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Abstract 

Utilizing data from a classroom intervention with 8th graders, 
I employ agent-based computer modeling to simulate the 
cognitive processes at play during the intervention, in which 
students transition between using multiple epistemological 
resources. The model substantiates the hypothesis of manifold 
epistemological resources, which can be activated with simple 
prompts and have a non-linear impact on learning. 

Keywords: Cognitive modeling; agent-based modeling; 
classroom research; epistemological resources. 

Introduction 
Agent-based modeling (ABM) has been increasingly used 

by scientists to study a wide range of phenomena such as the 
interactions of species in an ecosystem, the collisions of 
molecules in a chemical reaction, and the food-gathering 
behavior of ants (Bonabeau, Dorigo, & Theraulaz, 1999; 
Wilensky & Reisman, 2006). Such phenomena, in which the 
agents in a system (molecules, or ants) follow simple rules 
and interaction patterns, but exhibit complex emergent 
macroscopic behaviors, are studied in a young 
interdisciplinary field called complex systems or complexity 
studies (Holland, 1995). Although complex-systems 
perspectives initially arose from the natural sciences, 
complexity, emergence, and multi-level descriptions of 
phenomena are all highly relevant to social science research. 
In fact, recent decades have observed a surge in social-
science studies employing ABM (Epstein & Axtell, 1996; 
Axelrod, 1997). Recently, ABM has also been used to 
illustrate aspects of cognitive development (Abrahamson & 
Wilensky, 2005; Blikstein, Abrahamson & Wilensky, 2006; 
Smith & Conrey, 2006), and collaboration and group work 
in classrooms (Abrahamson, Blikstein, & Wilensky, 2007). 

ABM has the potential to advance theory in multiple 
ways, which I illustrate in this paper: (a) explicitizing—
ABM demands a high level of specificity in expressing a 
theoretical model, and it provides the tools and standard 
practices to express those models; (b) dynamics—ABM 
enables  researchers to mobilize an otherwise static list of 
conjectured behaviors and observe the macroscopic patterns 
that may enfold; (c) emergence—ABM can examine 
cognition and social behaviors as a collection of 
decentralized, simple rules; and (d) interdisciplinary 
collaboration—the lingua franca of ABM enables 
researchers from different fields to understand, critique and 
challenge each other’s theories by modifying and extending 
the computational algorithms that underlie their theoretical 
models. 

Relevance to cognitive research 
Agent-based modeling in cognitive research could address 

the limitations of current methodologies. First, because 
experiments with human subjects cannot be indefinitely 
conducted, replicating findings or exploring a wide 
parameter space is costly and oftentimes impossible. In the 
case of research in schools, once the classroom data are 
collected, the researchers can revisit the videotapes and 
transcriptions; however, they can never relive the situations. 
Second, as the field moves toward theories that 
conceptualize learning as a dynamic and adaptive 
phenomenon, the traditional medium of scientific 
discourse—static linear text—becomes limited in its 
capacity to express these theories. Both of these flaws could 
be addressed with a set of dynamic, adaptive computer 
models of learning. Third, tools such as brain imaging 
cannot yet offer the speed and resolution required to 
evaluate complex learning processes at a neuronal level, so 
such models are still far from being applicable to real 
classrooms. Lastly, ethnographic or micro-genetic methods 
still cannot offer a ‘runnable,’ systemic, task-independent 
account of human learning. 

The ultimate goal of using agent-based simulation to 
explore human learning is to enable researchers to 
generalize and play “what-if” scenarios using in-depth 
interviews and ethnographic data and to help them 
investigate internal cognitive structures by observing 
external behaviors. 

