathematics lies in its generality. The
same mathematical formulae may be used to understand the
growth of slime molds or the accumulation of interest from
investments, the probabilities of hands in poker or outcomes
of scientific experiments, and the oscillations of mechanical
or electromagnetic systems. In order to fully realize this
power, however, learners must be able to recognize and
apply mathematical concepts in contexts different from
those in which they were learned — that is, to transfer their
mathematical knowledge from learned to novel contexts.
Learners’ difficulties in achieving such transfer are well-
documented (Novick & Holyoak, 1991; Ross, 1987). One
reason may be that, when a general idea is learned in the
context of specific examples, learners’ concepts become tied
to the details of the examples, inhibiting their ability to
recall the concept or apply it correctly when faced with
cases that do not share similar details (Ross, 1987). This
difficulty may be especially strong when the examples are
presented in a perceptually detailed format (Kaminski,
Sloutsky, & Heckler, 2008), and is likely to be more serious
for domain novices than experts (Novick & Holyoak, 1991).
One way to address this difficulty is to present
mathematical ideas in abstract form, without specific
examples. Such an approach has indeed been shown to
promote transfer in some cases (Kaminski et al., 2008).
However, in other cases, learners have experienced serious
difficulties with abstractly-presented mathematics, despite
being competent with the same mathematics encountered in
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familiar contexts (Nufies, Schliemann, & Carraher, 1993).
In such contexts, learners can apply intuitions from
everyday life to help in understanding the mathematical
ideas involved. Abstract presentation of mathematical ideas
therefore risks sacrificing learning for the sake of transfer.

It may, then, be desirable for learners to encounter
mathematical ideas in a way that leverages their intuitive
understanding of specific examples, while also drawing
attention to the abstract structure present in those examples.
Research on analogy suggests that this goal might be
achieved through presentation of multiple specific examples
followed by comparison (Gentner, Loewenstein, &
Thompson, 2003; Gick & Holyoak, 1983). Comparing
examples encourages learners to align their corresponding
elements, and thereby to notice their common relational
structure. Awareness of this structure, in turn, can facilitate
understanding of new cases with the same structure. Thus,
learning mathematical ideas by studying and then
comparing multiple examples may enable learners to gain
intuitive accessibility without losing generality.

The question then arises as to how the examples which
will instantiate a mathematical concept during learning are
to be chosen. Central to this question is the issue of how
much, and in what ways, the examples should differ from
each other. If, as the above research suggests, learners
induce concepts that incorporate commonalities among the
examples, it seems desirable that the examples should share
the mathematical structure in question, but should not share
other extraneous details. Extraneous commonalities might
be misunderstood as part of the concept to be learned,
limiting learners’ ability to generalize (Medin & Ross,
1989), and so defeating the purpose of using multiple
examples in the first place. These observations suggest that
extraneous aspects should be systematically varied across
examples, while holding mathematical structure constant.

The present study investigates the effects on mathematical
concept learning of a particular type of variation among
examples: variation at the level of “semantic schemas.”
This term here refers to structures more general than
specific examples but less general than mathematical
structure. Consider the three combinatorics problems shown
in Figure 1. Problems (a) and (b) share a schema, termed
“Objects Selected in Sequence” (OSS), in which a sequence
of selections is made from a fixed set of options. Problem
(c), by contrast, belongs to a different schema, termed
“People Choosing Options” (PCO), in which several people
each choose once from a fixed set of options.
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(a)

A piano student,
when bored, plays
random sequences of
notes on the piano,
using sequences of a
fixed length, and
choosing from a fixed
set of notes. How
many different
sequences are
possible, if there are

(b)

A website generates
user passwords by
selecting a certain
number of characters
randomly from a fixed
set of characters.
How many different
passwords are
possible, if the
passwords are 6
characters long and

(c)

A marketing research
company conducts a
taste test survey.
Several consumers
are each asked to
choose their favorite
from among several
pizza flavors. How
many different results
of the survey are
possible, if there are

5 possible notes and there are 5 6 consumers and 5
the sequences are 6 permissible pizza flavors?
notes long? characters?

