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Abstract

Studies have shown that counterfactual reasoning can shape
human decisions. However, there is a gap in the litera-
ture between counterfactual choices in description-based and
experience-based paradigms. While studies using description-
based paradigms suggest participants maximize expected sub-
jective emotion, studies using experience-based paradigms as-
sume that participants learn the values of options and se-
lect what maximizes expected utility. In this study, we used
computational modeling to test 1) whether participants make
emotion-based decisions in experience-based paradigms, and
2) whether the impact of regret depends on its degree of unex-
pectedness as suggested by the current regret theory. The re-
sults suggest that 1) participants make emotion-based choices
even in experience-based paradigms, and 2) the impact of re-
gret is greater when it is expected than when it is unexpected.
These results challenge the current theory of regret and suggest
that reinforcement learning models may need to use counter-
factual value functions when full information is provided.

Keywords: Decision making; Bayesian modeling; mathemat-
ical modeling; regret; reinforcement learning.

Introduction
In our daily lives, we constantly face decisions to make and
assess the costs and benefits of possible options (e.g., “Should
I buy a lottery or just buy a snack with this money?”, “Should
I buy Apple or Google stock?”). Usually we know only the
outcome of our choices. On rare occasions, we also know
what would have happened if we had made different choices
(e.g., stock market). Having ‘complete feedback’ (or full in-
formation) under risk or uncertainty can evoke strong emo-
tions such as regret or disappointment that are triggered by
our capacity to reason counterfactually.

The effects of counterfactual reasoning have received much
attention, and several theories have been proposed. A grow-
ing consensus suggests that disappointment and elation are
elicited by comparison between different states (e.g., “my
grant was not funded...”) whereas regret and rejoice come
from comparison between different choices (e.g., “I should
have married another person...”). Also, the unique aspect of
regret is a feeling of responsibility that comes with negative
outcomes from choices.

Among several theories of counterfactual decision-making,
decision affect theory is regarded as one of the leading models
(Mellers, Schwartz, & Ritov, 1999). Decision affect theory
assumes that individuals make emotion-based choices and
want to maximize subjective expected pleasure (or emotion)

rather than to maximize expected return. In decision affect
theory, our emotional responses (R) are based on obtained
outcomes, relevant comparisons, and beliefs about the likeli-
hood of the outcomes:

R ∝ Chosen Outcome Utility +
Regret / Rejoice + (1)
Disappointment / Elation

All counterfactual terms (regret, rejoice, disappointment, and
elation) are weighted by their unexpectedness. Decision af-
fect theory effectively explained various experimental results
(Mellers et al., 1999) and Coricelli et al. (2005) used a mod-
ified version of the theory to examine the neural correlates of
regret using description-based paradigms.1

Several studies have examined counterfactual decision-
making using experience-based paradigms as well (Lohrenz,
McCabe, Camerer, & Montague, 2007; Boorman, Behrens, &
Rushworth, 2011; Hayden, Pearson, & Platt, 2009; Yechiam
& Rakow, 2011). Although models used in the studies differ
slightly from each other, all previous studies used reinforce-
ment learning models, which assume that participants learn
about chosen and foregone outcomes from trial-by-trial expe-
rience and then choose an option that has the highest expected
value.

This study was developed from this gap in the liter-
ature: to explain choice behaviors in description-based
paradigms with full information, researchers have assumed
participants would make emotion-based choices. To explain
choice behaviors in experience-based paradigms, researchers
have assumed that participants learn the obtained and fore-
gone payoffs and do not make emotion-based choices. We
tested whether individuals make emotion-based choices in
experience-based paradigms by building computational mod-
els for all competing hypotheses. This approach allowed us
to quantitatively compare hypotheses in a rigorous way.

Another aim of the study was to test whether regret
would be weighted by its unexpectedness (i.e., surprising-
ness). Mellers et al. (1999) claimed that “...unexpected out-

