

Interactive diagrams reduce the split-attention effect in geometry

Robert Hausmann

Carnegie Learning, Inc., bhausmann@carnegielearning.com

Daniel Dickison

Carnegie Learning, Inc., ddickison@carnegielearning.com

John Connelly

Carnegie Learning, Inc., jconnelly@carnegielearning.com

Brendon Towle

Carnegie Learning, Inc., btowle@carnegielearning.com

Abstract: In geometry, students are frequently required to split their attention across verbal and visual information. We measured the impact of the split-attention effect on geometry problem solving by analyzing log-file data generated by students who used two versions of Carnegie Learning's intelligent tutoring system for geometry. The original version split students' attention across a table and diagram, while the revised version integrated the same information into a single interactive diagram. Although the number of hints and errors remained comparable (Cohen's $d = -.05$), students using the revised version ($M = 9.30$ min., $SD = 8.23$) spent significantly less time solving each problem than those using the original version ($M = 11.77$ min., $SD = 14.85$), $F(1, 9361) = 92.64$, $p < .001$, $d = .20$. Reducing the split-attention effect therefore increased problem-solving efficiency. Our findings illustrate how instructional technologies can be improved through the application of cognitive science principles.