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Abstract

This work studies melodic lines of western art music tradition
from frequency of occurrence of their constitutive elements.
The model of analysis uses pairs of successive sounds as the
minimal structural elements of a melody. Each pair of
possible sounds in a musical instrument is associated to a
quantity related to the difference of acoustic energies of the
sound waves. This quantity expresses consonance properties
that have been studied in experiments about the perception of
combinations of sounds. We find statistical distributions of
this quantity that show the existence of preferences for certain
elements in a given melodic line. This preference can be
interpreted as a consequence of the use of both formal
musical theory rules and the creativity of the composer in
order to create pleasant sensations in the listener.
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Introduction

George Kingsley Zipf explored the relationship between the
usefulness of a word and its frequency of occurrence in a
text (Zipf, 1932). He defined rank (r) as the position of a
word in an ordered list that goes from 1, for the most
frequent word, to the number of words that differ
“phonetically”. The relation between rank and frequency of
occurrence (f) of a word in the Ulysses from James Joyce
resulted into a power law with exponent -1, that can be
expressed as  x f = ¢ where c is a constant. Zipf observed
the same phenomenon in other human systems and
enunciated a law of human behavior driven by a Principle of
Least Effort (Zipf, 1949) that he obtained in analogy to
mechanics in physics.

Zipf also studied the case of melodic lines and reported a
power law relationship between the length of musical
intervals, defined as the number of notes between two notes
that are played successively (Zipf, 1949), and the frequency
of occurrence of each interval. In other words, the
probability of finding an interval in a melodic line is
inversely proportional to its length. He found the same
result for ascending and descending intervals and combined
both of them in the analysis.

Benoit Mandelbrot (1966) extended Zipf’s work and
found a more general form of power law that also describes
other phenomena as Pareto’s rule. Most recently, Statistical
mechanics has been used to describe the statistical
properties of many systems, ranging from financial markets
and wealth distribution to complex networks, which present

either exponential or power law distributions. Power law
distributions are frequently associated to self-organized
criticality and scale invariance, while exponential
distributions are associated to equilibrium processes and to
the occurrence of an absolute scale that is similar to
temperature in Statistical physics.

Further studies of musical pieces using probabilistic
aspects of musical styles and uncertainty in musical
communication have been done in Information theory
(Abdallah & Plumbley, 2009; Cohen, 1962; Cox, 2010;
Meyer, 1957). These studies capture fundamental aspects of
perception as sensation and meaning. This perspective needs
some basic mathematical assumptions such as stochasticity,
ergodicity, stationary and Markov consistency of the source
(i.e. the piece of music itself), as well as an infinite memory
capacity of the encoder (i.e. the human brain) (Cohen,
1962). These studies use quantities such as the mean and the
variability of statistical distributions of sequences of sounds.

Recent studies show that some statistical properties of
musical compositions can be treated using concepts and
analytical tools developed for studying complex systems by
applying Statistical physics. Liu, Tse and Small (2010)
found that successive notes in musical pieces can be
represented as complex networks that exhibit power law
distributions for some connectivity properties. Giundiz and
Gundiz (2010) studied melody formation in musical pieces
and found that during the progress of a melody the entropy
grows with each new note until it takes a limiting value that
is smaller than the entropy of a random composition.

This paper explores the relation between microscopic
properties of consonance in a melodic line and the
macroscopic properties resulting from the composition
process. Its aim is to establish links between pleasant
sensations at the microscopic level with the ordering process
which is needed to compose a musical piece. It presents the
physical model for describing consonance, probability
distributions for pitch structures and a discussion about
some implications.

