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Abstract

Semantic space models of lexical semantics learn vector
representations for words by observing statistical
redundancies in a text corpus. A word’s meaning is
represented as a point in a high-dimensional semantic space.
However, these spatial models have difficulty simulating
human free association data due to the constraints placed
upon them by metric axioms which appear to be violated in
association norms. Here, we build on work by Griffiths,
Steyvers, and Tenenbaum (2007) and test the ability of spatial
semantic models to simulate association data when they are
fused with a Luce choice rule to simulate the process of
selecting a response in free association. The results provide an
existence proof that spatial models can produce the patterns of
data in free association previously thought to be problematic.

Keywords: Semantic space model; latent semantic analysis;
semantic networks; word association; metric axioms.

1. Introduction

A longstanding belief in theories of lexical semantics
(dating back at least to Osgood, 1952) is that words can be
represented as points in a multidimensional semantic space.
Similarity between words is then defined as some function
of their distance in space. This classic notion of mental
space has had an obvious impact on modern computational
semantic space models, such as Latent Semantic Analysis
(LSA; Landuaer & Dumais, 1997). Models such as LSA
borrow techniques from linear algebra to infer the semantic
representation for words from their contextual co-
occurrences in linguistic corpora. In the resulting space, a
word’s meaning is represented by a vector over latent
dimensions. Inter-word similarity is based on Euclidean
geometry: Words that are more similar are more proximal in
the learned space.

In contrast to spatial models, the recent popularity of
probabilistic models of cognition has led to the development
of Bayesian models of semantic representation, such as the
LDA-based Topic model of Griffiths, Steyvers, and
Tenenbaum (2007). In the Topic model, a word’s
representation is a probability distribution over latent
semantic “topics.” Given that LSA and the Topic model
provide similar quantitative accounts of many semantic
tasks, a popular misconception is that the models are
isomorphic and that the Topic model is simply a more
modern and generative version of LSA. However, the issue
of whether humans represent meaning as a coordinate in
space or as a conditional probability is a fundamental
question in cognitive science, and has implications for
downstream models that make use of these representations.

Tversky (1977) has noted that spatial models must
respect several metric axioms. Firstly, in a metric space the
distance between a point and itself must be zero by any
Euclidean metric, d(x,x) = 0 (non-negativity). Secondly,
distance must respect symmetry: d(x,y) = d(y, x). Thirdly,
distance must respect the triangle inequality: If x and y are
proximal and y and z are proximal, then x and z are likely to
be proximal points as well (specifically, d(x,z) <
d(x,y) +d(y,z)). As Tversky & Gati (1982) have
demonstrated, human judgments of similarity routinely
violate these axioms (specifically, symmetry and the
triangle inequality). Tversky used human violations of the
metric axioms to argue against spatial models of similarity,
and instead proposed an additive feature comparison model.
The spatial debate, however, has a long history in cognitive
science, with Tversky’s work being followed by
explanations of how metric spaces could produce violations
of metric axioms (e.g., Krumhansl’s (1978) notion of
density or Holman’s (1979) similarity and bias model).

Griffiths et al. (2007) note that word association norms
also violate metric axioms, making them problematic for
semantic space models such as LSA. Probabilistic
representations, however, are not subject to the same metric
restrictions as spatial representations, and Griffiths et al.
provide an elegant demonstration of how their Topic model
can naturally account for the qualitative nature of these
violations that LSA cannot.

Word association norms contain a significant number of
asymmetric associations: For example, the probability of
generating baby as a response to stork as a cue is much
greater than the reverse. Part of this effect is due to a bias to
respond with a high frequency target independent of the cue,
but part appears to be due to some sort of asymmetry in
similarity. In addition, word association norms contain
apparent violations of the triangle inequality axiom: To use
the example from Griffiths et al. (2007), asteroid is strongly
associated with belt, and belt is strongly associated with
buckle, but asteroid and buckle have little association.
Finally, Steyvers and Tenenbaum (2005) demonstrate that
association norms contain neighborhood structure that is
incompatible with spatial models. If one constructs an
associative network with nodes representing words and
connecting edges based on nonzero association
probabilities, the resulting networks are scale-free: they
have power law degree distributions and high clustering
coefficients. Griffiths et al. demonstrate that while LSA
(based on a thresholded cosine) cannot reproduce this



network structure, the Topic model naturally produces
scale-free and small-world networks.