1In description-based paradigms, the outcomes of all options and
their probabilities are provided to participants and participants rarely
receive feedback. In experience-based paradigms, participants must
learn the outcomes or their probabilities from their personal experi-
ence (Hertwig, Barren, Weber, & Erev, 2004).
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comes have greater emotional impact than expected out-
comes.” However, how would you feel given the follow-
ing scenarios? In scenario 1, an Apple employee told you
some inside information about Apple, which would increase
its stock price. You believed that this was 80% reliable, but
you did not buy the stock whose price sky-rocketed. In sce-
nario 2, an untrustworthy looking stranger told you the same
information. You believed he was 20% reliabilible, but you
did not buy the stock, whose price sky-rocketed. According
to Mellers et al. (1999), you would experience more regret in
scenario 2. However, we hypothesized that scenario 1 would
generate more regret because of the unique aspect of regret: a
feeling of responsibility. Therefore, we predicted that regret
would be weighted by its expectedness rather than its unex-
pectedness. Mellers, Schwartz, Ho, and Ritov (1997) showed
that a smaller probabilities of disappointment/elation were as-
sociated with greater emotional response. Although Mellers
et al. (1999) claimed that the effect of probability would be
the same with regret/rejoice, no experiment has directly tested
it to our knowledge.

In sum, we designed our experiment to test the follow-
ing hypotheses. The first hypothesis proposes that partic-
ipants will learn the chosen and fictive outcomes, compare
all available options, and try to maximize their expected re-
turn (“Fictive Learning Alone”). The second hypothesis pro-
poses that participants will make emotion-based decisions
(i.e., maximize their expected subjective emotion) and their
regret will be weighted by its unexpectedness (“Original Re-
gret”). The third hypothesis proposes that participants will
make emotion-based decisions and will weight their regret
by its expectedness (“Modified Regret”). We designed our
experiment to test these hypotheses.

Method
Participants
Nineteen healthy individuals (7 men, mean age = 23.0,
SD=4.9) participated in the study. Electroencephalography
(EEG) was continuously recorded from the scalp, but EEG
findings are not reported in this paper. Participants were paid
$10/hr for participation and told that they would earn perfor-
mance bonuses based on total points earned during the task.
In reality, all participants received a fixed amount ($5) as their
bonus money (Lejuez et al., 2003). Study procedures were
approved by the Indiana University’s Human Subjects Insti-
tutional Review Board.

Task
All participants completed four separate gambling games, the
order of which was randomly mixed for each participant. At
the start of each game, participants were told that each game
was independent of the previous game(s). In each game (90
trials/game), participants were asked to choose one of two op-
tions. One option was a safe option in which participants al-
ways won a fixed amount of points (e.g., 11). The other was a
risky option in which participants won either larger (e.g., 26)

or smaller points (e.g., 1). The probability of winning larger
points was fixed but unknown, and had to be learned from ex-
perience. The payoffs of both chosen and unchosen options
were revealed on every trial (“full information”). The loca-
tions of the options were fixed within games, but randomized
across games. Participants were encouraged to choose an op-
tion that would maximize their gain. Payoffs were distributed
so that the long-term expected values of two options were the
same (see Table 1).

Table 1: The payoff distributions of games 1-4. Note that
the (long-term) expected values of the safe option (M) and
the risky option are the same. M: points of the safe option,
L: low (smaller) points, H: high (larger) points, %H: the
probability of winning larger points. SD: standard deviation.

Risky Option
Game M

L H %H Mean SD
1 12 1 56 0.2 12 22.0
2 11 1 26 0.4 11 12.3
3 10 1 16 0.6 10 7.4
4 9 1 11 0.8 9 4.0

The timing and presentation of a trial is illustrated in Figure
1. Each trial started with a message (”WAIT”), which was
was presented for 1-1.5s. After two options were presented,
the participant had 2s to select an option by pressing buttons
corresponding in a spatially compatible way to the options.
The color of the chosen option remained changed for .6s, and
the payoffs of both options appeared for 1s.

Figure 1: Time course of the gambling task.

Computational Modeling
Three hypotheses (1. Fictive Learning Alone, 2. Original Re-
gret model, 3. Modified Regret model) were implemented
as three distinct reinforcement learning models. They uti-
lized identical learning (probability learning) and choice rules
(softmax), but used different value functions. Due to the spe-
cific design of the task (only 2 possible payoffs of the risky
option in each game), it was assumed that participants would
learn the probability of a larger payoff of the risky option
(probability learning). In the delta rule (Rescorla & Wagner,
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1972), the probability of a larger payoff (H) (the risky option)
on the next trial t +1, PrH(t +1), is updated as follows:

PrH(t +1) = PrH(t)+ γ · [Y (t)−PrH(t)] (2)

Here γ is the learning rate (0 < γ < 1) and Y (t) is the out-
come (1 if H, 0 if L) of the current trial t. We assumed no
learning occurred about the safe option because its payoff was
always the same (e.g., 11) in a given game. We assumed that
the choice of a risky or safe option did not affect the learning
rate.2

Action selection was implemented via the Luce choice rule
(a.k.a. softmax) (Luce, 1959). The inverse temperature pa-
rameter (θ) determines the sensitivity of the choice probabil-
ities to the action values. We employed a trial-independent
choice rule (Yechiam & Ert, 2007), where θ = 3c − 1 (0<
c <5). When c approaches zero, choices become completely
random (exploratory). When c becomes large, choices be-
come deterministic (exploitive).