This work builds on previous seminal contributions to the 
field, in which theoretical models of cognition were 
implemented by using computer programs to attempt to 
predict human reasoning (Newell & Simon, 1972) in tasks 
such as shape classification (Hummel & Biederman, 1992), 
language acquisition (Goldman & Varma, 1995), memory 
(Anderson, Bothell, Lebiere, & Matessa, 1998); and other 
more general-purpose models (Anderson, 1983; Anderson & 
Bellezza, 1993; Anderson & Lebiere, 1998). My design, 
however, differs from extant approaches in two ways: (1) 
Grain Size: Selecting a unit of analysis toward bridging the 
micro and macro perspective on learning. Theories which 
slice human learning into diminutive pieces, when 
reintegrated into the larger context of classroom learning, 
could not account for any meaningful macro-cognitive 
phenomena, and (2) Accessibility: Democratizing modeling-
based research. Most computational theories of the mind 
are so mathematically complex that only specialized 
researchers can examine and critique them; the intricacies 
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and jargon of these theoretical models render them 
incomprehensible for teachers, educators, and policymakers. 
Conversely, the computer language that I have used for 
modeling, NetLogo (Wilensky, 1999), has been developed 
for non-programmers so that users could not only run 
models but also modify their rules and compare scenarios. 

My theoretical inspiration comes from the work of 
Minsky (1986), and Collins (1978). My computer-based 
models of human learning postulate non-intelligent 
cognitive entities with simple rules from which intelligent 
behavior emerges, or simple individual classroom behaviors 
that result in complex group-level patterns. To generate and 
validate such models, ABM tools enable researchers to 
initially feed a computer model with data from real-world 
experiments, such as classroom observations or clinical 
interviews and to subsequently simulate hypothesized 
scenarios in a safe virtual environment. Researchers from 
diverse disciplines (and with little, if any, programming 
background) can embody and articulate their theoretical 
models in a shared medium with shared nomenclature and 
shareable/replicable data, thus facilitating interdisciplinary 
discourse and critique. 

However, the work described in this paper is not 
attempting to reproduce reality, which is oftentimes 
understood to be the goal of a computer model. My 
objective is to instantiate possible theories of learning in the 
agent-based form and use the data to qualitatively validate 
the models, with the goal of advancing theory. However, 
unlike classical cognitive models, this category of ABM 
models needs to be much more stylized and simple, as this 
paper will describe. 

Personal epistemologies & resources 
Traditional research on personal epistemologies (Hofer & 

Pintrich, 2002) has considered them as stable beliefs. 
However, evidence of variability in student epistemologies 
suggests the need for more complex models (Hammer & 
Elby, 2002). The activation of the students’ different 
epistemological resources might depend on context, as 
shown by Rosenberg, Hammer, & Phelan (2006). In other 
words, students might instantiate different epistemologies as 
they perceive contextual cues about the most efficient 
approach in a given situation. In the Rosenberg et al. case 
study, a brief epistemological intervention by an 8th-grade 
science teacher led to the students abruptly shifting from 
one epistemological mode to another. The narrative tells the 
story of a group of students who were given the task of 
explaining the rock cycle. For the first few minutes, before 
the teacher’s intervention, they fail to engage in any 
productive work or to construct a coherent explanation of 
the rock cycle. Students employ a ‘brute force’ approach by 
quickly trying out several short explanations without 
evaluating if the elements of their explanations make sense 
together. They generate fragmented descriptions, which do 
not survive simple logical inference. Rosenberg et al. state 
that the reason is epistemological and that “They are treating 
knowledge as comprised of isolated, simple pieces of 

information expressed with specific vocabulary and 
provided by authority.” (Rosenberg, et al., 2006, pp. 270) 

The authors provide three pieces of evidence for this 
hypothesis: (1) the students organize their efforts around 
retrieving information from worksheets, (2) they focus on 
terminology, and (3) they combine information and 
construct sentences to present a formal ordering rather than 
a causal sequence. The narrative goes on to describe how 
the teacher, realizing the ongoing failure, stops the activity 
and tells the students: “So, I want to start with what you 
know, not with what the paper says.” 

