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Abstract

Utilizing data from a classroom intervention with 8" graders,
I employ agent-based computer modeling to simulate the
cognitive processes at play during the intervention, in which
students transition between using multiple epistemological
resources. The model substantiates the hypothesis of manifold
epistemological resources, which can be activated with simple
prompts and have a non-linear impact on learning.

Keywords: Cognitive modeling; agent-based modeling;
classroom research; epistemological resources.

Introduction

Agent-based modeling (ABM) has been increasingly used
by scientists to study a wide range of phenomena such as the
interactions of species in an ecosystem, the collisions of
molecules in a chemical reaction, and the food-gathering
behavior of ants (Bonabeau, Dorigo, & Theraulaz, 1999;
Wilensky & Reisman, 2006). Such phenomena, in which the
agents in a system (molecules, or ants) follow simple rules
and interaction patterns, but exhibit complex emergent
macroscopic  behaviors, are studied in a young
interdisciplinary field called complex systems or complexity
studies (Holland, 1995). Although complex-systems
perspectives initially arose from the natural sciences,
complexity, emergence, and multi-level descriptions of
phenomena are all highly relevant to social science research.
In fact, recent decades have observed a surge in social-
science studies employing ABM (Epstein & Axtell, 1996;
Axelrod, 1997). Recently, ABM has also been used to
illustrate aspects of cognitive development (Abrahamson &
Wilensky, 2005; Blikstein, Abrahamson & Wilensky, 2006;
Smith & Conrey, 2006), and collaboration and group work
in classrooms (Abrahamson, Blikstein, & Wilensky, 2007).

ABM has the potential to advance theory in multiple
ways, which I illustrate in this paper: (a) explicitizing—
ABM demands a high level of specificity in expressing a
theoretical model, and it provides the tools and standard
practices to express those models; (b) dynamics—ABM
enables researchers to mobilize an otherwise static list of
conjectured behaviors and observe the macroscopic patterns
that may enfold; (c) emergence—ABM can examine

cognition and social behaviors as a collection of
decentralized, simple rules; and (d) interdisciplinary
collaboration—the [lingua franca of ABM enables

researchers from different fields to understand, critique and
challenge each other’s theories by modifying and extending
the computational algorithms that underlie their theoretical
models.
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Relevance to cognitive research

Agent-based modeling in cognitive research could address
the limitations of current methodologies. First, because
experiments with human subjects cannot be indefinitely
conducted, replicating findings or exploring a wide
parameter space is costly and oftentimes impossible. In the
case of research in schools, once the classroom data are
collected, the researchers can revisit the videotapes and
transcriptions; however, they can never relive the situations.

Second, as the field moves toward theories that
conceptualize learning as a dynamic and adaptive
phenomenon, the traditional medium of scientific
discourse—static linear text—becomes limited in its

capacity to express these theories. Both of these flaws could
be addressed with a set of dynamic, adaptive computer
models of learning. Third, tools such as brain imaging
cannot yet offer the speed and resolution required to
evaluate complex learning processes at a neuronal level, so
such models are still far from being applicable to real
classrooms. Lastly, ethnographic or micro-genetic methods
still cannot offer a ‘runnable,” systemic, task-independent
account of human learning.

The ultimate goal of using agent-based simulation to
explore human learning is to enable researchers to
generalize and play “what-if” scenarios using in-depth
interviews and ethnographic data and to help them
investigate internal cognitive structures by observing
external behaviors.

This work builds on previous seminal contributions to the
field, in which theoretical models of cognition were
implemented by using computer programs to attempt to
predict human reasoning (Newell & Simon, 1972) in tasks
such as shape classification (Hummel & Biederman, 1992),
language acquisition (Goldman & Varma, 1995), memory
(Anderson, Bothell, Lebiere, & Matessa, 1998); and other
more general-purpose models (Anderson, 1983; Anderson &
Bellezza, 1993; Anderson & Lebiere, 1998). My design,
however, differs from extant approaches in two ways: (1)
Grain Size: Selecting a unit of analysis toward bridging the
micro and macro perspective on learning. Theories which
slice human learning into diminutive pieces, when
reintegrated into the larger context of classroom learning,
could not account for any meaningful macro-cognitive
phenomena, and (2) Accessibility: Democratizing modeling-
based research. Most computational theories of the mind
are so mathematically complex that only specialized
researchers can examine and critique them; the intricacies



and jargon of these theoretical models render them
incomprehensible for teachers, educators, and policymakers.
Conversely, the computer language that I have used for
modeling, NetLogo (Wilensky, 1999), has been developed
for non-programmers so that users could not only run
models but also modify their rules and compare scenarios.

