Route choice in individuals—semantic network navigation
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Abstract

In a novel experimental task, individuals are asked to navigate
from a start word to a goal word through a semantic network.
In this forced-choice task, individuals perform with a high
success rate (73%) and frequently navigate to the target in the
minimal number of required steps (22%). We utilize these
experimental results to explore different search and decision
strategies. Our descriptive modeling results suggest indi-
viduals are not guessing at random (or utilizing only local
information) and that knowledge of the global structure is
necessary for individuals to succeed. We further show that a
latent semantic space model, such as word association space,
can capture much of the global semantic knowledge necessary
to explain participant decisions. We suggest that performance
in this task might capture some of the underlying structure of
semantic memory and, importantly, search within memory.
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Introduction

Much work within computer science and informatics has
looked at humans as information foragers (Fu & Pirolli,
2007). In many analyses, foragers rely on the structure of
the environment for information foraging cues. While we
know humans are able to search and gather information
from a variety of environments (Fu & Pirolli 2007;
MacGregor et al, 1986), we ask what happens when
individuals are themselves responsible for both the structure
in the environment as well as for searching on and within
the structured environment. We use semantic navigation as a
task in order to examine this aspect of search.

Semantic navigation includes any and all orientation and
search within semantic knowledge. This could be due to
communication between individuals, comprehension of
auditory and visual language or encoding and retrieval of
vocabulary within memory. Semantic space is unique in that
it has been shaped not only by individual experience but
also through cultural and historical contexts. Unlike
searching on the web (Fu & Pirolli, 2007) database menus
(MacGregor et al, 1986) or Wikipedia (West et al, 2009),
semantic search requires searching on a naturally evolved
but explicitly learned representation.

This added level of implicit knowledge of the structure of
the environment might allow for foragers within semantic
space to utilize the environment more effectively and
quickly. We know from past work, that humans are already
very good at navigation even in foreign environments such
as the web (Fu & Pirolli, 2007). We set out here to see if

individuals can explicitly navigate semantic space and how
much individuals rely on local information, available in
many types of foraging tasks, as well as global information,
which is available through previous linguistic experience.
We give individuals a start location in the semantic network
and ask them to build chains of associates to get to a target
location. This data provides us with the decisions of
individuals which can in turn tell us about the underlying
navigation process and semantic environment.

Results from computer science have also suggested what
types of networks are most easily navigable and Kleinberg
(2000) has done simulation work considering what
properties networks must have for humans to successfully
navigate through them. This work operates within a message
passing paradigm, in which navigation occurs via a series of
independent, uncoordinated routing decisions in which each
node selects a neighbor to serve as the next decision maker
in the passing chain. An important complement to this fam-
ily of problems is a route choice paradigm, in which a single
decision maker identifies the entire path to be followed.

More recently, work exploring human navigation of
semantic network paths (from start to goal) has been
conducted within the route choice paradigm. Specifically, in
relation to this work, this has been studied in Wikipedia
where individuals are given a start Wikipedia page and
asked to navigate to a goal page (West et al, 2009). Whereas
this work does rely on human cognition, the results of this
work focus mostly on computer science implications. We
hope to expand this work by exploring the cognitive
implications of an individual’s decisions.

To achieve this goal, we consider how humans navigate
through realistic semantic network representations and,
therefore, consider a novel task in which individuals are
asked to navigate in a predefined semantic space. Because
so little work has been done on semantic network navigation
by a single individual, we set out in this paper to answer
some fundamental questions. The most obvious being
whether individuals can navigate a semantic network
without being given explicit global information regarding
network structure. To foreshadow our results, they can and
will do so quite well in specific situations. This leads to
other questions, such as what type of information might
individuals be using in making routing decisions; how much
local information is utilized in our specific network
representation versus how much knowledge comes from
global language knowledge. More generally, what can this
tell us about human cognition, navigation and search?
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We consider semantic space because individuals receive a
great deal of linguistic input through a variety of different
media. While we do not believe that every individual has
the same semantic representations or knowledge, an
important goal of language is communication, which
facilitates the need for convergence to a similar, if not
identical, representation. The fact, however, that imposing a
pre-determined structure does not disallow success within
this task suggests that even an impoverished representation
of semantic knowledge still contains enough information for
participant success.