Abruptly, the students change their approach toward 
engaging in the activity. They immediately start to focus on 
the elements of the rock cycle that they understand, and they 
rebuild the story from there. Within minutes, one of the 
students comes up with a rather complete explanation:  

“OK, the volcano erupts, and lava comes out. Lava cools 
and makes igneous rock. Rain and wind cause small 
pieces of rock to break off. Sediments form, and rain and 
wind carry it away, and rain and wind slow down and 
deposit sediments and this happens over and over again to 
form layers.” (Rosenberg, et al., 2006, pp. 274) 

It is impressive how the students, focusing on a single 
element of the story (“Lava comes out”), correctly connect 
all of the other pieces of the explanation. Although the “lava 
comes out” piece was the first to be mentioned, they 
realized that for lava to come out, the volcano has to erupt; 
similarly, if the lava comes out and is hot, it has to cool 
down. For the students to generate a coherent explanation, it 
was crucial for them to concatenate information while 
making sense of the connection rules, and they resorted to 
worksheets fewer times than in the previous activity. 

In this paper, my goal is to employ ABM to help model 
what occurred during those 15 minutes and to answer two 
research questions concerning the abrupt epistemological 
shift observed: (1) what caused the two modes to generate 
very diverse student performance? and (2) how could a brief 
intervention cause such dramatic change? I built a model 
that simulates the construction of declarative knowledge in 
terms of two basic cognitive operations: retrieving 
information from external/internal sources and applying 
concatenation rules to join content pieces. I expect to 
answer the research questions by exploring the parameter 
space of the model for number, type, and efficiency of 
retrievers and connectors; this might result in emergent 
behaviors similar to those observed by Rosenberg et al. I 
warn the reader that the goal is to match an overall reference 
pattern based on simple theoretical assumptions about 
learning. The nature of ABM is such that this simplicity is 
required to generate a manageable parameter space. 

The Agent-Based Model 
In the model, the world outside of the mind is composed 

of various disconnected content pieces, represented as green 
agents. A piece could be a simple statement, such as “Lava 
comes out of volcanoes,” “Lava shoots up,” or “Water 
erodes rocks.” These pieces are retrieved by special agents, 
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observations of Rosenberg et al.: the controlling phase of 
the students’ cognitive work was not information retrieval, 
and the cause of students’ failure in explaining the rock 
cycle was not due to a lack of information, a lack of time to 
retrieve the correct information, or weak memorizing skills. 

Second experiment: Effect of Connecting Skills  
The goal of the second experiment was to investigate the 

influence of the connectors’ performance on overall task 
completion time and accuracy. Connectors, in the model, 
represent more elaborate cognitive agents, which can 
evaluate different pieces of information and link them based 
on a simple rule (build ascending sequences of numbers.) 
Connectors can make “mistakes,” for example, wrongly 
appending the number 41 to the otherwise correct ascending 
sequence [3, 45, 67]. The probability of such mistakes is 
controlled by an internal variable within each connector 
agent (connector-strength). The following plots show the 
impact on time to completion, and accuracy, for different 
values of connector strength (from 10% to 95% of 
probability of a wrong connection). 

 

 

Figure 2. Connector strength, completion, and accuracy1. 

                                                           
1 Note that each data point is an average of 50 model runs. 

Given the qualitative interpretation of the results and the limited 
space, I considered that error bars and more detailed statistics 
would not be informative to the research questions and would add 
unnecessary information. 

 
At first sight, the Connector strength vs. Time to 

Completion plot (Figure 2, top) suggests that “Connector 
strength” has no impact on overall performance. However, 
even though the time to complete the task remains roughly 
the same, accuracy increases significantly (Figure 2, 
bottom). Combining the two plots (not shown) suggests a 
reasonable linear fit between computational cost of accuracy 
and connector strength, which suggests that increasing the 
skill of the connectors has a much greater impact on overall 
task performance than increasing the retrievers’ skill (see 
previous experiment). This result confirms a second 
expected behavior, which is also qualitatively in agreement 
with the data from Rosenberg et al. When the students were 
told to “start from what they already knew” and evaluate the 
connections among the different phases of the rock cycle 
using previous knowledge (i.e., ‘if lava is hot, it must cool 
down’), their performance increased significantly. 