Figure 1. Three combinatorics problems.

Of course, all three problems share the same
mathematical structure (discussed further in the Methods
section), and the differences between them would likely not
seem important to a mathematics expert. For mathematics
novices, however, semantic schemas are known to exert a
strong influence on the mathematical interpretation of
contextualized problems. For example, Bassok, Wu, and
Olseth (1995) found that learners were more likely to solve
correctly problems in which schematic and mathematical
roles were matched consistently with their default
expectations than problems in which such matches were
inconsistent. In light of the preceding discussion, learning
about a mathematical structure via several examples based
on the same schema might lead learners to induce concepts
tied to that particular schema, and thus to perform poorly on
problems involving other schemas. Conversely, systematic
variation of the schemas encountered during learning should
lead to induction of more general concepts and thus to more
successful transfer to novel problems.

This hypothesis was investigated in the present study.
Combinatorics problems were used as the domain for study
and transfer for several reasons. First, the discovery of better
methods for learning and teaching combinatorics would
have considerable practical value due to the foundational
role of combinatorics in applied mathematics — in particular,
probability and statistics. Second, mathematics learners are
known to have considerable difficulty correctly applying
combinatorics methods to novel problems (Bassok et al.,
1995; Ross, 1987). Finally, semantic schemas are known to
play a role in the mathematical interpretation of
combinatorics problems (Bassok et al., 1995).

Methods

Participants

Participants were 109 Indiana University undergraduate
students, who participated in partial fulfillment of a course
requirement.
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Materials

Sixteen story problems were constructed as stimuli. All of
the problems had the same mathematical structure:
Sampling with Replacement (SWR), in which multiple
selections are made from a fixed set. The number of
possible joint outcomes in such a case is given by the
expression m", where m is the number of elements of the set
and n is the number of selections, or sampling events.

The sixteen problems belonged to four different schema
categories. The first two categories were those already
illustrated above: PCO and OSS (OSS: Figure la-b, PCO:
Figure 1c). Problems in these categories were used as
learning examples. The other two categories were Options
Assigned to Places (OAPIc) and Objects Assigned to People
(OAPpI), illustrated below (Figures 2a and 2b respectively).
OAPIc and OAPpl problems served as pretest and transfer
problems. Note that in the learning examples (OSS and
PCO) and OAPIc problems, people are either doing the
choosing or are not mentioned at all. In OAPpI, by contrast,
people are being chosen instead of choosing. Due to this
role reversal relative to the learning examples, transfer to
OAPpI problems was expected to be particularly difficult, as
found in previous research (Ross, 1987).

(a)

A homeowner is going to repaint
several rooms in her house. She
chooses one color of paint for
each of the rooms. In how many
different ways can she paint the
rooms, if there are 3 colorsand 5
rooms?

(b)

A prize drawing is held at a small
office party, and each of several
prizes is awarded to one of the
employees. In how many different
ways can the prizes be awarded, if
there are 6 prizes and 4
employees?

Figure 2. Combinatorics problems from the (a) OAPIc and
(b) OAPpI categories.

Each problem category contained two pairs of problems,
for a total of four problems. The problems within a pair
involved the same back story but different numbers, while
the two pairs within each category involved different back
stories (and different numbers from each other). The order
in which the two critical numbers, i.e. the size of the
sampled set and the number of sampling events, were
presented was varied among questions so that it could not
serve as a cue to match the numbers to their respective roles.

Problem Problem Problem  Problem Problem Problem
Pair 1 Pair 2 Pair 1 Pair 2 Pair 1 Pair 2
Varied PCO -> 0SS
Condition A
0ss -> PCO
OAPIc OAPpl <] > OAPIc OAPpl
. PCO -> PCO
Non-varied or
Condition 0SS -> 0SS

Figure 3. Summary of experimental design.