However, it is important to recall that an observable
behavior such as free association is the product of a
cognitive process operating on a memorial representation
(Estes, 1975). This notion is ubiquitous in cognitive science.
For example, Nosofsky (1986) uses a spatial representation
of stimuli, but the complex classification behavior of his
model is the result of applying a simple choice rule to this
spatial representation, not spatial distance itself. Similarly,
semantic space models are models of memory structure; the
structural model should not be expected to simulate a
complex behavior like memory retrieval without the benefit
of a process account to explain how the memory structure is
used in a particular task. This also enhances the models’
generalizability across different tasks that tap semantic
structure, and is particularly appealing given the low
correlation between different tasks thought to utilize the
same semantic structure (Maki & Buchanan, 2008).

Griffiths et al. (2007, p. 224) imply that a “more
complex” spatial metric based on LSA (similar to
Nosofsky’s 1986, 1991 use of a similarity-choice function)
could potentially account for the metric axiom violations in
association norms. We return to the issue of complexity
with regard to spatial and probabilistic models in the
discussion. The bulk of this paper will be focused on
evaluating their suggestion by fusing spatial semantic
models with a parameter-free version of Luce’s (1959)
similarity-choice model to evaluate their ability to account
for the problematic data identified by Griffiths et al. In
doing so, we provide an existence proof that semantic space
models can indeed produce asymmetries, violations of the
triangle inequality, and scale-free network structure with an
appropriate process rule. It is premature to reject spatial
models of semantic representation based on violations of
metric axioms in association data.

2. A Generic Spatial Choice Model

In this paper, we evaluate the application of Luce’s (1959)
choice rule to simulate the cognitive process involved in the
task of free association when applied to various (metric)
semantic space models, gradually increasing in complexity.
Although similarity and distance in the semantic spaces
respect the metric axioms, the behavior of the choice rule
applied to these spaces need not (cf. Nosofsky, 1991). The
Luce choice rule was selected as our generic output model
here due to its ubiquity in models of cognitive phenomena;
it has been successfully applied to choice behavior ranging
from low-level neural networks to high-level economic
models of group choice behavior.

The Luce choice rule simulates how humans select from
possible choice alternatives given a stimulus similarity
space, governed by probabilities conditioned on the choice
set. Given a set of stimulus similarities (where similarity is
defined as an inverse monotonic function of psychological
distance) the Luce choice rule states that the probability of
responding to stimulus S; with response R;is defined as:
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where f; is the response bias for item j, and #;; is the
similarity between stimuli 7 and j. Given the restrictions of
metric spaces, the total probability over all responses sums
to one. Most applications of the choice rule include
exponential scaling of similarity based on Shepard’s (1987)
universal law of distance and perceived similarity. Hence,
this general formula is often referred to as the Shepard-Luce
choice axiom:
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where d is a psychological distance function, and A is a free
parameter for the slope of the exponential (indicating a
subject’s sensitivity to stimulus differences).

Due to computational complexity that would be required
to fit free parameters in the choice rule for our simulations,
we evaluate a very simple parameter-free version of the
choice rule here. Firstly we assume A = 1, and ignore
exponential scaling. Secondly, although it is reasonable to
fix f to normative log word frequency for each word in the
lexicon, we also ignore bias in our application here to make
the similarities easily comparable to previous work. Hence,
given a semantic similarity matrix for all words in the
lexicon (for example, using LSA cosines) we simulate the
probability of producing a target word in response to a cue
word in free association as:

cos (cue, target) 3)

target =
p(target|cue) T_, cos (cue, word[i])

where 1 is a threshold parameter. Hence, this is a very
simple version of the Luce choice rule, and performance
should only be seen as a baseline—the model could
obviously produce better predictions with parameter fitting.

3. Testing the Semantic Choice Model

In this section, we test the ability of the simple Luce
choice rule (free of parameters except for a maximum
candidates threshold in the denominator) to account for
violations of the metric axioms. Each of the metric spaces
conform to the metric axioms, but the simple behavior of
making a choice in this space does not.

3.1. Training Corpus

We trained each semantic space model on the standard
TASA corpus (Landauer & Dumais, 1997), and duplicated
the modifications to the corpus made by Griffiths et al.
(2007) for easy comparison to their results. The models
were restricted to words that occurred with a frequency of at
least 10, and were not contained on the standard LSA
stoplist of function words. This reduced the model
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vocabularies to 26,240 words with ~4.2 million tokens in
the modified TASA, consistent with the version used by
Griffiths et al.