This second experiment hints that connecting skills are 
more significant for task performance than retrieving skills. 
However, the cost of training skilled connectors is still 
unknown; hence, comparing “unskilled but fast” and 
“skilled but slow” is crucial, which I attempt to illuminate in 
the next section. 

Third experiment: Explanation Complexity 
The third experiment was aimed at discovering the impact 

of explanation complexity on performance. In this model, 
the complexity of the explanations is represented by the 
‘sentence-size,’ which is the target number of knowledge 
pieces that the connectors need to put together (e.g., 
sentence size 3 would be “volcano erupts” + “lava comes 
out” + “lava cools”). The following plot shows a 
comparison between sentence sizes 2 and 3, for different 
values of connector strength. 

 
Figure 3. Time to completion divided by the correctness (y 

axis) and the connector accuracy (x axis.) 
  

One result of this experiment is that while the impact of 
increasing values of connector strength is linear for sentence 
size 2, it is roughly exponential for sentence size 3. This 
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finding suggests that for assembling ‘simple’ content the 
gain that students obtain from improved connecting skills is 
much lower than when they are struggling with complex 
knowledge. 

Again, this finding seems to fit with Rosenberg et al.’s 
narrative. Even in the first moment of the narrative, when 
students are trying assemble explanations based on 
worksheets using a brute-force approach (quickly trying 
many different pairs), they were able to assemble a number 
of “sentence-size 2” explanations, such as [igneous rock 
forms] + [weathering occurs]. However, in that first part of 
the narrative, the students were never able to form “sentence 
size 3” explanations, which would require extra steps: 
connecting that initial pair of pieces to a third piece and 
evaluating all possible pieces for their fit. In the second part 
of the narrative, after only a few minutes, by trying to 
expand their explanation making sense of the connections 
between pieces (and not using the brute force approach), 
students formed a sentence size 4 explanation, and a few 
minutes later they formed a sentence size 10 explanation: 

“Bethany: Listen up! OK, the volcano erupts [1] and lava 
comes out [2]. Lava cools [3] and makes igneous rock [4]. 
Rain and wind cause small pieces of rock to break off [5]. 
Sediments form [6], and rain and wind carry it away [7], 
and rain and wind slow down and deposit sediments [8] 
and this happens over and over again to form layers [9]. 
OK, so water is added to this [10]…” Rosenberg, 
Hammer, & Phelan (2006), pp. 274 

To further investigate the role of the increase in sentence 
sizes to the overall cost of accuracy, I ran the model for 
sentence size 4 as well. The results, comparing sizes 2, 3 
and 4, are in the following two plots: 

 
Figure 4. Time to completion divided by the correctness (y 

axis) and the connector accuracy (x axis.) 
 

To understand Figure 4, it is important to comprehend the 
intuition behind the results. Essentially, I am comparing a 
“brute force” versus a “smart” approach for assembling 
sequences of different sizes. For sentence size 4 (SS4), with 
low values of connector strength (CS), it is virtually 

impossible to assemble a correct explanation (see the very 
high values of the top curve). For CS 10%, increasing SS 
from 2 to 4, the accuracy drops by a factor of 100. 
Increasing SS from 2 to 3, the accuracy drops 5 times. 
Figure 4, therefore, shows that increasing sentence sizes has 
a dramatic impact on performance. The important finding 
here is that this differently impacts “long” and “short” 
explanations. For SS 2, brute force assemblage is not so 
costly and works relatively well, so there would be no 
benefit for developing connecting skills. However, for SS 3 
and 4, this ‘brute force’ (low CS) assemblage breaks down. 