We begin by describing the semantic network and the
experimental task. Then we discuss the performance results
and examine them in light of descriptive and cognitive
interpretations. We consider descriptive statistics and
qualitative models to help build the foundation for future
modeling work. Our results importantly suggest that
individuals have a specific route choice strategy, and that
this strategy is greatly impacted by the similarity of an
option to the end word. That is to say, individuals have
some idea of distance from their current location to the goal
and are often able to use this global information to navigate
to the goal. With these main results, we then discuss the
future for navigation models and their impact on our
understanding of human cognition, navigation and search.

Methods

Semantic Network

Our task is rooted in the idea that individuals use both
global and local information from the network. However, it
is difficult to measure a semantic network for each
individual, and moreover, sampling an individual’s semantic
network may bias the network and participant responses. To
get away from these issues, we assume that individuals have
similar semantic representations and that these represent-
ations can be approximated by a network based on the
Florida Association Norms (Nelson et al., 2004). While it
seems unlikely that each individual has precisely the same
network, an important goal of language is communication
with others, suggesting that convergence on the same
underlying network would be highly beneficial. Such a
network could be recovered through an aggregation process,
such as the Florida Association Norms (2004).

The Florida Association Norms (2004) were generated by
asking participants to indicate the first semantically related
word that came to mind when given a cue word. Because
this was asked of many participants, we have many different
associations as well as a population level proportion of
responses to each cue. For example the word DOG might
often elicit CAT but a measurable proportion of participants
may respond with BONE. We consider a directed link
between words to exist from cue to response if the cue word
reliably generated the response word. Each association also
has a weight equal to the probability of its elicitation. For
example we consider both CAT and BONE to have a link
from DOG but the link to CAT receives a higher weight
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since more individuals responded with CAT. This network
is not symmetric. For example there exists a link from CAT
to DOG but not from BONE to DOG.

Altogether 5008 words are included in the association
norms with most responses being asked about as cues.
However, in our experiment, we use a subset of the network.
We trim the 5008-word network by including only words
that had more than three words leading in as well as three
leading out; we further removed the weakest connections
when there were more than 12 associates. In cases where
there were multiple associates with minimum strength, all
were removed even when the resulting set was less than 12.
We trimmed the network so that individuals would have
fewer choices to sift through, were less likely to end up
selecting an option that led to limited choices and to prevent
trials with only a few successful paths. Limiting in-
associations resulted in removing words like MOO since it
is only generated in response to COW and thus all
successful paths require going through COW. Further,
LEFT elicits only the response RIGHT so we exclude LEFT
and other similar words since it results in loops, or in the
more general case, very limited options. This trimming
resulted in a smaller network consisting of 2392 words. This
network maintains the small world structure of the full
network with a short average path length (4.19), a small
overall diameter (8) and is a fully connected graph.

Word Navigation Task

In this task, individuals were given a start word and asked to
navigate to a goal word. They were presented with between
3 and 12 associations of the start word and asked to pick the
option that they believed would get them closer to the goal
word. The selection was then centered in the screen and the
next available options were generated from this word. See
Figure 1 for a screen shot from the actual experiment. Each
subject repeated this process until he or she reached the goal
word or made a total of 25 choices (steps). Individuals could
also select an undo button, which took them back to their
previous decision. This incremented the 25-step count and
could be repeated until the start word was reached.