The experiment employed a pretest-training-posttest
design, summarized in Figure 3. The pretest consisted of
one OAPIc problem pair and one OAPpI problem pair, for
four problems altogether. The posttest consisted of the other
OAPIc problem pair followed by the other OAPpI problem
pair. Thus, all eight OAPIc and OAPpI problems appeared
in either the pretest or the posttest.

The training consisted of worked solutions to four
problems drawn from the PCO and OSS categories.
Participants were assigned randomly to one of two training
condition. In the varied condition, participants were shown
one pair of problems from each category, either PCO
followed by OSS or vice versa (these two possible orders
were balanced across participants). In the non-varied
condition, participants were shown two pairs of problems
from the same category, either both PCO or both OSS
(again, the two possibilities were balanced across
participants). If a certain problem category was shown in a
given position (either first pair or second pair), it was
always the same problem pair regardless of condition. For
example, if PCO problems were shown first in the varied
condition, they were the same problems that were shown
first in the non-varied condition. An important consequence
of this design is that each training problem was shown
equally often across the two conditions.

Procedure

Participants were randomly assigned to receive one set of
OAPIc / OAPpl problems as pretest. The pretest problems
were displayed to participants on a computer monitor
together with a virtual calculator, which participants were
encouraged to use as needed. Only one problem appeared on
the screen at a time. Two spaces were provided below each
problem: one in which to show work, and another in which
to write the final answer. Participants were required to show
their work and enter some number as their final answer
before they could proceed to the next question.

After the pretest, answers were scored for correctness, and
participants were classified as high pretest performers if
they answered at least 50% of the pretest problems correctly
and low pretest performers otherwise. They were then
assigned randomly to one of the two training conditions
with the constraint that, at each level of pretest performance,
the number of participants in each condition was balanced.
This manipulation was intended to reduce differences in
pretest scores between training conditions.

The training problems corresponding to participant’s
training conditions were then presented in the same way as
the pretest problems. However, after completing each
problem, participants were shown the correct answer
together with a brief explanation of how the answer was
calculated and why this calculation was appropriate. These
explanations utilized exponential notation but did not show
the general expression m". Instead, they only showed
specific versions of this expression instantiated with the
numbers used in the problem. The explanation for a given
problem did not differ between training conditions.
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After completing each pair of training problems,
participants were asked to choose from a list of options the
correct method of solving problems like those just seen,
independent of the specific numbers involved. For example,
the correct answer to this question after the problems
involving pizza flavors (Figure 1c above) was “Multiply the
number of pizza flavors by itself as many times as there are
consumers.” Participants who chose incorrectly were not
allowed to proceed until they chose the correct answer.

After answering the above question for the second pair of
training problems (only), participants were asked to choose
from a list of options the correct mapping between elements
of the preceding two problem pairs. For example, the correct
answer to this question if the preceding problem pairs
involved a website generating passwords and consumers
tasting pizza flavors (Figure 1b and 1c) was “The length of
the note sequences corresponds to the number of consumers,
and the number of possible notes corresponds to the number
of pizza flavors.” The purpose of this question was to
encourage participants to think about the shared structure of
the training problem pairs. After answering this question,
participants were asked to describe, in free-response format,
a general method for solving problems like those just seen.
No feedback was given for either of these questions.

Finally, participants were administered the posttest. The
posttest utilized whichever set of OAPIc / OAPpl problems
had not been presented during the pretest, and the procedure
was in all ways the same as for the pretest.

Coding

For each problem, participants were assigned a score of 1 if
their answer was correct and 0 otherwise.

Responses to the free-response question regarding a
general solution method posed at the end of the training
were coded on a 0-2 scale in each of two respects. For the
first respect, Correctness, responses were assigned a score
of 2 if they indicated that the number of elements in the
sampled set should be raised to the power of the number of
sampling events (or multiplied by itself as many times as the
latter). Responses which implicated exponentiation but did
not correctly identify the base and exponent were assigned a
score of 1, and all other responses received a score of 0. The
second respect, Abstractness, was intended to measure how
well participants had generalized beyond the specific details
of the learning examples. Responses were assigned a score
of 2 if they referred to the two numbers using general
words, such as “the options” (for the size of the sampled set)
or “the number of times they are able to be chosen” (for the
number of sampling events). Responses which used general
words for one but not the other number were assigned a
score of 1, and all other responses received a score of 0. All
responses were coded by two independent coders, and all
disagreements were resolved through discussion. In the
analyses detailed below, scores of 0 and 1 were combined
for both correctness and abstractness, so that responses were
classified as either correct (2) or not correct (0 or 1) and
abstract (2) or not abstract (0 or 1).



