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Abstract

Understanding problem-solving strategies and how different
tools support problem solving is an important but difficult
problem in cognitive science. Cognitive modeling provides
one way of understanding and predicting problem solving and
the impact of supporting software tools. Modeling typically
requires tradeoffs between fidelity of result and difficulty of
model building. We used CogTool to explore how well a
limited modeling approach can predict performance
differences between two applications that support problem
solving, specifically, for planning attitude of the International
Space Station. We develop a modeling policy for modeling
complex behavior using a coarse-level tool with reduced
expressive power; then we compare model predictions with
experimental data to assess its ability to identify performance
differences across systems, tasks, and strategies.
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Introduction

Problem solving in the context of human-computer
interaction both provides a resource for developing and
testing cognitive models and generates complex situations
of practical importance (Gray, 2008). The value of modeling
problem solving outcomes and strategies in HCI is
particularly high because empirical data may be impossible
to collect at the point it would be most valuable.
Specifically, a designer would like to know how design
choices impact performance in advance of implementing a
design. Thus, when performance data has its highest value,
it can only be generated by model, not observation.

The need to predict performance has motivated
development of several tools for HCI (Card, Moran, &
Newell, 1980; John et al., 2004; Kieras, 2006; Patton &
Gray, 2010). Most tools support model construction by
providing a framework in which low-level component
actions can be combined to represent larger problem solving
tasks. Such tools can vary in the granularity of the low-level
components it provides, in whether predictions are
stochastic or deterministic, and in the complexity of tasks
the tool can effectively model. Models also differ in whether
the model generates alternative strategies (Smith et al.,
2008) or more frequently, requires the modeler to specify
the strategies to be modeled.

In selecting a modeling approach there is typically a
tradeoff between the fidelity of the resulting model and the
complexity of building it. Often, the cost of learning and

constructing models is too high to justify the benefits of
estimating performance times. CogTool (John et al., 2004;
http://cogtool.hcii.cs.cmu.edu/) is an easy-to-use modeling
tool that supports a simplified modeling process, while
drawing on a well-vetted cognitive architecture, ACT-R
(Anderson & Lebeire, 1998). The research reported here
investigates how and how well a simplified modeling
approach like that used by CogTool can predict performance
times of complex problem-solving across systems, tasks,
and strategies. We develop a method, our modeling policy,
for modeling complex behavior using a coarse-level tool
with reduced expressive power. We evaluate the strengths
and weaknesses of this method by comparing model
predictions with experimental data.

We first describe the work and tasks being modeled,
planning by a NASA Mission Control group, Attitude
Determination and Control (ADCO). Next we describe
CogTool and why we selected it. We lay out the highlights
of our modeling process, and describe a modeling policy,
which we found helpful to consistently model a large and
complex set of behaviors. We present results of comparing
predicted and actual performance times. We conclude by
discussing where and why modeling successes and failures
occurred and what this suggests about using models to
understand performance in complex HCI work.

ADCO Planning Domain & Software

ADCO controls the attitude (yaw, pitch, & roll) of the ISS
(International Space Station). The operators monitor and
command attitude in real-time and also develop plans in
advance of real-time operations. ADCO plans specify the
high-level activities (e.g. docking a Soyuz) and the actions
(e.g. changes in control, maneuvering to a new attitude) that
are needed to carry out the activity. ADCO currently uses
legacy software (hereinafter called LEGACY;; see Figure 1),
which functions as a form-based text editor. Operators open
a file for each activity and type in the parameters for each
action within that activity. If an activity is rescheduled, the
start and stop times of each action must be changed.

After analyzing needs (Billman et al.,, 2010), a new
prototype planning application (hereinafter called NEW; see
Figure 2) was designed. NEW provides better
representations and operations, particularly for temporal
relations. NEW allows rescheduling an activity as a whole,
by sliding the activity in the timeline or by typing in new
start times in the editing panel.
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Figure 1. Screenshot of LEGACY system. Revision is done
in lower right panel, by typing values into text boxes. (The
attribute values shown do not reflect a real event.)

The experimental data to which we compared model
predictions was a subset of an extensive experiment in
which users performed a series of checking and editing tasks
over two days, separated by one week. A between-subjects
experiment compared performance using the two systems; 7
engineering students participated in LEGACY and 8 in
NEW. We taught users about possible strategies to complete
the tasks but left strategy choice open. In this paper, our
experimental data draws from a particular set of editing
tasks performed on the second day after 7-12 cumulative
hours of practice on the system.