Because the options individuals received were based on
the association norms, we had participants complete a quick
version of the association norms task. We selected 50 words
that were included in the original norming study but were
excluded from our experiment based on our above network
trimming. After participant completion of the association
task, they received verbal instructions for the word
navigation task—they were told that the choices they would
be offered were generated in the same manner as the task
that they just completed. This was done to aid in task
understanding and minimize frustration during the task.
Participants then began the computer task in which they
again received written instructions, an example trial and 3
practice trials before a final set of written instructions. The
example trial explained the layout of the experiment
whereas the practice trials allowed them to try simplified
variants of the word navigation task. On the practice trials,



participants received feedback as to how many steps it took
them as well as what an optimal (fewest number of
intermediate words) solution would have been. After the
three practice trials, they were given a few lines reminding
them of the goal of the task and the opportunity to ask the
experimenter should they have any questions.
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Gurert Score: 15

Figure 1: Screen shot of the experiment.

The test trials consisted of 28 trials divided into 4 blocks.
Each block contained 7 trials, 3 requiring minimally 3
decisions, and 2 requiring each of 4 or 5 decisions. Trials
were prescreened in a pilot study. Problems that were
successfully completed in 15 steps or less by at least 1 out
of 3 participants were selected. The block order was
randomized and trials within each block were also
randomized. When the 25-step limit was reached a screen
popped up that said “Thank you for trying. You were # steps
away,” where # was the number of words between the last
word clicked and the goal. They could always see
previously selected words as well as the start word, goal
word and current word. At the end of the first block,
participants received feedback on the overall number of
steps taken in that block. In each subsequent block, they
could see their current block score at the bottom left of the
screen. After completion of each block, a screen reported
their overall performance on the completed block as well as
the minimum score on any block thus far.

Overall, 53 undergraduates at University of California,
Irvine were run in an experiment that lasted maximally 1
hour. Two participants did not complete the task in the
allotted time and their data were excluded before analysis.
All participants received course credit for completion of the
experiment. To prevent meaningless clicking, an
experimenter was within earshot for the length of the
experiment and participants were warned that they would
not receive credit unless they completed at least one trial.
Every participant satisfied this requirement.
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Results

Experimental Results

The first important result of this work is that individuals can
reliably navigate semantic networks, moving from start to
goal words in a relatively small number of steps. Every trial
was solved by at least 15.1% of individuals with the average
trial being solved 73.3% of the time and maximal success
rate at 92.9%. The information in the semantic network is
sufficient for individuals to navigate effectively. Individual
performance over all trials varied from 28.6% correct to
92.9%. Further 22.2% of trials were solved in the shortest
number of intermediate steps.
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Figure 2: Subject performance on trials of varying min.
length. Dark gray bars: proportion of trials correctly solved,
light gray: proportion of trials solved in minimal number of

steps. The solid line indicates unweighted random walk
performance and the dashed, weighted random walk.

We expected to see a difference in success rate based on
the number of minimum decisions required and figure 2
shows a general population level trend that trials requiring
minimally 3 decisions have the highest success rates;
however, the variation across trials suggests that more is
going on. Figure 2 shows the results for each problem
organized by minimum number of required steps. The first
frame contains trials with minimally 3 decisions, the second
4 decisions, etc. The dark gray bar indicates the proportion
of individuals who correctly solved that trial in 25 steps or
less. The light gray bar indicates the proportion who solved
that specific trial in the minimum number of decisions. The
trials are rank ordered from least to most solved within each
set. We see a general trend here that problems requiring
fewer minimum steps are solved more often. This is an
interesting finding since participants are not told the
minimum length of a trial. We are also not considering the
strength of the connections, the number of options or how
quickly these problems were solved—instead the fact that
the minimum number of steps can be used to help explain
performance suggests that the information individuals are
using during this task is sensitive to distance in the network.
Salient information about distance seems to be present
locally given the correlation between distance and



performance. Further, we find a similar relationship between
optimal performance and minimum distance with shorter
trials finished more optimally.

The trend suggesting that problems with fewer minimum
steps are easier does not capture the full complexity of the
task or responses chosen. With a closer examination of the
results in figure 2, we see that there are many trials that
violate this trend. For example, there are a few trials of
medium length that are more often solved than shorter trials
(and some that are more often optimally solved). It is also
interesting to note that the trial that is solved most often has
one of the lowest rates of “optimal” performance. This may
suggest that our definition of optimal is not the correct
baseline for human performance.