Results

Average pretest and posttest scores are shown in Figure 4.
Participants demonstrated considerable improvement on
posttest, but the amount of improvement varied by problem
category. The data were entered into a 2 (test section:
pretest or posttest) x 2 (problem category: OAPIc or OAPpI)
within-subjects ANOVA. The main effects of both factors
and the interaction between them were all significant (test
section: F(1,108)=69.8, p<.001; problem category:
F(1,108)=14.6, p<.001; interaction: F(1,108)=16.4, p<.001).
Participants improved from pretest (0.216) to posttest
(0.489), but this improvement was greater for OAPIc (0.225
to 0.638) than for OAPpI (0.206 to 0.339).

| QAPIlc O OAPpl

__ I

Pretest Posttest

0.4 0.6

Percent Accuracy
02

0.0

Test Section

Figure 4. Pre and posttest accuracy by problem category™.

Figure 5 shows average transfer scores, defined as the
difference between posttest and pretest scores, for each
training condition, among low and high pretest performers.
Transfer scores were submitted to a 2x2x2 mixed ANOVA
with training condition (varied vs. non-varied) and pretest
performance (low or high) as between-subjects factors and
problem category (OAPIc or OAPpl) as a within-subjects
factor. The main effect of pretest performance was
significant, F(1,105)=66.6, p<.001, indicating more
improvement from pretest to posttest among low pretest
performers (0.404) than high pretest performers (-0.056).
Also, the effect of problem category was significant,
F(1,105)=12.3, p=.001, indicating greater improvement on
OAPIc (0.413) than on OAPpl (0.133). Problem category
did not interact significantly with any of the other factors.

i 1

—=— Low pretest performance
--+- High pretest performance :|:

Non Varied Varied

Transfer (Post-Pretest Accuracy)

-0.2 -01 00 01 02 03 04
1

Training Condition

Figure 5. Transfer by condition and pretest performance.

! Here and elsewhere, error bars indicate standard errors.

More importantly, the main effect of training condition
was significant, F(1,105)=4.0, p=.049, indicating greater
improvement in the varied (0.305) than in the non-varied
(0.201) condition. However, this effect was qualified by a
marginally significant condition by pretest performance
interaction, F(1,105)=3.1, p=.08. Consequently, the same
model (excluding the pretest performance factor) was
applied separately to the data from low and high pretest
performers. This analysis found a significant effect of
training condition among high performers, F(1,29)=.706,
p=.022, indicating higher transfer in the varied condition
(0.047) than in the non-varied condition (-0.167), but no
effect of training condition among low performers,
F(1,76)=.042, p=.838 (varied: 0.410, non-varied: 0.397).

In addition to the effect of training condition on transfer,
we were also interested in whether training condition
affected participants’ ability to induce a general method for
solving SWR problems. The proportion of participants
providing correct and abstract solution descriptions (i.e.
receiving scores of 2 on the correctness and abstractness
scales) within each training condition are shown in Figure 6.
In the varied condition, 40% of participants’ solutions were
scored as correct, 62% as abstract, and 29% as both correct
and abstract. In the non-varied condition, 56% of
participants’ solutions were scored as correct, 39% as
abstract, and 20% as both correct and abstract.

--+- Nonvaried condition -
—=— Varied condition

06
!

% Receiving Max Score (2)
04 05
I

Absfractness Correctness

Aspect Rated

Figure 6. Percent generating correct or abstract general
solutions by training condition.