My theoretical inspiration comes from the work of
Minsky (1986), and Collins (1978). My computer-based
models of human learning postulate non-intelligent
cognitive entities with simple rules from which intelligent
behavior emerges, or simple individual classroom behaviors
that result in complex group-level patterns. To generate and
validate such models, ABM tools enable researchers to
initially feed a computer model with data from real-world
experiments, such as classroom observations or clinical
interviews and to subsequently simulate hypothesized
scenarios in a safe virtual environment. Researchers from
diverse disciplines (and with little, if any, programming
background) can embody and articulate their theoretical
models in a shared medium with shared nomenclature and
shareable/replicable data, thus facilitating interdisciplinary
discourse and critique.

However, the work described in this paper is not
attempting to reproduce reality, which is oftentimes
understood to be the goal of a computer model. My
objective is to instantiate possible theories of learning in the
agent-based form and use the data to qualitatively validate
the models, with the goal of advancing theory. However,
unlike classical cognitive models, this category of ABM
models needs to be much more stylized and simple, as this
paper will describe.

Personal epistemologies & resources

Traditional research on personal epistemologies (Hofer &
Pintrich, 2002) has considered them as stable beliefs.
However, evidence of variability in student epistemologies
suggests the need for more complex models (Hammer &
Elby, 2002). The activation of the students’ different
epistemological resources might depend on context, as
shown by Rosenberg, Hammer, & Phelan (2006). In other
words, students might instantiate different epistemologies as
they perceive contextual cues about the most efficient
approach in a given situation. In the Rosenberg et al. case
study, a brief epistemological intervention by an 8"-grade
science teacher led to the students abruptly shifting from
one epistemological mode to another. The narrative tells the
story of a group of students who were given the task of
explaining the rock cycle. For the first few minutes, before
the teacher’s intervention, they fail to engage in any
productive work or to construct a coherent explanation of
the rock cycle. Students employ a ‘brute force’ approach by
quickly trying out several short explanations without
evaluating if the elements of their explanations make sense
together. They generate fragmented descriptions, which do
not survive simple logical inference. Rosenberg et al. state
that the reason is epistemological and that “They are treating
knowledge as comprised of isolated, simple pieces of
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information expressed with specific vocabulary and
provided by authority.” (Rosenberg, et al., 2006, pp. 270)

The authors provide three pieces of evidence for this
hypothesis: (1) the students organize their efforts around
retrieving information from worksheets, (2) they focus on
terminology, and (3) they combine information and
construct sentences to present a formal ordering rather than
a causal sequence. The narrative goes on to describe how
the teacher, realizing the ongoing failure, stops the activity
and tells the students: “So, I want to start with what you
know, not with what the paper says.”

Abruptly, the students change their approach toward
engaging in the activity. They immediately start to focus on
the elements of the rock cycle that they understand, and they
rebuild the story from there. Within minutes, one of the
students comes up with a rather complete explanation:

“OK, the volcano erupts, and lava comes out. Lava cools

and makes igneous rock. Rain and wind cause small

pieces of rock to break off. Sediments form, and rain and
wind carry it away, and rain and wind slow down and
deposit sediments and this happens over and over again to

form layers.” (Rosenberg, et al., 2006, pp. 274)

It is impressive how the students, focusing on a single
element of the story (“Lava comes out™), correctly connect
all of the other pieces of the explanation. Although the “lava
comes out” piece was the first to be mentioned, they
realized that for lava to come out, the volcano has to erupt;
similarly, if the lava comes out and is hot, it has to cool
down. For the students to generate a coherent explanation, it
was crucial for them to concatenate information while
making sense of the connection rules, and they resorted to
worksheets fewer times than in the previous activity.

In this paper, my goal is to employ ABM to help model
what occurred during those 15 minutes and to answer two
research questions concerning the abrupt epistemological
shift observed: (1) what caused the two modes to generate
very diverse student performance? and (2) how could a brief
intervention cause such dramatic change? I built a model
that simulates the construction of declarative knowledge in
terms of two basic cognitive operations: retrieving
information from external/internal sources and applying
concatenation rules to join content pieces. 1 expect to
answer the research questions by exploring the parameter
space of the model for number, type, and efficiency of
retrievers and connectors; this might result in emergent
behaviors similar to those observed by Rosenberg et al. |
warn the reader that the goal is to match an overall reference
pattern based on simple theoretical assumptions about
learning. The nature of ABM is such that this simplicity is
required to generate a manageable parameter space.