PrR(t +1) =
eθ·QR(t+1)

eθ·QR(t+1)+ eθ·QS(t+1) (3)

Here QR(t + 1) and QS(t + 1) are action values of choosing
the risky (R) and safe (S) options on trial t + 1, respectively.
PrR(t + 1) is the probability of choosing the risky option on
trial t +1. Next, we describe differences between three com-
peting models (1. Fictive Learning Alone (FLA), 2. Original
Regret model, 3. Modified Regret model).

Fictive Learning Alone (FLA) The FLA model assumes
that participants compute action values of each option sep-
arately, then select an option that would maximize their ex-
pected return. The action value for the safe option is always
the same on each game, QS(t + 1) = Mα (0< α <1.5). In
other words, the chosen outcome utility of X points (uX ) was
set to Xα. α is a parameter that governs the shape of the utility
function. As α goes to zero, the reward sensitivity diminishes.
The action value of the risky option is the sum of two possi-
ble utilities, weighted by their probabilities. In other words,
QR(t + 1) = uH ·PrH(t + 1)+ uL ·PrL(t + 1).3 These action
values are entered into Equation 3 to compute the probability
of choosing each action on the next trial.

Original Regret Model In Regret models (both Original
and Modified versions), it is assumed that participants choose
an option that maximizes their subjective expected pleasure
or emotion (Mellers et al., 1999). Thus, action values are the
weighted sum of expected emotional responses (R in Equa-
tion 1), rather than expected utilities.

Here we used the notation that RA(B)(t +1) is the expected
emotional response on trial (t+1) when chosen and unchosen

2We tried several other versions of learning rules (e.g., separate
learning rates for chosen and unchosen options) and choice rules
(e.g., trial-dependent inverse temperature parameter) that are not re-
ported here, but they did not improve model-fits.

3PrL(t +1) = 1−PrH(t +1), uH = Hα, and uL = Lα.

payoffs are A and B, respectively. We used Equation 1 to cal-
culate RM(L)(t+1), RM(H)(t+1), RL(M)(t+1), and RH(M)(t+
1).4 Following Mellers et al. (1999), we set regret/rejoice and
disappointment/elation terms to sgn(A−B) · |A−B|α when
chosen and unchosen payoffs were A and B.5 We assumed
that α is identical for both counterfactual functions and the
chosen outcome utility. Importantly, regret/rejoice or dis-
appointment/elation will be weighted by its surprisingness.
We used 1 minus its probability as an index of surprisingness
(e.g., 1-PrH(t +1)) (Mellers et al., 1999). For example, sup-
pose a participant chooses the safe option (chosen payoff=M
and the foregone payoff = H). Then, the expected emotional
response can be expressed as RM(H)(t + 1) from Equation 1,
which is equal to Mα +(−1) · |M−H|α · (1−PrH(t + 1)).6

If the participant chooses the risky option and the chosen
payoff is L, the expected emotional response is RL(M)(t +1).
RL(M)(t + 1) is equal to Lα + (−1) · |L−M|α · (1−PrL(t +
1))+ (−1) · |L−H|α · (1−PrL(t + 1)). Note that the disap-
pointment term was included in this case. RM(L)(t + 1) and
RH(M)(t + 1) can be calculated in the same way and these
terms can be used to calculate action values in Equation 4:

QS(t +1) = RM(H)(t +1) ·PrH(t +1)+RM(L)(t +1) ·PrL(t +1) (4)
QR(t +1) = RH(M)(t +1) ·PrH(t +1)+RL(M)(t +1) ·PrL(t +1)

The computed action values are entered into the softmax
choice rule in Equation 3 to calculate trial-by-trial probability
of choosing a risky (or safe) option.

Modified Regret Model This model is identical to the
Original Regret model except that regret (but not any other
counterfactual comparisons) is weighted by Regret’s expect-
edness. We used regret’s probability as its expectedness (e.g.,
PrH(t+1)). Thus, only RM(H)(t+1) and RL(M)(t+1) are dif-
ferent between two Regret models because participants expe-
rience rejoice, but no regret for RM(L)(t+1) and RH(M)(t+1).