The particular set of interest consisted of 12 tasks,
requiring users to shift the times of various events: 1) one
action, 2) one activity, 3) a set of actions within one activity,
or 4) a set of actions that span activities. The first two
changes are common and the second two less so. We model
performance on these time-shift tasks. Solving a “shift”
problem requires the user to: 1) encode the problem; 2)
select the event(s) to change, as one set or in subgroups
depending on problem and strategy; 3) mentally compute
the new start time; 4) set to this time. Steps 2-4 may iterate
for subgroups. The user may check results or refer back to
the problem description.

Modeling Environment: CogTool

Many tools have been developed to support modeling HCI
tasks. One example is CogTool — a general purpose user
interface prototyping tool that generates quantitative
predictions of human performance, specifically response
times of skilled performance. This paper is not an evaluation
of CogTool, per se, but rather CogTool’s simplified
approach to modeling behavior. We selected CogTool
because it provided a good balance between required
modeling effort and fidelity of result. It aims for simplicity
by providing prepackaged interactive widgets (i.e. buttons,
links) and transitions (i.e. click, hover) that connect between
different states. It aims for validity by deriving the behavior
of each component from ACT-R at the perceptual,
cognitive, and motor level to predict time on task. The

Figure 2. Screenshot of NEW system. Revision is done by
dragging and dropping selected events on the timeline or
by typing values in the panel on the right.

potential power of this modeling approach is that widgets
and transitions can be linked together to generate
predictions about complex sequences of behavior.

To build a model, a series of screenshots create a
storyboard of frames. Each frame is overlaid with
interactive widgets, and transitions representing user actions
link frames to represent moving from one state to another.
Each model represents a specific sequence of actions (such
as a particular strategy on a particular task) that are
demonstrated by clicking through successive frames. Based
on the demonstration, CogTool constructs a Keystroke
Level Model of how a skilled user would execute the task
and it computes a predicted time. The resulting model built
from demonstration can be modified by inserting additional
components such as “look-at” or “think”.

While CogTool is capable of modeling unusual interfaces,
its strength lies in prototyping standard widgets like menus,
and buttons. For this experiment, constructing a model of
LEGACY was very straightforward because the system
utilized only standard widgets. However, we encountered
many challenges in modeling NEW because it used complex
interactions not directly supported by the CogTool library.

Modeling Policy

Our goal was to build a set of models that are individually
accurate and collectively consistent, without excessive
tailoring. Because we are trying to show adequacy of a
limited modeling approach, demonstrating accuracy and
consistency is difficult for two reasons. First, CogTool
generates a separate model for every combination of task
and strategy, thus requiring a large set of models to cover
the behavior of interest. Second, the interactions in NEW
cannot be modeled with CogTool widgets in a standard way.
This leaves room for case-by-case variation in how to
extend or apply CogTool. Consistency and low-tailorabilty
are important and instrumental to validity. If individual
models are tailored for each circumstance they are unlikely
to generalize, to predict as well as post-dict, or to provide a
valid model.
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We formulated a modeling policy to help manage
complexity, limit tailorability, and ensure consistency. The
policy characterizes what situations fall within the scope of
modeling and how models should be constructed scope.

Scope of Modeling

Users: Identifying what skill level the model represents is
important for interpreting and applying its predictions.
CogTool models the “skilled” user. To calibrate the models,
each author performed blocks of simple tasks to generate
various levels of skilled performance data. Comparing this
data to CogTool’s predictions, the appropriate skill level
emerges where users are making few errors and are familiar
with the system, but tasks require deliberation and are not
automatic. We found that performance of our participants on
the last block of the second day aligned with skill level
appropriate for CogTool.

Tasks: Understanding a model’s bounds in terms of task
type and task complexity is important for deciding which
tasks to model. With its library of vetted widgets and
storyboard of discrete states, CogTool is best at modeling
tasks using discrete “button pressing” actions, though it can
be manipulated to represent continuous actions. The task
complexity that CogTool can model is bounded by the
granularity of available widgets and transitions. In selecting
tasks to model, we started with simple discrete tasks and
progressed toward continuous tasks of greater complexity.