We are also interested in capturing the descriptive trends
within individual trials. To understand what these trends
might look like, we explore one problem in depth. Figure 3
shows the breakdown of a single trial. Only correct
responses are included and the weight of the arrow indicates
the proportion of individuals who chose that path. This trial
has a high success rate and a high percentage of minimum
distance paths. The minimum distance path runs along the
left. This figure helps illuminate the cognitive process that
may be underlying the strategy.

*MARKER

Figure 3: Network based on successful trials; participant
responses from start word ANYTHING to goal word PEN.

For instance we can see that each option of ANYTHING
led to at least one correct response—that is to say,
individuals do not remove their chance of success by
picking the wrong option at the first decision. Another
important feature is that there are multiple successful paths.
Looking closely we can see that individuals are utilizing the
undo button to further explore the semantic space. For
example an individual at the word PAINT selected BRUSH,
but then decided to go back to PAINT. While it is difficult
to say exactly why s/he made that choice, it would seem
plausible that s/he went back to PAINT because s/he felt
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that it was closer to the goal word of PEN than BRUSH
was. Another interesting result that we can see from a
detailed examination is that the word definition might
change based on the goal word. This is most clear in the
path that goes from ANYTHING—EVERYTHING—
WORLD—EVERYTHING(undo)—=LIFE>MAGAZINE—
PAPER—PEN. Here we see that the undo button was used
to back up after making a decision to go to WORLD.
Further, this individual selected the word LIFE from a list of
words associated to EVERYTHING. This suggests that the
definition coming to mind was one of living, however, with
the goal of PEN, s/he utilized LIFE to get to MAGAZINE,
suggesting an interpretation of life magazine. We can also
see that s/he does a similar thing in going from
MAGAZINE to PAPER (likely newspaper) but then from
PAPER (something to write on) to PEN.

Random Walk model

Though the data suggest that individuals are able to solve
these semantic navigation problems (to varying degrees) it
is possible that participants are guessing and that the
structure of the network allows for high rates of success. To
test this assumption we considered two types of random
walk models. The first is a random walk model that simply
checks if the goal word is present and if it isn’t, randomly
selects from the available options. The second random walk
model picks the goal word if present and otherwise
randomly selects from the available options with a prob-
ability distribution equal to the association norms data (e.g.
if CAT was the response to DOG 80% of the time, this
random walk would pick CAT 80% of the time as well). In
figure 2, the two random walk models are indicated by a
solid red (unweighted) and dashed blue (weighted) line.
Both random walk models perform worse than our
participants. The general trend does not follow that of the
participants—problems frequently solved by random
guessing are not those that participants most often solved.
This confirms the hypothesis that individuals are utilizing
global information present in semantic space in the task.

Descriptive Geodesic model

Now that we know individuals are not guessing at
random, we combine the results suggested by the data to
build a descriptive model of the decisions individuals make.
To do this we consider the geodesic distance (number of
steps between two nodes) of the current word to goal word
to see if individuals are more likely to select words with
lower geodesic. We know that individuals do not always
pick options that decrease the geodesic because that would
result in optimal performance. However, we can plot the
distribution of subject choices and the distribution of all
options to see if some of the success can be explained by
sensitivity to geodesic distance. Figure 4, top graph, shows
the distribution of geodesic from current word (WRITE in
figure 1) to goal word (PEN in figure 1) along the x-axis.
Options (grey buttons in figure 1) to goal word fall along
the y-axis. Here we can see that proportion of choices made



by individuals, as indicated by the size of the box, look
different than the full set of options. This is particularly
pronounced at low geodesics (heavy weight along the near-
diagonal indicates more optimal decisions). The difference
between subject choices and options becomes almost
unrecognizable as the distance between current and end
word increases to a geodesic near 4 or greater. This suggests
that individuals have knowledge of the general location of
the goal word and that this becomes more accurate as they
get closer to in minimal number of steps to the goal. It also
suggests that individuals may be picking up on a gradient
but that they might be guessing until they get close enough
to the goal word to find the gradient.
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Figure 4: The top panels, based on geodesic distance,
represent the distribution of options (left) and participant
choices (right) with the size of the square indicating
frequency of observation. The bottom panels capture local
language-level information based on cosine similarity in
latent space.