Paths between cognition and physics

A piece of music is a mentally constructed entity that is
usually described as segmented in unites of all sizes. In
order to ascribe some sort of reality to the internal structure
of musical pieces one must treat them as mental products
imposed or inferred from physical signals (Lerdahl &
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Jackendoff, 1983). Physics and music deal with sound from
two different perspectives that cross each other in the
cognitive processes related to perception and creativity.
Pythagoras posted that two sounds produced simultaneously
by strings of equal tension and density and with lengths (i.e.
frequencies) related by small Natural numbers produce a
pleasant sensation (Rossing, 1989). Pythagoras’ postulate
relates subjective qualities to physical parameters and
allows to define consonance as a subjective appreciation
about pleasure (Plumb & Levelt, 1965). The theory of sound
in physics states that a musical note is characterized by a
fundamental frequency, timbre, loudness and duration. The
fundamental frequency is the lowest frequency present in
the sound. Timbre depends primarily on the spectrum of the
stimulus. Loudness depends mainly on sound pressure and
duration refers to the interval of time (Rossing, 1989). When
two sound waves are superposed the physical properties of
the resulting wave depend upon the frequency structure of
the original waves (Helmholtz, 1862). Then, the level of
consonance of two sounds played simultaneously (harmony)
or in a rapid succession (melody) can be treated formally in
terms of physical quantities.

Statistical properties of systems with many parts follow
new laws different from those of mechanics. The study of
these systems requires only of the knowledge of system
composition and statistical distributions of the properties of
the parts (Landau & Lifshitz, 1980). These applications
involve social, natural and artificial systems and range from
financial markets to complex networks and music.

On this new framework that involves both Information
theory and Statistical mechanics to study musical pieces,
physics acquires a new role in cognitive sciences by
exploring both perception and the composition process
based in formal composition rules and creativity of the
COmpOsSer.

Method

Melodic lines result from formal voice conduction and
rhythm rules established in Music theory as well as from
creativity of the composer (Aldwell & Schachter, 1989).
Voice conduction rules involve both harmonic and melodic
motion in a specific musical style, while rhythm involves
time structure (bar) and the organization of the beats. These
rules are the formal constraints for the composer. From this
perspective, creativity of the composer is embedded in the
freedom left by voice conduction and rhythm rules.

Voice conduction rules and the rhythmic structure of the
formed melodic lines cannot be considered strictly as
independent (Korsakov, 1930), however as rhythm has to do
mainly with the duration and the intensity of sounds (beats)
while voice conduction rules are related to perception of
combinations of sounds, by ignoring the bar (i.e. the
organization of the beats) we decouple the problem into
pitch and rhythm figures problems. Our analysis centers in
the pitch structure of melodic lines. Pitch is a subjective
quality of sound related strongly with the fundamental
frequency of a note and weakly related with pressure,

spectrum, duration and envelope, all of them physical
parameters (Rossing, 1989). On this work we use the
fundamental frequency of a note in order to describe pitch.

The pitch structure is studied in musical theory through
the succession of notes (Korsakov, 1930; Liu, Tse & Small,
2010). A note contains information about pitch and duration
that can be distinguished in the score of a piece. At the
microscopic level, Paul Hindemith (1942) used the length of
musical intervals to characterize the consonance properties
of simultaneous musical notes (i.e. related to harmony) and
rapid successions (i.e. related to melody). The analysis made
by Zipf (1949) uses the length of musical intervals between
pairs of successive notes to characterize a melody at the
macroscopic level.