Strategies: A strategy is an ordered set of actions to
accomplish a task. Depending on the task, the set of
strategies could range from a few to a very large number;
thus, it is important to establish the scope of strategies to
model. A CogTool model represents a single strategy for a
single task as demonstrated by the modeler. Hence,
CogTool can model simple tasks with little strategy
variation, but any larger strategy space falls beyond
CogTool’s scope of practical usage. Recognizing CogTool’s
limitations in representing strategy for complex tasks, we
chose to focus on strategies we observed participants using.
Cogtool only directly predicts response time, not reasoning,
decision making, or strategy selection. In many cases, users
shift to efficient strategies with practice. Thus, speed of use
may be a powerful predictor of strategy choice.

Environment: Characteristics of the system influence
what types of interactions need to be modeled. CogTool is
good at modeling interactions in discrete and stable
interfaces.  If users can change the display during
interaction, modeling is more difficult; particularly,
continuous change in the display is difficult for CogTool to
model as it depends on a demonstration on a static display
to capture and predict actions. We minimized this issue for
CogTool by modeling selected items in which the display
was not likely to vary across users or change within task.

Requirements on Model-Building

Our policy for model construction provides rules for
breaking tasks down into component elements, and for how
elements should be composed to model tasks and strategies.

The components for standard interactions such as button
presses have widgets provided and can be modeled easily.
For nonstandard interactions, modelers need to provide a
fixed model component for the interaction type. Further,
the modeler should construct models from existing
components that are as similar as possible, to maximize
consistency. Here are two examples of rules for
components in nonstandard interactions:

Motor. The NEW system supports a drag-and-drop
interaction in which the entity is dragged along a timeline
and dropped at a specific time. Because the end location is
very specific, this task requires fine motor control. Through
the iterative modeling of experimenter-data on simple tasks,
we developed a rule to model this end location as a very tiny
widget; this was a modification made to the standard drag-
and-drop model.

Perceptual. While most drag-and-drop interactions
involve dragging an entity and dropping it at a visible target
area, users in NEW have no visual cue for where to drop the
entity. They instead rely on a separate, dynamically
updated numeric display that indicates their progress toward
the target. The standard drag-and-drop model was again
modified to reflect this by inserting a “look-at” [time
display] transition between the drag and the drop
components.

After the components have been specified, they can be
composed into sequences predicting more complicated
behavior. Because CogTool components cannot be
composed in parallel, it is important to select tasks that do
not require parallel actions, or have overlapping actions that
can be treated as sequential. In our case, even though drag-
and-drop entails simultaneously moving the mouse while
watching a target, the actions for this sequence could be
reasonably stretched out and treated sequentially.

When modeling strategies for simple tasks, select
strategies that are as general as feasible. This has the
advantage that the strategy will be maximally reusable over
task variations. We applied this policy to simplify models
for typing in start times, by relying on an average strategy.

Process for Adhering to Policy

We used a structured method of incrementally extending
and testing components. We verified the functionality of
standard components in standard domains; we modeled new
interactions by first testing single components in simple
tasks and systematically incrementing the complexity of
tasks, strategies, and components; we adjusted internal
structure as needed. When comparing user data to model
predictions, we prioritized the model’s ability to predict
patterns of difficulty, not absolute times, because modeling
individual differences in CogTool increases complexity and
requires tailoring individual models. Adhering to our
modeling policy was critical for ensuring the validity and
consistency of model components and their composition.
Further, this makes the resulting model set and its
predictions easier to understand.
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Figure 3. Times for users of NEW and LEGACY systems
plotted against CogTool’s predicted times.

Modeling Goals

Guided by the modeling policy, we constructed models at
the system level, item level, and strategy level and
compared them to experimental data. Generating models at
these three levels of granularity provides insight into the
practical value of modeling at different stages of the design
process, and also provides a framework through which we
can assess the strengths and weaknesses of the proposed
modeling policy. Furthermore, how useful a model is
depends on how well the model represents behavior. Having
access to data from participants provides a way of assessing
the validity of models.

Modeling System Differences

To compare the NEW and LEGACY systems, we modeled
the two most common editing tasks — shifting an activity
and shifting an action. We used data from skilled and
errorless users, the four fastest participants on each system.
(One outlying data point of 140s was dropped.) We created
two CogTool models for NEW and two for LEGACY,
modeling one activity shift item and one action shift item.
The model for each condition used the most common
strategy.