The events in Rosenberg et al. narrative tell a similar 
story. In the first half of the class, when students were using 
brute force methods instead of their own connecting skills, 
they could not go much further than assembling simple, “SS 
2,” explanations. When they activated their ‘connectors,’ 
prompted by the teacher’s intervention, they switched from 
a brute force to a “sense-making” mode, in which most of 
their energy was spent connecting pieces instead of 
retrieving and randomly connecting them. That shift enabled 
them to assemble seamlessly explanations of SS = 10. 

Conclusion, limitations, and implications 
Throughout this paper, I tried to pair computer model data 

with real classroom data. In the three experiments, I 
searched for instances that would resemble what Rosenberg 
et al. described in their classroom observations. The model 
seems to validate key elements of those observations: 

1) The students’ failure in the first half of the narrative 
was epistemological (i.e., resulting from a particular 
approach toward learning) and not due to a lack of 
memorization or information retrieving skills (the first 
experiment). 

2) The fundamental mathematical basis of the model, 
from which all other behaviors emerge, is that brute-force 
methods are efficient for short sequences, but for long 
sequences, as the combinatorial space greatly increases, 
their performance drops accordingly. In the high connector 
strength mode, the size of the sentence has a much lesser 
impact because of the evaluative rule of the connector: any 
connection will take the exact same computational time for 
any sentence size. This seems to be the case in the 
classroom, where the students could assemble long 
explanations quickly once they were in a ‘high connector 
strength’ mode. 

3) In this simulated environment, I was able to verify that 
for learning intricate content (here, I equate that to 
assembling long explanations), there is a significant non-
linear payoff from investing in sense-making skills, 
(connector strength) as opposed to memorizing skills 
(retrieving speed). For simple content (involving the 
connection of two content pieces), however, sheer 
memorization can even outperform sense-making skills. The 
data show that the payoff of improved connector strength 
only manifests itself after CS 80% (Figure 2, 3, 4). 

4) Abrupt, non-linear shifts in student understanding are 
indeed possible, even within very short periods of time, by 
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activating different cognitive resources and different 
epistemological modes. 

Limitations and implication for design 
The classroom data used in this paper was chosen because 

it described a relatively uniform macroscopic behavior that 
clearly derived from a change in simple, local rules. I 
acknowledge that many other typical classroom 
interventions might not exhibit such a uniform behavior. 
The goal of this model and paper, however, was not to 
match a computer model to a precise mechanism in the 
brain. Rather, my goal was to produce the “simplest 
possible” model that would exhibit the observed behaviors 
and generate further insight into the research questions. In 
that sense, this was a theoretical exercise made possible by 
formalizing the problem as agent rules. Therefore, given the 
assumptions of the model, I  suggest that some possibly 
overlooked elements in classroom implementation might be 
more important than one would suspect: (1) the radically 
different payoffs for improving the speed of retrieval versus 
sensemaking, and the determination of which is the 
controlling phase in the learning process in different 
scenarios, (2) the non-linear impact of sentence-sizes on 
performance and accuracy, (3) the unexpected success of 
“brute force” methods for small sentences. 

Given the limited space, it is impossible to go into detail 
about all possible implications, but one implication is very 
significant. In earlier grades, exposed to simpler content, 
students might learn that brute-force methods ‘work.’ In 
later grades, they might insist on using this method, which 
would break down because the content is more complex. 

The computational task is of course an approximation of a 
real classroom task, and as with any model, it can only 
capture a portion of the real-world complexity. However, 
my goal here was to demonstrate the potential of agent-
based models as a powerful and useful formalism for 
cognitive theory. This work could potentially have 
implications for the practice of curricular designers, 
teachers, and policy makers by offering researchers 
accessible, transparent tools to simulate, model and test 
hypotheses about human cognition in social contexts and to 
pair model data with real classroom data. 
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