Summary of Three Competing Models In sum, we com-
pared three different models (specifically, value functions).
The FLA model assumes that participants evaluate two op-
tions separately and choose the option that maximizes their
expected return. The two Regret models assume that par-
ticipants evaluate anticipated emotional responses and maxi-
mize their subjective pleasure. The Regret models, however,
make different assumptions about the role of surprisingness
when processing regretful outcomes. All three models have
three free parameters: learning rate (γ), utility shape (α), and
choice consistency (c). We used hierarchical Bayesian ap-
proach to estimate them, which is useful for reliably estimat-
ing group and individual parameters (for a review see Lee,
2011).

4In all settings, L < M < H (e.g., L=1, M=11, H=26).
5sgn(x) = 1 if x > 0, -1 if x < 0.
6The disappointment/elation term is present only for risky

choices. The disappointment/elation term is missing in RM(H)(t+1)
because the safe option was chosen, in which there is only one state.
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Figure 2: Graphical depiction of the hierarchical Bayesian
analysis for three reinforcement learning model. RA(B)t,i re-
places ut,i for Regret models.

Graphical Model Implementation - Hierarchical
Bayesian Parameter Estimation

Figure 2 shows the graphical representation of all three mod-
els. We modeled the variation in γi, αi, and ci parameters by
assuming they have censored Gaussian distributions across
participants. (e.g., γi ∼ Normal(µγ,λγ)I(0,1), where µγ and
λγ are the mean and precision variables of the Gaussian dis-
tribution). Mean variables had uniform priors and precision
variables had Gamma priors (e.g., λγ ∼ Gamma(.001, .001)).
In Figure 2, clear and shaded shapes indicate latent variables
and observed variables, respectively. Single and double out-
lines indicate probabilistic and deterministic functions of in-
put, respectively. Circles and squares indicate continuous
and discrete variables, respectively (Lee, 2008). Vectors xt,i
(payoffs) and Cht+1,i (choices) were observed and individ-
ual (γi, αi, ci) and group parameters (µγ, µα, µc, λγ, λα, λc)
were estimated. We used OpenBUGS (Lunn, Spiegelhalter,
Thomas, & Best, 2009) to perform Bayesian inference. We
used 50,000 posterior samples collected following a total of
30,000 burn-in samples. Multiple chains were used to check
convergence and R̂ values indicated that Markov chain Monte
Carlo (MCMC) chains converged well with the target poste-
rior distributions. Given that participants’ choice behavior
varied across games (see Figure 3), we estimated parameters
separately for each game (but across all participants within
each game). Ideally, model parameters should remain sta-
ble across games. Otherwise the model might simply mimic
data without providing a coherent theoretical explanation of
choice behavior.
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Figure 3: The mean proportions of risky choices over trials
on Games 1-4. The blue solid line indicates the group mean
on each trial and shaded region indicates ±s.e.m. (a moving-
average filter was used).

Results
Behavioral Results
The proportions of risky choices in each game are plotted
in Figure 3. As seen, participants’ choice behavior varied
across games although the expected values of two options
were equated on all games. The mean proportions of risky
choices on games 1-4 were .28, .40, .50, and .68 and the dif-
ferences between games were all significant (games 1 vs 2:
p < .003; games 2 vs 3: p < .004; games 3 vs 4: p < .001).

Next, we examined the effect of chosen feedback, foregone
feedback, and the magnitude of their difference (Coricelli et
al., 2005). For this goal, we performed panel logic regression
using the individual random-effects model. The dependent
variable was ‘switch’ (1 if switched from the previous trial, 0
otherwise), and independent variables were the chosen pay-
offs (or feedback) ( f b), the foregone payoffs ( f gFb), and the
magnitude of their difference (| f b− f gFb|) on the previous
trial (T-1). Table 2 shows that participants were more likely
to switch if the chosen feedback was lower (p < 3E-16), the
foregone feedback was higher (p < 2E-13), and the magni-
tude of the difference was higher (p < .011). These results
suggest that participants take all three variables into account
when making decisions.

To examine the effect of feedback on previous trials, an-
other panel logistic regression analysis was performed, ex-
amining how many previous trials ( f b− f gFb) biased the
switch behavior. Figure 4 shows that chosen−foregone pay-
offs of up to two previous trials significantly influenced the
switch behavior.