The predictions generated by the models were consistent
with the user performance on NEW and LEGACY (Figure
3). NEW users (red & orange) were much faster than
LEGACY users (blue & green) in both shifting activities
and shifting actions and CogTool correctly predicted this.
For NEW, activity shifts were slightly faster (users 13s
(SE=1.8); CogTool 11s) than action shifts (users 16s
(SE=1.5); CogTool 14s). For LEGACY, activity shifts were
dramatically longer (users 83s (SE=18.7); CogTool 85s)
than action shifts (users 28s (SE=4.8); CogTool 29s).

We were interested in CogTool’s ability to post-dict
overall performance difference between systems (though we
had just four points to compare). Overall, there was a high
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Figure 4. Times on four item types for users of NEW
plotted against CogTool’s predicted times.

correlation (r=0.999) between CogTool’s predicted times
and the experimental data in performing activity shifts and
action shifts across systems. This affirms CogTool’s ability
to post-dict dramatic differences between two systems both
on an absolute and relative scale.

Modeling Item Type Differences

To determine CogTool’s ability to predict differences item
types, we compared experimental data of four item types in
NEW to their corresponding models. These four types were
shifting actions, activities, actions within an activity, and
actions across activities. We modeled NEW because it is
both of practical interest and of greater complexity. We
used data from the four fastest errorless users on NEW.
(One outlying data point of 108s was dropped.)

We created CogTool models for each type of item. Each
model used the strategy of the overall fastest user for the
entire block; these strategies were commonly shared by
other fast users. The fastest strategy for each task happened
to be selecting the entities and editing the start times by
typing in the details pane. In line with the modeling policy,
we maintained consistency by modeling all time edits using
the backspace key followed by typing in digits.

Average user performance was still highly correlated
with the models’ prediction times by item type (r=0.945)
(see Figure 4). However, the order of difficulty was
imperfectly predicted. For frequent items, CogTool
correctly predicted that action shifts (users 13s (SE=1.8);
CogTool 11s) would take longer than activity shifts (users
16s (SE=1.5); CogTool 14s). For the less typical items,
CogTool’s predictions were reversed (for actions: users 38s
(SE=4.5); CogTool 40s versus for activities: users 47s
(SE=4.4); CogTool 36s).

Despite the switched order for two of the item types, the
values generated by the four CogTool models were broadly
consistent with the experimental values for the four types of
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Figure 5. Left: Predicted choices: only fastest strategies chosen.
Right: Actual strategy choices. Circle size shows number of users.

items. This shows that CogTool can do an adequate job of
predicting item type differences, especially for items that are
structurally very different from each other. The order
reversal for two tasks indicates possible weaknesses in
modeling complex tasks. Two limitations of CogTool
probably contribute to the failure to correctly predict the
relative times of these two tasks. First, these tasks are more
complex. As a result, there is greater variation in strategy
even among skilled users, reducing the accuracy of
modeling item difficulty with a single strategy. Second,
CogTool models are purely mechanical and do not represent
cognitive differences. In this case, shifting between
activities is more cognitively taxing than shifting within an
activity because there are more parts to keep track of.
CogTool could be tailored, post-hoc by increasing “think”
operators as needed, but this is inconsistent with our
predictive modeling policy.

Modeling Strategy Differences

Turning to a finer granularity of modeling, we were
interested in CogTool’s modeling of strategy. First, we
wanted to see if CogTool could predict strategy choice,
from a collection of identified strategies. That is, is the
strategy that CogTool predicts to be most efficient, the
strategy preferred by fast, practiced users?

Second, we wanted to see how well CogTool could
predict the actual times for those strategies. In order to
compare the efficacy of various strategies, we used data
from all eight NEW participants on each of the four items
(representing the four item types). We removed data for
responses with errors, outlying times, or other irregularity
(such as redoing).

We then built models for each of these strategies using the
Modeling Policy. Because CogTool cannot generate
strategies, we created models post-hoc based on strategies
chosen by users. For each type of item, we modeled every
strategy used to complete the item plus a few additional
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Figure 6. Average user times for strategy vs predicted time

strategies that we had (incorrectly) expected would be used.
A total of 24 models were created, varying from 4 for the
simplest task to 9 for the most complex. We also tallied the
overall frequency with which strategies were used.