Latent Space model

While we consistently have been talking about navigation
within a network, it is not necessary to assume individuals
represent a complete network in memory. Instead it is likely
that the representation is a reduction of this network—a
summary of global information that allows individuals to
locate their current position in the network as well as access
local knowledge of nearby words. One reduction that has
been widely studied in semantic memory is that of a
reduction of the dimensionality of the semantic space by
vector decomposition (latent space analysis, e.g. Landauer
& Dumais, 1997; Burgess & Lund, 2000). While we
considered a variety of latent spaces, we present data only
on the symmetric WAS space from Steyvers et al. (2004).
Our goal is to capture the same population level trends as
we did previously with the descriptive geodesic model but
with a semantic latent space that would be more cognitively
plausible and require less information than the full network.
To do this, we again consider figure 4 (lower panels) and
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the geodesic between current and goal (x axis) but compare
that to the latent space cosine similarity of options (panel 1,
lower row) and subject choices (panel 2). Whereas, in the
geodesic case, weight along the diagonal indicates more
optimal choices, high cosine similarity suggests nearness to
the target. In this graph, we expect higher weight on
similarity judgments to capture more optimal choices. We
again see a noticeable difference between selected choices
in comparison to all options, moreover, the general trends of
the latent space model follow a similar pattern to that of the
geodesic in that individuals’ choices are indistinguishable
from guessing at higher geodesic. The latent space model
offers an explanation—the cosine similarity is near zero for
all options such that participants may not be able to use
similarity and instead resort to guessing

Discussion and Implications

Our results suggest that individuals are succeeding by
utilizing information present in the network in order to get
closer to the goal word. We know that their decisions can be
explained at least in part by the local information in the
options, especially relative to the goal word. Their success
is not, however, based on random guessing or strong
associates. This is an interesting finding since it suggests
that the information individuals are using is not captured by
the environment of the free association task alone. Further,
the paths individuals do end up utilizing appear to suggest
that the semantic space may be changed and altered by the
goal word implying that individuals have a direct influence
on their environment. That is to say, the entire structure of
the network may be influenced and changed based on the
goal. Though we only gave one example in the text, it is not
unique. Individuals often interpret words in light of the goal
word as opposed to the current word. This adds a dynamic
component to network structure that we know exists in
memory and knowledge more generally. This task, further
gives us a way to study the dynamic nature of semantic
knowledge and the role of context in speech.

We also see that there is a large variance in potentially
successful paths and that the shortest path is not always the
most salient to individuals. While we have not specifically
analyzed the difference between shortest paths and
participant paths, West et al. (2009, 2012) have looked more
closely into this question in Wikipedia navigation and
suggest that shortest paths often require out-of-the-box
thinking whereas paths that are a bit longer allow for a more
obvious chain of associates. We hope to test this directly
utilizing our data in the future.

Another important finding is that individuals seem to be
making more optimal decisions (ones that get them closer to
the end word) when they are already close to the end word.
This suggests that individuals can intuit how far away the
goal word is without having exact knowledge of the space.
This is a result that has been found in most navigation
studies (e.g. West et al. 2009) but most studies suggest that
the way individuals get closer to the goal is by navigating to
hubs with many out-links and utilizing these hubs to get to



an area of the network. However, in our study, we
thresholded much of the hub structure away by allowing
maximally 12 options for any word. Participants could not
simply navigate to a central hub and then jump towards the
goal word. Instead, we believe that this ability to perform
more optimally when closer comes from the fact that
individuals have a semantic representation that allows them
to compute distance between two words but that this
semantic representation is limited to identification of a
relative location. Further, the ability to identify a word as
near requires a level of information about current location
and goal location that is not always available, specifically
when individuals are further away from the goal. Going
back to Figure 4, we see that individual choices look very
similar to options both in geodesic and WAS space when
many words are needed to complete the trial. This suggests
that, if individuals are far enough away, guessing might be
their main strategy However, guessing may be the best thing
for individuals to do since there is little information
available to them (as captured by WAS) and, based on
network structure alone, often places them in a better or
equal position (in terms of geodesic) than before.