Consonance has been studied formally in Music theory

(Aldwell & Schachter, 1989) as well as in physics
(Helmholtz, 1862; Plumb & Levelt, 1965; Rossing, 1989).
From physics perspective and using physiological
arguments, the difference and the ratio between
simultaneous pure tones (i.e. sounds with just one
frequency) have been used to study consonance (Helmholtz,
1862; Plumb & Levelt, 1965; Rossing, 1989). Plumb &
Levelt (1965) made detailed experiments to relate the
difference of frequencies of two simultaneous pure tones
(f; — f;) with the sensation of pleasure associated to
consonance.
A natural extension of Zipf’s analysis is to distinguish
between all possible frequency transitions that can be
related to each musical interval. Thus, any ordered pair of
notes must be associated to only one transition containing
information about the difference of frequencies and tone
heights, as both are important for the listener’s perception
(Patterson, 1990; Plumb & Levelt, 1965). The product
(fi = f.) - (f; + f;) contains information about consonance
and tone heights. It is positive for ascending transitions and
negative for descending ones. This quantity is extremely
appealing, as it corresponds to the difference of average
sound energy density carried by two waves with the same
amplitude and frequencies f;, f;, thus (f; — f1) - (f; + f;) =
ff —f7?. The average sound energy density is &=
(1/2)pof:*1m » Where p, is the density of air and n,, is the
maximum amplitude of the displacement of particles (Pain,
1992). In the case of simultaneous pure tones the
superposition of two waves with frequencies f;<f; produces
a wave with a fast frequency (fj +fi) and a modulation
frequency (fj — f;). It means that this quantity is
meaningful for both melodic and harmonic intervals.

In order to perform the data analysis we transformed the
MIDI codes to a sequence of frequencies in the Tempered
scale as presented by Rossing (1989). Then, we found the
set of values for the transitions f7 — f;* and, in order to find
the distributions for this quantity, we defined bins or
steps Af2 of equal size in such a way that any of them
would contain at least one transition f? — f;* for the full
combination of the notes in the Tempered scale. The reason
to define the bins in this way is twofold: First, to account for
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the tessitura of the instrument. Second, in most cases the
number of possible transitions f? — f;* for an instrument in
the Tempered scale is larger or of the same order as the
actual number of transitions in a musical piece. For
comparison purposes, we normalize all distributions from
the frequency of occurrence to probability distributions.

Experimental data

The selected pieces for this study are characterized by the
internal coherence of their melodic lines. For all the pieces
we used reduced Musical Instrument Digital Interface
(MIDI) tables, obtained either from the scores or from
available MIDI files. The only treatment made to the data
was cutting melodic lines at the end of a section or when a
rest (interval of silence) is found.

Missa Super Dixit Maria (Hans Leo Hassler)

This is a polyphonic composition for four voices (soprano,
contralto, tenor and bass). Data acquisition was carried
directly from the score.

Brandenburg Concerto No. 3 in G major, BWV
1048 (Johann Sebastian Bach)

The polyphonic texture of this piece shows a relative
independence between melodic lines, each one played by a
different musical instrument. This piece has eleven
instruments. Data acquisition was carried directly from the
score.

Suite No. 1 in G major BWV 1007 and Suite No. 2
in D minor BWYV 1008 (Johann Sebastian Bach)
These pieces were written for a melodic instrument (Cello)
and the melodic lines can be distinguished without any
ambiguity. Data acquisition was carried directly from the
score.

First movement of Partita in A minor, BWV 1013
(Johann Sebastian Bach)

This piece has just one melodic line for a melodic
instrument (flute). Data acquisition was carried directly
from the score.

Arrangement for flute of Entr'acte of the Act 4 of
“Carmen” (Georges Bizet)

This arrangement for flute has just one melodic line. The
MIDI file was downloaded the 6th of July of 2010 from
http://www4.0sk.3web.ne.jp/~kasumitu/eng.htm.

Results

All probability distributions for individual melodic lines fit
well to exponential functions of form: g(x) = A,e~*/t1. We
have taken the absolute value for descending transitions. For
the superposition of all melodic lines in the Missa Dixit
Maria the probability distribution also follows an
exponential function, however for Brandenburg concerto it
describes a power law.

Missa Super Dixit Maria

Figures 1 and 2 show the probability of occurrence of the
ascending transitions for the contralto and soprano voices.