The Breslow-Day test, a non-parametric test for stratified
analysis of 2x2 tables, was applied to the frequencies of best
(2) and other (0-1) scores within each training condition
(varied or non-varied) for each aspect rated (correctness or
abstractness). The relative frequencies of best vs. other
scores between training conditions differed significantly
according to aspect rated, p=.004. In other words, the
effectiveness of varied relative to non-varied training was
greater with respect to abstractness than with respect to
correctness. To further clarify this effect, Pearson’s Chi-
square tests were applied to the contingency tables of best
vs. other scores by training condition separately for each
measurement respect. These analyses found that abstract
solutions were more common in the varied than in the non-
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varied condition, p=.028, but the proportion of correct
solutions did not differ by training condition, p=.152.

Were participants who provided solutions that were
abstract, correct, or both more likely to perform well on
posttest?  Average posttest scores among participants
displaying each combination of solution abstractness and
correctness are shown in Figure 7. (Participants were
approximately equally distributed over these combinations.)
Scores were virtually identical for each of these
combinations: 0.50 for both correct and abstract, 0.49 for
neither abstract nor correct, 0.48 for abstract but not correct,
and 0.48 for correct but not abstract. A mixed ANOVA
applied to posttest scores with solution correctness (correct
or not), solution abstractness (abstract or not), pretest
performance, and training condition as between-subjects
factors and problem category as a within-subjects factor
found no significant main effects of solution correctness or
abstractness, no significant interaction between them, and
no significant interaction of either or both with any other
factor. (None of these effects were significant when transfer
rather than posttest scores were entered into the model.)

T
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Posttest Percent Accuracy
0.0 01 02 03 04 05

Abstract but
not Correct

Both Correct
and Abstract

Neither Abstract
nor Correct

Correct but
not Abstract

Solution Quality

Figure 7. Average transfer scores by correctness and
abstractness of generated solution and test problem pair.

Discussion

This experiment investigated whether exposure to multiple
examples of an abstract mathematical concept followed by
comparison among them would lead to better induction of
the general concept when the semantic schemas of the
examples were systematically varied during learning than
when all examples were based on the same schema. As
predicted, participants in the varied condition both induced
more abstract solution methods for SWR problems, and
showed greater improvement on a transfer test requiring
them to apply such methods. These results suggest that
schema-level variation of examples can be an effective way
to promote transfer.

Caution is necessary in interpreting these results because
the advantage of the varied over the non-varied condition in
promoting transfer was almost entirely driven by high
pretest performers. Low pretest performers did not benefit
from the varied condition, although they were not hurt by it
either. A possible reason is that the dissimilarity between
examples in the varied condition made it difficult to notice
their shared structure. This difficulty might be overcome by
presenting several examples from the same schema, thus
facilitating comparison and alignment of the examples,
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before introducing schema-level variation. Consistent with
this view, Kotovsky and Gentner (1996) found that children
initially presented with several examples sharing both
abstract structure and superficial details were later able to
notice shared structure even in the absence of superficial
similarity. Similarly, Elio and Anderson (1984) found that
category learning was better after a learning schedule
beginning with low variation among exemplars and later
progressing to more variation, as opposed to one beginning
with and maintaining a high level of variability.

Interestingly, Elio and Anderson (1984) also found that
when learners were specifically instructed to take an
analytical approach to category learning, the effectiveness
of training with initially high variability improved.
Similarly, high pretest performers in the present study, who
may have been better equipped to take an analytical
approach to learning the SWR concept, derived greater
benefits from varied relative to non-varied training. One
account for this result is that good learners are more
attentive to the features and relations that are relevant to
domain principles. Consequently, good learners would be
less likely to be distracted by — and more likely to benefit
from — variation in extraneous features and relations.
Considering this conclusion together with the previous one
regarding weaker learners, the best instructional approach
might be an adaptive one, beginning with examples drawn
from a single schema and transitioning to schema-level
variation once learners demonstrate understanding of the
target concept in the context of the initial schema. This
interesting possibility deserves further investigation.

