
And Now for Something Completely Different: Python in Cognitive Science
Mark Andrews (m.andrews@ntu.ac.uk)

Jesse Diaz (jesse.diaz@ntu.ac.uk)
Division of Psychology,

Nottingham Trent University
Nottingham
NG1 4B,UK

Keywords: Python; Programming; Scientific Computing; Nu-
merical Computing; Computational Modelling; Experimental
Design; Stimuli Presentation Software; Data Analysis;

Objectives and Scope
The objective of this tutorial is to introduce and motivate the
use of the Python programming language in cognitive science
research. Within the last 10 years, the development of scien-
tific and numerical libraries in Python has grown to the point
where Python can now be used as a scientific and numerical
computing environment comparable to products like Matlab
and Mathematica. As of yet, however, it appears that knowl-
edge of the potential applications of Python to research in
cognitive science is still rather limited. The aim of this tu-
torial, therefore, is to describe these areas of application and
to advocate the advantages and appeals of using Python as
the principal programming language in cognitive science re-
search. Given the generality of the tools being discussed, it
is hoped that this tutorial will have widespread appeal and
relevance.

Outline of Tutorial
The tutorial will be divided into three main parts. The first
part introduces the Python language generally. The second
introduces numerical and scientific programming in Python
The third part introduces how to develop computer-based psy-
chology and psychophysics experiments using Python.

The tutorial will involve both classroom style lectures with
slides and workshop style computer-based worked examples
and exercises. The audience are encouraged to bring their
own laptop, and all necessary software will be provided in
advance.

General Introduction
In order to introduce Python, we will begin by describing the
fundamentals of the Python language. We will also demon-
strate how to start an interactive Python session using the
ipython environment. The audience will be encouraged to
follow the examples themselves using their own computers.

As part of this introduction, we will also compare Python
to its alternatives, paying particular attention to comparison
with Matlab. This comparison is inevitable, given that Mat-
lab has traditionally been the principal scientific computing
tool in cognitive science. Notable points of similarity be-
tween Python and Matlab are that both offer an interactive
array-processing and visualization environment using high-
level dynamic programming languages. Both are designed

for rapid prototyping and development. Both allow for seam-
less extension using external modules written in compiled
languages like C/C++ and Fortran. Notable advantages of
Python, however, include that it is a general-purpose language
whose application goes far beyond numerical array process-
ing. Python is one of the top five programming language
currently in use throughout the world. Python is a remark-
ably well-designed object-oriented language whose standard
library is large and comprehensive. Finally, Python is non-
commercial open-source software distributed according to an
unrestricted software license. Likewise, its large set of third-
party extension modules and libraries are, almost without ex-
ception, also distributed using unrestricted or public open-
source software licenses.

Numerical and Scientific Python
The basic Python language as introduced in the previous sec-
tion lacks n-dimensional numerical arrays and the ability to
easily plot and visualize data. These capabilities, in addition
to a large number of more special-purpose scientific libraries
are provided by the Scipy/Numpy suite of modules. These li-
braries are seamlessly integrated with ipython to create a rich
interactive array-processing and visualization environment,
comparable in functionality to Matlab and Mathematica.

We will begin this section by describing ipython’s capa-
bilities more extensively than done in the previous section.
These include: Interactive high-performance parallel comput-
ing for clusters and multicore architectures, an online interac-
tive Notebook comparable to that used in Mathematica, sql-
based searchable command histories, in-line graphics, and
symbolic mathematics with TEX-based output.

Having established how to use ipython, the audience will
be encouraged to follow the examples as we discuss the the
following topics:

Arrays: General n-dimensional arrays and their operations
(e.g. element-wise function application, summing, slicing,
indexing, searching) are provided by numpy.
2d visualization: Plotting and visualization, especially of 2d
data, are provided by matplotlib, amongst others.
3d visualization: Complex 3d graphics are provided by
mayavi.
Parallel computing: Interactive high-performance and paral-
lel programming is a built-in functionality of python.
Integration with C/C++ and Fortran: Interfaces to programs
written in compiled languages like C/C++ or Fortran are pro-

16



vided through the use of interface generators like swig and
f2py.

Computer-based Experiments

Computer-based cognitive psychology and psychophysics ex-
periments are now almost ubiquitous in cognitive science.
While these tasks have been traditionally handled by GUI-
based programs like e-prime and superlab, these programs
do not allow for the flexibility and control that is often de-
manded by researchers. While high-level languages like Mat-
lab are being used as an alternatives to GUI-based programs,
Matlab’s special-purpose nature is not well suited to the non-
numerical programming necessary for experimental stimuli
presentation and recording. By contrast, due to the general-
ity of its language, its extensive of widget toolkits (e.g. wx-
python, pyGTK, pyQt), and video-game libraries (pyGame,
pyglet), Python allows for considerable flexibility and sophis-
tication in the design experiment software.

Currently, there are at least 4 Python-based stimulus-
presentation programs: Psychopy, open-sesame, vision-egg,
and pyepl. This final section will describe each in brief, but
concentrate primarily on psychopy.

The aim of this section will be to discuss the principles and
functionality of psychopy and then to work through exam-
ples of simple experiments (e.g. the stroop task, the lexical-
decision task). Psychopy’s basic object-oriented stimuli and
events will be described in order to understand its extensibil-
ity. We will, however, also make extensive use of its builder
interface that can allow from rapid development of code tem-
plates. Finally, we will discuss how to interface psychopy and
Python generally with external devices such as serial response
boxes that allow for precise timing of responses.

The Presenters

The main presenter for this tutorial will be Mark Andrews.
Mark Andrews is a Lecturer (Assistant Professor in North
American Terminology) in the Division of Psychology, Not-
tingham Trent University, and has a research affiliate position
in the Division of Psychology and Language Sciences, Uni-
versity College London. His teaching primarily involves ad-
vanced statistics and experimentation methods. In this capac-
ity, for the past two years, he has taught programming using R
and Python to undergraduate and postgraduate students, with
student evaluations being overwhelming costive. He has been
a Python user for over 10 years, and has extensive experience
with all the topics that will be covered in this tutorial. He also
is very familiar with the Cognitive Science community, hav-
ing presented at past conferences often, and being awarded
the Computational Language Modelling prize in 2009. Jesse
Diaz is a research assistant in Nottingham Trent University,
with extensive experience with general Python programming
and especially with the use of Python in psychology exper-
iments, both using tools like psychopy and by using Python
web-application frameworks for online experiments.

Materials
The use of Python in science is backed by a vibrant com-
munity of developers and advocates. We have been in direct
contact with principal individuals in this community and they
have generously offered their support, both by providing their
presentation slides and other teaching materials and by pro-
viding their general advice on how to promote Python in set-
tings such as the Cognitive Science tutorials. For example, we
have been contact with Dr. Fernando Perez who is a research
scientist in neuroscience at UC Berkeley. Dr. Perez is the
creator and principal developer of ipython. He has kindly of-
fered the extensive teaching materials on the ipython comput-
ing environment that are at his disposal. Likewise, we have
been in contact with Dr. Jonathan Peirce who is an Associate
Professor in Psychology in the University of Nottingham. Dr.
Peirce is the creator and principal developer of psychopy, and
has had extensive experience both teaching psychopy to stu-
dents and promoting its use in psychology and cognitive neu-
roscience. As a result, we have a considerable body of rele-
vant teaching materials to draw upon. Examples are available
at sites like following, and elsewhere:

http://scipy-lectures.github.com
http://ipython.org/presentation.html

17