Table 2: Regression analysis (panel logit procedure with in-
dividual random effect). fb: the chosen payoff (feedback),
fgFb: the foregone payoff (feedback).

Variable Coefficient Std. Error t p
Constant .3902 .0186 21.00 <3E-16

fb -.0064 .0009 -7.44 <2E-13
fgFb .0027 .0007 3.71 <.001

| fb -fgFb | .0025 .0010 2.53 .011
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Figure 4: Effects of past outcomes on current choice behavior.
fb: the chosen payoff, fgFb: the foregone payoff.
*** p<.0001 ** p<.001.

Modeling Results
To determine which model best fits our data, we used maxi-
mum likelihood estimation (MLE) methods to fit the model to
each person and game separately, and then used the Bayesian
information criterion (BIC) (Schwartz, 1978) to compare the
Bernoulli baseline model, in which the probabilities of two
options were equal to the individual’s overall proportion of
each option (the number of free parameters=1) against three
models of interest.7 The BIC score is a statistic that combines
badness of fit with a penalty for the number of parameters. To
evaluate the models, we used a BIC change score that mea-
sures the improvement of the computational model over the
Bernoulli baseline model (BIC change equals the BIC from
the baseline model minus the BIC from the cognitive model).
Therefore positive BIC changes represent improvement over
baseline, and the model with the highest BIC change is con-
sidered the best.

Figure 5 shows that the Modified Regret model has the
best model fit. When tested across participants, the dif-
ference was significant (the Modified vs. Original Regret
models: p < .005, the Modified Regret vs. FLA models:
p< .05). When the descriptive accuracy was assessed by pos-
terior predictive analysis, the best-fitting model (the Modified
Regret model) provided good individual-level model predic-
tions. For example, Figure 6 illustrates a good match between
the observed data (Figure 6A) and the model’s predictions for
a participant’s choices (Figure 6B).

Next, we examined whether the parameter values of three
models would remain stable across games. Again, ideally
model parameters should be similar across different games or
tasks. In Figure 7, all parameters of the models were plotted
across games 1-4. Clearly, the parameters of the Modified
Regret model, which had the best model fit, were the most
stable across games. Note that the utility shape (α) and con-
sistency (c) parameters of FLA and Original Regret models

7We are currently working on comparing models by estimating
their Bayes factors (Kruschke, 2011)
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Figure 5: BIC (Bayesian information criterion) scores of
three competing models compared to the baseline model.
Note that higher BIC indicates a better model fit. Error bars
indicate ±s.e.m. FLA: Fictive Learning Alone.

varied greatly across games. In sum, the results of both model
fit and parameter consistency indicate that the Modified Re-
gret model explains participants’ choice behavior best.

Discussion
The goals of this study were to examine: (1) whether par-
ticipants make emotion-based choices in experience-based
paradigms; (2) whether regret would be weighted by its un-
expectedness or expectedness. The modeling results provided
strong support for the Modified Regret model: the model had
the best model fit and its parameters were the most stable
across games, suggesting it might provide a coherent theo-
retical account for choice behavior across games. The results
provide strong support that participants make emotion-based
choices and experience greater regret when it was expected
rather than when it was unexpected.

We believe this study is the one of the first attempts to in-
corporate emotion-based decisions into reinforcement learn-
ing. Our findings are consistent with previous studies us-
ing description-based paradigms that found participants made
emotion-based decisions. Our results suggest that reinforce-
ment learning models may need to use value functions that
can incorporate emotional components. The results are also
consistent with the notion that emotions provide a common
currency on how we make decisions under risk or uncertainty
(Loewenstein, Weber, Hsee, & Welch, 2001; Weber & John-
son, 2009).

We also believe these results need to be tested in other
experience-based paradigms and to determine their general-
izability. Some studies found that Bayesian learning models
outperformed the delta learning rule (Boorman et al., 2011).
Although it is possible that using such a learning model can
improve the model fit for all three models, we do not think it
will change the main findings of the current study. In sum, we
found strong support for the Modified Regret model, which
challenges the current theory of regret.
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Figure 6: Posterior predictive assesment of the Modified
Regret model for one participant. (A) The participant’s
proportion of risky choices over trials (smoothed with a
moving-average filter) (B) posterior predictive distributions
for PrR(t). Small blue squares indicate 50 random samples
from the posterior predictive distributions. The red solid line
indicates the mean values of the distributions. The partici-
pant’s model parameter values are in the bottom figure.
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