WAS space captures most of these global trends.
Particularly, WAS space is often near zero unless there is a
strong similarity between words—implying that they are
close enough in the network that individuals can sense it.
This space also captures the noisiness of relative distance.
Since individuals only have a very general idea of goal
location, any estimates of which choice is closer to the goal
is less exact as the distance between choice and goal
increases—which is captured by cosine similarity.

In the future we hope to extend our understanding of
network navigation through a relational event model (Butts,
2008). That is to say, we can assume every decision is
independent once we condition on the goal word and current
word. With independence, we can apply a multinomial
logistic regression on linguistic and network-based
covariates. We hope to use this model to show how the
current and goal word influence decisions as well as more
specifically exploring the specifics of language in this task.

We also hope to experimentally test subjects on other
types of networks. Since all subjects in this study are natural
"experts" in language, there is still the question of whether a
more limited level of prior knowledge of the underlying
network is still adequate to allow successful navigation and
search. Work on folk knowledge of networks suggests that
individuals are not very good at reconstructing social
networks (Freeman et al., 1987) but our results suggest that
success on this task may not require an accurate or even
complete network representation, since most individuals
succeeded on a variety of problems even though our
underlying network of the task is impoverished.

Not only do the applications extend beyond cognitive
understanding, but the fact that individuals can navigate
suggests that network representations are useful. While we
consider semantic space here, many other types of
knowledge can be represented as a network, such as social
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relationships or a schedule. We believe that the results in
this paper speak much more broadly about navigation than
they do about language navigation specifically. A model of
network navigation may be useful in explaining search,
decision-making and even memory. Network structure
captures many naturalistic relationships. However, unless
we understand ways in which individuals are able to
navigate this type of structure, we cannot utilize this
representation in cognitive architectures. With this paper,
we’ve begun to address the first concerns of understanding
how individuals navigate a network structure, providing us
with a new direction for navigation within memory.

Acknowledgments

This work was funded in part by an NSF GRFP to the first
author and by ONR/MURI under grant number N0014-08-
1-1015 to Carter Butts. Thanks to Michael Yi for help in
concept development and Sarah Hunt for running subjects.

References

Burgess, C., & Lund, K. (2000). The dynamics of
meaning in memory, Cognitive dynamics: conceptual
and representational change in humans and machines.

Butts, C. (2008) A relational event framework for social
action. Social Methodology 38,155-200.

Freeman, L.C., Romney, A.K., Freeman, S.C. (1987)
Cognitive structure and informant accuracy. American
Anthropologist.

Fu, W.T. & Pirolli, P. (2007). SNIF-ACT: A cognitive
model of user navigation on the world wide web. HCI
Kleinberg, J. M. (2000) Navigation in a small world.

Nature, 406(6798).

Landauer, T.K., & Dumais, S.T. (1997). A solution to
Plato’s problem: The Latent Semantic Analysis theory
Psychological Review, 104, 211-240.

MacGregor J, Lee, E. & Lam, N (1986). Optimizing the
Structure of Database Menu Indexes. Human Factors
Newman, M.E.J. (2003). The structure and function of

complex networks. STAM Review 45, 167-256

Nelson, D.L., McEvoy, C.L., & Schreiber, T.A., (2004).
The University of South Florida word association,
Behavioral research methods.

Steyvers, M., Shiffrin, RM., & Nelson, D.L. (2004).
Word association spaces for predicting semantic
similarity effects in episodic memory. Experimental
cognitive psychology and its applications

Watts, D.J. & Strogatz, S.H. (1998) Collective dynamics
of “small-world” networks, Nature, 393, 440-442.

West R., Pineau, J. & Precup, D. (2009) Wikispeedia: An
online game for inferring semantic distances between
concepts. [ICAI *09