First, we wanted to see if CogTool could predict strategy
selection. We took the strategy times generated by each
CogTool model and ordered them from fastest to slowest for
each item type. Because skilled users tend to shift toward
faster times and CogTool can only predict time on task, we
expected that if CogTool is a good predictor of strategy
choice, most people would use strategies that CogTool rates
as fast. For example, all users might select the fastest 2 or 3
strategies, as illustrated in the left panel of Figure 5.
However, our findings showed that CogTool seldom
predicted the use of strategies. For every item type, the
strategies judged fastest by the CogTool model were not the
ones commonly used (Figure 5, right panel). For the
simplest items, the strategies that CogTool predicts are least
efficient are the ones most chosen. For the more complex
items, strategy choice is highly varied with little preference
for strategies CogTool predicts to be fast.

Second, for those strategies that were used, how well did
CogTool predict the time to use a given strategy? For each
strategy used by any of the 8 NEW users, we found the
average time and correlated the average data with the time
predicted by the model. In comparing the times of strategies
produced by users to analogous times predicted by
CogTool, the correlation is modest (r=0.546), as shown by
the wide scatter in Figure 6. (One dot may represent
different numbers of users.) One key aspect of poor
prediction is that all drag and drop strategies are lower than
they should be.

Discussion

Summary of Results

We modeled performance on planning tasks by users
working with two very different planning systems: one a
legacy system currently in use by a Mission Control group
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and one a new system designed to match the work structure.
We compared CogTool models to experimental data at the
system, item, and strategy levels. The core strength of our
approach was that by selecting CogTool and following our
modeling policy, it was feasible to represent and get time
predictions for a varied set of problem solving situations.

The models could predict the large performance
differences between the very different systems, which
provide different interfaces, interactions, and strategies. In
addition, our models also provided reasonable correlations
with data for different item types. It predicted simple
differences between items that had clearly different
interactions (activity vs action shifts), but was not as
successful in predicting item differences for more complex
items with overlapping strategies and characteristics. With
respect to strategies, CogTool was not an adequate predictor
of strategy choice selection nor did it do a good job of
predicting strategy times.

Value of Validation

Detailed validation of a model in a complex work domain is
difficult and rare (Gray, John, & Atwood, 1993). We
selected a challenging work environment, which required
interaction forms not previously supported in CogTool. For
our model development, we vetted new components in
simple models applied to one set of tasks and users (the
authors), and applied this to a different, complex set of tasks
and users (experiment subjects). Thus, we did not tailor the
models to the data we sought to predict. We succeeded in
accurately modeling behavior at a coarse but not fine level.

Successful prediction at a fine level would, indeed, be
very useful from a practical perspective. It would be
valuable to predict accurately and in advance what strategies
are optimal, as we could then have taught these to users, to
increase the likelihood that each system was being used to
best advantage. With fine-grained accuracy, modeling
could also be used to adjust design; for example, there are
tradeoffs in design of the timeline layout between precision
and scale; accurate models would allow exploring design
alternatives to find best configurations.

Modeling Challenges

Our modeling policy highlighted several broad modeling
challenges. 1) Behavior-based models (such as CogTool)
have difficulty modeling working memory burden,
presumably because this is least directly controlled by the
task. Our problems differed in difficulty computing target
times (add an hour vs 25 min), which affected component
times and whether users included checking operations.
Limited modeling of WM restricts the ability to distinguish
between systems that impose different working memory
burdens, a critical need for software supporting problem
solving. 2) Assessing when a model of a component will
compose cleanly in a larger model is difficult. Though our
drag & drop models fared well on our simple test-bed tasks,
when this component was included in larger models, these
consistently underpredicted times. 3) Identifying when

components will compose cleanly, without interaction, is
critical. Problems with drag & drop models may have
stemmed from interaction with other processes in the more
complex models. While a richer modeling space can
evaluate positive (e.g. parallel execution) and negative (e.g.,
competition for WM) interaction among components (Gray
2008; Smith et al, 2008), these models target simpler
behaviors and hence entail greater complexity in building up
to models of problem solving behavior. 4) Modeling
human-computer, or human-automation, interaction requires
a good model of the device. The default model of
responsiveness and precision of mouse movements may
have been inadequate.

Value of HCI Modeling

Modeling human-computer interaction provides both
practical results and a test-bed for evaluating and
developing modeling methods. Behavior here is constrained
by the affordances of the interface, while still exhibiting a
very rich range of problem solving phenomena.
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