However, the observed advantage of the varied training
for high pretest performers must also be interpreted with
caution. Transfer scores among high pretest performers
were rather low, averaging around zero in the varied
condition and below zero in the non-varied condition. One
interpretation of these data is that varied training merely
helped to avoid negative transfer, and did not actually
benefit learners. On the other hand, high pretest performers
might be expected to show regression to the mean on
posttest, resulting in negative scores on our measure of
transfer. In this case, the actual (slightly above zero) transfer
scores in the varied condition would represent a positive
effect of training. It is difficult to disambiguate between
these possibilities due to the lack of a control condition in
the present study. Also, the inclusion of particularly difficult
transfer problems, i.e. those in the OAPpl category, may
have obscured the presence of positive transfer by bringing
down the overall average. The beneficial effects of schema-
level variation might be better explored in future studies by
using a wider range of relatively easy transfer problems.

In addition to their differing effects on transfer, the varied
and non-varied training conditions also led to differing
levels of success in describing general solutions for SWR
problems. In particular, while participants in both conditions
were equally able to describe correct solutions, those in the
varied condition were better able to characterize the
elements of those solutions in abstract, general terms.



Previous research has demonstrated that comparison
between multiple analogous examples can lead participants
to induce their shared abstract structure (Gentner et al.,
2003; Gick & Holyoak, 1983). The present findings build
on that principle by suggesting that if the examples in
question share semantic content not intrinsic to the desired
structure, learners may induce a more limited, less general
concept than if such extraneous semantic content is
systematically varied across learning examples. Moreover,
not only superficial elements but also more abstract
semantic structures, such as the schemas of the present
study, can count as extraneous content in this context. This
conclusion implies that instructional design in mathematics
could benefit from attention to variation of semantic
schemas across examples of a given concept.

Although the varied condition led both to more abstract
described solutions and to better transfer performance, the
former effect did not mediate the latter as expected. In fact,
participants who succeeded in describing general solutions
were not more likely than other participants actually to
demonstrate successful transfer. This result is surprising in
light of previous research, in which the quality of
participants’ generalizations following exposure to multiple
examples of a concept did predict their ability to apply the
concept to novel cases (Gick & Holyoak, 1983; Novick &
Holyoak, 1991). Several explanations are possible for this
dissociation of described solution methods and problem-
solving performance.

First, participants may not have attempted to apply their
described solutions during the transfer test, possibly due to
failure to recall the solutions or failure to recognize their
relevance. However, these possibilities seem unlikely given
that the transfer test was administered immediately after
participants described their general solutions, and that the
problems in the transfer test were presented in the same
format and with very similar wording to those in the
training. Second, participants may have attempted to apply
their solutions, but failed to do so successfully on either or
both pairs of transfer problems. Such failure might have
been due either to inability to map the elements of the
transfer problems to the roles mentioned in their solutions,
or to inability to apply the solution procedure despite having
correctly mapped the corresponding elements. Both of these
issues have been implicated in failures of analogical transfer
in mathematics learning (Novick & Holyoak, 1991). Future
research might disambiguate between these possibilities by,
on the one hand, directly testing whether participants could
map elements in the transfer problems to those in training
problems, and on the other hand, testing the effects of
providing such a mapping to participants.

Regardless of why posttest performance was not predicted
by participants’ ability to describe correct and general
solution methods, it is clear that such ability was not the
cause of the superior transfer observed in the varied over the
non-varied condition. The question then arises: what was
the cause for that advantage in transfer? Because this
advantage was dissociated from explicit, articulable
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knowledge of how to solve the problems, it seems likely to
relate to some form of implicit knowledge, e.g. improved
perception / encoding of problems or improved procedural
skill. Because the procedures required were essentially the
same across problems and conditions, the perceptual
explanation seems more likely. The varied condition may
have encouraged learners to encode the elements of the
problems in terms of their general roles in the mathematical
structure of SWR, rather than in terms of their more specific
roles in one or another semantic schema. Such improved
encoding could, in turn, have facilitated application of the
solution procedures learned during training to the transfer
problems. This explanation is admittedly speculative, but
offers a promising direction for future research.
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