The Agent-Based Model

In the model, the world outside of the mind is composed
of various disconnected content pieces, represented as green
agents. A piece could be a simple statement, such as “Lava
comes out of volcanoes,” “Lava shoots up,” or “Water
erodes rocks.” These pieces are retrieved by special agents,



called retrievers — represented as red agents — and
accommodated into the simulated mind. Here, they interact
with pre-existing structures until they connect to one of
them, making use of a third type of agent, the connectors.
These pre-existing structures could form an emergent,
dynamic network with “hub ideas” (highly connected ideas)
and peripheral ideas.

Therefore, the model consists of three independent
elements: connectors, retrievers, and content pieces (line-
shaped white agents, red agents, and green agents,
respectively). Content pieces could be gathered by retrievers
to simulate external information being exposed to the mind.
Furthermore, the retrievers’ movement simulates the
exposure and the searching for different content pieces over
time. The recently retrieved information could be connected
to preexisting mental structures to form a new knowledge
“assembly.” This knowledge-construction process is
represented by content pieces being connected to each other
via connector agents. Accordingly, the students’
explanations are the ad hoc result of pieces of content
collected by retrievers outside of the mind and assembled
by connectors inside the mind. For the sake of the model’s
simplicity, the internal and external processes occur in the
same environment and have not been distinguished visually.

In the simulated world, the content pieces can have a
different stickiness to the retrievers, thus the model can
differently evaluate content from various sources. Content
given from authority can have a different effect than
previous knowledge in the virtual mind. In addition,
retriever agents have been defined hypothesizing that
content cannot simply enter the mind as raw information.
Information needs to be retrieved and subsequently
connected by internal knowledge structures (Piaget, 1952).
Furthermore, retrieved content cannot be accessed until it is
evaluated and internalized by connectors (Figure 1).

In the real classroom situation, students would assemble a
textual explanation, such as: [the volcano erupts + lava
comes out + lava cools + lava makes igneous rock]. In this
model, textual explanation pieces are replaced with
numbers, and a correct explanation is simply an ascending
sequence of numbers (1, 2, 3, etc.), which reflects the nature
of the task that students had at hand (sequencing
information). I am aware of the limitations of the chosen
approach, but this design principle was appropriate given
the research questions and the target results.

Figure 1. The model’s initial state (left) and after some steps
(right), with ‘clusters’ of content form around retrievers.
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Experiments and Data

Contrary to most cognitive modeling software, this model
does not attempt to simulate human thinking in its immense
range of complexities and detail. I selected, conversely, the
particular features of learning processes that will possibly
enable me to pair the model’s data and the observations of
Rosenberg et al. Because I am only modeling the agent’s
ability to construct correct connections between pieces, I am
ultimately investigating the computational cost and accuracy
in building probabilistic cognitive structures. “Success” in
the model is defined by the correct assemblage of a sentence
without errors (i.e., with all numbers correctly places in an
ascending order). I measure the time to completion of the
sentences as well as the error rate in building them. The
final performance measure is the ratio between the average
time to completion and the average error rate, which I call
the cost of accuracy.

First experiment: Effect of Retrieval Skills

The first round of model runs compares retrievers with
different performances or stickinesses. When retrievers
encounter content pieces, they stick to them and carry them
to the connectors. Low-performing retrievers, however,
might collide with a piece but fail at sticking to it. The net
effect of a low-performing retriever is to bring fewer pieces
to the connectors per unit of time. The performance property
of retrievers is loosely analogous to the students’ short-term
memory skills or the amount of sheer information they can
gather within the environment. One conclusion from this
simple experiment is that retrievers have a small impact on
overall task performance. Dropping retriever success rates
from 90% to 20% results in a modest 16% increase in time
for the completion of the task; therefore, within the initial
parameters and assumptions of the model, retrievers appear
not to be the controlling phase of the process. This is a key
qualitative result of the model: good information retrieval
skill does not cause abrupt gains in learning. It is important
here to restate that my goal is not to present a calibrated
computer model that would emulate precise response times
of the human brain. Rather, I am advancing the
understanding of a cognitive task by using computer
modeling to explicitize certain assumptions and refine our
understanding of the problem. In this case, for example, the
simple experiment drew my attention to the fact that
retrieving information should be relatively faster than
connecting information to existing knowledge structures,
and therefore, an improvement in the quantity of available
information or the speed of retrieval would have a relatively
low impact on performance. The data from Rosenberg et al.
qualitatively corroborate this hypothesis: during the first
narrative, with books and worksheets readily accessible but
with weak connecting skills, students were unable to weave
a coherent explanation. From the narrative, it is clear that if
students were given more time or more informational
resources to complete the task, the impact in task
performance would not have been significant. In other
words, my model replicates one of the -classroom



observations of Rosenberg et al.: the controlling phase of
the students’ cognitive work was not information retrieval,
and the cause of students’ failure in explaining the rock
cycle was not due to a lack of information, a lack of time to
retrieve the correct information, or weak memorizing skills.