In Figure 1 the bin size is 15000 Hz? and R?=0.993. In
Figure 2 the bin size is 16000 Hz? and R?=0.992. The
difference of 1000 Hz? in the bin size is due to the change in
the tessitura between contralto and soprano, as transitions
for soprano are larger than for contralto. Figure 3 shows
that ascending and descending transitions have similar
distributions for this piece. Figure 4 combines ascending
and descending transitions for the four voices. Bin size in
Figures 3 and 4 is 15000 Hz%
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Figure 1: Probability distribution for the ascending
transitions of the contralto voice of the Missa Super Dixit

Maria.
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Figure 2: Probability distribution for the absolute value of
the descending transitions of the soprano voice of the Missa
Super Dixit Maria.
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Figure 3: Probability distribution for the ascending (squares)
and descending (circles) transitions for the superposition of
the four melodic lines of the Missa Super Dixit Maria.
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Figure 4: Probability distribution for the combined
ascending and descending transitions for the four melodic
lines of the Missa Super Dixit Maria.

Brandenburg Concerto No. 3 in G major, BWV
1048 (Johann Sebastian Bach)

In Figure 5 we have the exponential distribution for the
combination of ascending and descending transitions of the
melodic line for the first violin. The bin size is 50000 HZ>.
Table 1 contains the relevant parameters of the fit for each
melodic line of the Concerto for the combination of both
ascending and descending transitions.

Table 1: Relevant parameters for the probability
distributions of the Brandenburg Concerto No. 3.

Instrument t R’ | Bin (HZ%)
Violin1l ]110198,69 * 3257,91| 0,995 50000
Violin 2 99858,85 + 4438,80| 0,989 50000
Violin 3 79525,72 + 2619,57| 0,995 50000
Viola 1l 44936,96 + 2601,48| 0,984 20000
Viola 2 33832,24 + 1847,97| 0,987 20000
Viola 3 32656,70 + 1564,20| 0,990 20000
Cello 1 7656,90 + 344,27 | 0,991 5000
Cello 2 7648,09 + 335,76 | 0,991 5000
Cello 3 7426,44 + 324,27 | 0,991 5000
Violone 1573,07 + 63,94 | 0,992 1200

Harpsichord | 6527,52 + 279,40 | 0,992 5000

Figure 6 contains the distribution for combined ascending
and descending transitions for the eleven melodic lines of
the Brandenburg Concerto No. 3. The bin size is
16000 Hz2. This distribution can be analyzed in two parts:
The first one goes from the smallest transitions to 1,84 x
105 and the second one from 2 x 10° to the end. The first
part exhibits a power law of the form: p(x) = C/xP and the
second part shows a fat tail. This behavior is frequent in
complex systems (Liu, Tse & Small, 2010).
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Figure 5: Probability distribution for combined ascending

and descending transitions in the melodic line of the first
violin of the Brandenburg Concerto No. 3.
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Figure 6: Probability distribution for combined ascending
and descending transitions for the eleven melodic lines of
the Brandenburg Concerto No. 3.

Suite No. 1 in G major BWV 1007 and Suite No. 2
in D minor BWYV 1008 (Johann Sebastian Bach)

Figure 7 shows the probability distributions for combined
ascending and descending transitions for Suites N°1 y N°2
of J.S. Bach. The bin size is 8000 Hz% The fit parameters
are A; =0,530,03, t,=15692,28+1140,61 and R*=0,977 for
Suite N°1, and A;=0,60+0,01, t;,=13372,73+£224,60 and
R%=0,999 for Suite N°2.
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Figure 7: Probability distribution for combined ascending
and descending transitions for Suites N°1 and N°2 of
Johann Sebastian Bach.

First movement of Partita in A minor &
Arrangement for flute of Entr'acte of the Act 4 of
“Carmen”
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Figure 8: Probability distributions for combined ascending
and descending transitions for Partita en A minor of J.S.
Bach and Arrangement for flute of Entr'acte of the Act 4 of
“Carmen”.