Second experiment: Effect of Connecting Skills

The goal of the second experiment was to investigate the
influence of the connectors’ performance on overall task
completion time and accuracy. Connectors, in the model,
represent more elaborate cognitive agents, which can
evaluate different pieces of information and link them based
on a simple rule (build ascending sequences of numbers.)
Connectors can make “mistakes,” for example, wrongly
appending the number 41 to the otherwise correct ascending
sequence [3, 45, 67]. The probability of such mistakes is
controlled by an internal variable within each connector
agent (connector-strength). The following plots show the
impact on time to completion, and accuracy, for different
values of connector strength (from 10% to 95% of
probability of a wrong connection).

Connector strength vs. Time to completion
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Figure 2. Connector strength, completion, and accuracy’.

' Note that each data point is an average of 50 model runs.
Given the qualitative interpretation of the results and the limited
space, I considered that error bars and more detailed statistics
would not be informative to the research questions and would add
unnecessary information.

At first sight, the Connector strength vs. Time to
Completion plot (Figure 2, top) suggests that “Connector
strength” has no impact on overall performance. However,
even though the time to complete the task remains roughly
the same, accuracy increases significantly (Figure 2,
bottom). Combining the two plots (not shown) suggests a
reasonable linear fit between computational cost of accuracy
and connector strength, which suggests that increasing the
skill of the connectors has a much greater impact on overall
task performance than increasing the retrievers’ skill (see
previous experiment). This result confirms a second
expected behavior, which is also qualitatively in agreement
with the data from Rosenberg et al. When the students were
told to “start from what they already knew” and evaluate the
connections among the different phases of the rock cycle
using previous knowledge (i.e., ‘if lava is hot, it must cool
down”), their performance increased significantly.

This second experiment hints that connecting skills are
more significant for task performance than retrieving skills.
However, the cost of training skilled connectors is still
unknown; hence, comparing “unskilled but fast” and
“skilled but slow” is crucial, which I attempt to illuminate in
the next section.

Third experiment: Explanation Complexity

The third experiment was aimed at discovering the impact
of explanation complexity on performance. In this model,
the complexity of the explanations is represented by the
‘sentence-size,” which is the target number of knowledge
pieces that the connectors need to put together (e.g.,
sentence size 3 would be “volcano erupts” + “lava comes
out” + “lava cools”). The following plot shows a
comparison between sentence sizes 2 and 3, for different
values of connector strength.

Connector strength vs. Cost of accuracy
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Figure 3. Time to completion divided by the correctness (y
axis) and the connector accuracy (x axis.)

One result of this experiment is that while the impact of
increasing values of connector strength is linear for sentence
size 2, it is roughly exponential for sentence size 3. This

135



finding suggests that for assembling ‘simple’ content the
gain that students obtain from improved connecting skills is
much lower than when they are struggling with complex
knowledge.

Again, this finding seems to fit with Rosenberg et al.’s
narrative. Even in the first moment of the narrative, when
students are trying assemble explanations based on
worksheets using a brute-force approach (quickly trying
many different pairs), they were able to assemble a number
of “sentence-size 2” explanations, such as [igneous rock
forms] + [weathering occurs]. However, in that first part of
the narrative, the students were never able to form “sentence
size 3” explanations, which would require extra steps:
connecting that initial pair of pieces to a third piece and
evaluating all possible pieces for their fit. In the second part
of the narrative, after only a few minutes, by trying to
expand their explanation making sense of the connections
between pieces (and not using the brute force approach),
students formed a sentence size 4 explanation, and a few
minutes later they formed a sentence size 10 explanation:

“Bethany: Listen up! OK, the volcano erupts [1] and lava

comes out |2]. Lava cools [3] and makes igneous rock [4].

Rain and wind cause small pieces of rock to break off [5].

Sediments form [6], and rain and wind carry it away [7],

and rain and wind slow down and deposit sediments [8]

and this happens over and over again to form layers [9].

OK, so water is added to this [10]...” Rosenberg,

Hammer, & Phelan (2006), pp. 274

To further investigate the role of the increase in sentence
sizes to the overall cost of accuracy, I ran the model for
sentence size 4 as well. The results, comparing sizes 2, 3
and 4, are in the following two plots:

Connector strength vs. Cost of accuracy
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Figure 4. Time to completion divided by the correctness (y
axis) and the connector accuracy (x axis.)

To understand Figure 4, it is important to comprehend the
intuition behind the results. Essentially, I am comparing a
“brute force” versus a “smart” approach for assembling
sequences of different sizes. For sentence size 4 (SS4), with
low values of connector strength (CS), it is virtually
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impossible to assemble a correct explanation (see the very
high values of the top curve). For CS 10%, increasing SS
from 2 to 4, the accuracy drops by a factor of 100.
Increasing SS from 2 to 3, the accuracy drops 5 times.
Figure 4, therefore, shows that increasing sentence sizes has
a dramatic impact on performance. The important finding
here is that this differently impacts “long” and “short”
explanations. For SS 2, brute force assemblage is not so
costly and works relatively well, so there would be no
benefit for developing connecting skills. However, for SS 3
and 4, this ‘brute force’ (low CS) assemblage breaks down.

The events in Rosenberg et al. narrative tell a similar
story. In the first half of the class, when students were using
brute force methods instead of their own connecting skills,
they could not go much further than assembling simple, “SS
2,” explanations. When they activated their ‘connectors,’
prompted by the teacher’s intervention, they switched from
a brute force to a “sense-making” mode, in which most of
their energy was spent connecting pieces instead of
retrieving and randomly connecting them. That shift enabled
them to assemble seamlessly explanations of SS = 10.

Conclusion, limitations, and implications

Throughout this paper, I tried to pair computer model data
with real classroom data. In the three experiments, I
searched for instances that would resemble what Rosenberg
et al. described in their classroom observations. The model
seems to validate key elements of those observations:

1) The students’ failure in the first half of the narrative
was epistemological (i.e., resulting from a particular
approach toward learning) and not due to a lack of
memorization or information retrieving skills (the first
experiment).

2) The fundamental mathematical basis of the model,
from which all other behaviors emerge, is that brute-force
methods are efficient for short sequences, but for long
sequences, as the combinatorial space greatly increases,
their performance drops accordingly. In the high connector
strength mode, the size of the sentence has a much lesser
impact because of the evaluative rule of the connector: any
connection will take the exact same computational time for
any sentence size. This seems to be the case in the
classroom, where the students could assemble long
explanations quickly once they were in a ‘high connector
strength’ mode.

3) In this simulated environment, I was able to verify that
for learning intricate content (here, 1 equate that to
assembling long explanations), there is a significant non-
linear payoff from investing in sense-making skills,
(connector strength) as opposed to memorizing skills
(retrieving speed). For simple content (involving the
connection of two content pieces), however, sheer
memorization can even outperform sense-making skills. The
data show that the payoff of improved connector strength
only manifests itself after CS 80% (Figure 2, 3, 4).

4) Abrupt, non-linear shifts in student understanding are
indeed possible, even within very short periods of time, by



activating different cognitive and different

epistemological modes.

resources

Limitations and implication for design

The classroom data used in this paper was chosen because
it described a relatively uniform macroscopic behavior that
clearly derived from a change in simple, local rules. I
acknowledge that many other typical classroom
interventions might not exhibit such a uniform behavior.
The goal of this model and paper, however, was not to
match a computer model to a precise mechanism in the
brain. Rather, my goal was to produce the “simplest
possible” model that would exhibit the observed behaviors
and generate further insight into the research questions. In
that sense, this was a theoretical exercise made possible by
formalizing the problem as agent rules. Therefore, given the
assumptions of the model, I suggest that some possibly
overlooked elements in classroom implementation might be
more important than one would suspect: (1) the radically
different payoffs for improving the speed of retrieval versus
sensemaking, and the determination of which is the
controlling phase in the learning process in different
scenarios, (2) the non-linear impact of sentence-sizes on
performance and accuracy, (3) the unexpected success of
“brute force” methods for small sentences.

Given the limited space, it is impossible to go into detail
about all possible implications, but one implication is very
significant. /n earlier grades, exposed to simpler content,
students might learn that brute-force methods ‘work.’ In
later grades, they might insist on using this method, which
would break down because the content is more complex.

The computational task is of course an approximation of a
real classroom task, and as with any model, it can only
capture a portion of the real-world complexity. However,
my goal here was to demonstrate the potential of agent-
based models as a powerful and useful formalism for
cognitive theory. This work could potentially have
implications for the practice of curricular designers,
teachers, and policy makers by offering researchers
accessible, transparent tools to simulate, model and test
hypotheses about human cognition in social contexts and to
pair model data with real classroom data.
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