Figure 8 shows the probability distributions for the
combined ascending and descending transitions for Partita
in A minor of J.S. Bach and Arrangement for flute of
Entr'acte of the Act 4 of “Carmen”. The bin size is 1,1x10°
Hz’. Fit parameters to exponential functions are
A;=0,58+0,01, t,=190443,48+4989,61 and R?=0,997 for
Partita in A minor, and A;=1,05+0,03,
t,=111013,48+3598,58 and R?=0,997 for Entr'acte of the
Act 4.

Discussion

Results show that all melodic lines exhibit exponential
behavior for probability distributions of transitions sz -

For a first approach to this issue we analyze the effect of
musical scale in a composition. For Tempered scale the
distribution of musical intervals becomes “uneven” if they
are expressed in terms of frequencies and it transforms into
an exponential distribution. This is due to the fact that there
are more f — fZ inagiven Af? for some small f? — f? in
contrast to the for large ones. Figure 9 contains the
distribution that results from all possible Af? of frequencies
that Bach used for the first violin of the third Brandenburg
concerto as well as the actual distribution for melodic line.
The effect of the Tempered scale contributes to the
measured distribution of the melodic line but it does not
explain the results observed. We interpret the contribution
from the tempered scale as coming from its natural
consonance properties. We hypothesize that the difference
between both distributions must be related to formal
composition rules and creativity of the composer, both of
them are relevant to obtain a pleasant melodic line.
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Figure 9: Probability distribution for a melodic line of the
first violin of third Brandenburg concerto (squares), and the
effect of Tempered scale (circles).

Figure 3 shows that ascending and descending transitions
have the same behavior. Zipf (1949) obtained the same
result for musical intervals. Figure 6 shows a power law
distribution for the combination of the eleven melodic lines
of third Brandenburg Concerto. Chu-Shore, Westover and
Bianchi (2010) studied the conditions for the formation of a
power law distribution from three exponential functions. In
order to compare their analysis, we group melodic lines
based on the tessitura of the instruments. The first group
contains three violins, the second one violas and the third
one cellos, violone and harpsichord. Figure 10 shows the
frequency distribution for the three groups and for the full
composition. Figures 7 and 8 compare some pairs of
melodic lines in the same tessitura. We observe that the two
Suites for cello of J.S. Bach have a similar behavior (Figure
7), while the Partita in A of J.S. Bach and Entr'acte of the
Act 4 of “Carmen” exhibit clear differences.

3568



Power law

Violas

Cellos, Violone and Harpsichord
Violins

Fat tail

4ponm

Frecuency

AfP(HZ%)

Figure 10: Power law for the combination of the eleven
melodic lines of the third Brandenburg concerto, and for the
three groups of melodic lines coming from the tessitura of
instruments.

Conclusions

The physical quantity f? — f;?, defined for transitions
between successive notes instead of musical intervals used
by Zipf (1949) involves information that is related to the
consonance properties contained on the difference between
frequencies (f; — f;) and the “tone height” of both notes
(fi + fi). Since f7 — f2 = (fj — ) - (f; + f3), this can be
related to both, melody (succesive sounds) and harmony
(simultaneous sounds) as well. This quantity comes from
the difference of the sound energy density of two waves
with equal amplitudes and therefore it is a relevant quantity
for musical analysis rooted in physics.

All the studied melodic lines are characterized by
exponential distributions of quantity /7 — f;. On this work
we have not discussed about this result from the perspective
of Statistical physics however it has to be stated that there is
a close relationship between this type of distributions and
the conservation laws.

Consonance properties of Tempered scale are reflected in
the fact that small values of the quantity f* — f* are more
frequent than the large ones. This phenomenon is reinforced
by the composer in all studied pieces and indicates that it is
related to the sensation produced in the listener by the
ordering process involved in the selection of the elements in
a musical piece. The difference between the effect of the
Tempered scale and the actual distributions for pieces
studied can be explained by the use of formal composition
rules and creativity of the composer. Both related to the
cognitive process involved in the composition of pleasant
melodic lines.
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