3.2. Semantic Space Models

We tested three semantic space models, ranging in
assumptions and complexity: LSA, POC, and BEAGLE.
The semantic spaces produced by each of the models
conform to the three metric axioms (non-negativity,
symmetry, and the triangle inequality).

Latent Semantic Analysis (LSA): LSA spaces were
constructed based on a word-by-document (W x D) co-
occurrence matrix, in which each word is initially
represented as a frequency distribution over documents.
Entries are then weighted inversely proportionate to the
word’s frequency and entropy (—X plogp) over
documents. Singular value decomposition was applied to
this matrix, and only the components with the largest
eigenvalues were retained. The resulting word vectors are
thought to represent the latent semantic dimensions which
best explain the co-occurrence pattern of words over
contexts.

We constructed LSA spaces using both 300 and 700
dimensions. Similar to Griffiths et al. (2007), we found little
difference in performance on the association task as a
function of dimensionality. Our 300-dimensional version
matched the version on the LSA website. However, we use
the 700-dimensional version here so our results are directly
comparable to Griffiths et al.

Proportion of Co-Occurrence (POC): We also tested a
much simpler direct co-occurrence metric based on mutual
information, as recent work has demonstrated superior
performance on some semantic tasks using simple models
based only on the surface form of language (e.g., Recchia &
Jones, 2009), suggesting that “deep” models like LSA may
be over-thinking the problem of human semantic learning.
Here we use proportion of co-occurrence (POC), a variant
of mutual information metrics:
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where f; and f; are the raw frequencies of words i and j,
respectively, and f;; is the co-occurrence frequency of i and
j together in the same document. POC is essentially the
intersection of the Venn, and can be applied efficiently to

the same W x D matrix LSA learns from, but without the
complexity of inferring latent semantic dimensions.

POC

BEAGLE: In addition to LSA and POC, we use a model
intermediate to the two in complexity—the context learning
mechanism from the BEAGLE model of Jones and
Mewhort (2007), which is similar in spirit to other random
accumulation models (Kanerva, 2009). BEAGLE begins by
assigning initial random vectors to all words in the corpus,

with elements sampled randomly from N (O, E ), where D is

VD

an arbitrary vector dimensionality. As BEAGLE
experiences sentences, the model updates the memory
vectors for each word in the sentence as the sum of the
random initial vectors representing each other word in the
sentence. Across learning, semantically similar words
naturally develop similar distributed vector patterns because
they have had common random vectors summed into their
memory representations. This has the effect that words
which frequently co-occur develop similar vectors (a pattern
learned by POC), but also that words which occur in similar
sentences develop similar vectors (a pattern learned by
LSA), even if they never directly co-occurred. Note that the
original BEAGLE model of Jones and Mewhort (2007) also
uses holographic binding to learn grammatical information
about word usage—however, here we just use the very
simple random vector summation to learn semantic structure
in TASA (the convolution-based holographic learning
mechanism would introduce unnecessary complexity, as
grammatical similarity is unlikely to play a large role in free
association). Here, we use BEAGLE trained with 1024
dimensions trained on TASA using context learning only.

3.3. Simulating Asymmetric Associations

We do not bother with simulations based on the raw
semantic spaces here, as they are obviously unable to
simulate asymmetries in free association (i.e., cos(A,B) =
cos(B,A)). However, a choice rule applied to these spaces to
simulate the process of free association need not respect
symmetry. The reason for this is very similar to
Krumhansl’s  (1978) notion of similarity density. In
addition, the density asymmetry in semantic space models
has been previously identified and discussed elsewhere
(Burgess & Lund, 2000; Jones & Kintsch, 2006).

Although the distance between baby and stork is equal in
either direction, the structure of the landscape is not. If one
computes and ranks the similarity of every word in the
lexicon to baby and stork, baby is the 22™ most similar
word to stork, but stork is only the 9,279™ more similar
word to baby (cosines from BEAGLE). Hence, while the
numerator of the choice rule is the same for both baby-stork
and stork-baby, the denominator changes drastically
depending on the ratio of similarity to other competitors.
When a simple choice rule is applied to a metric space, baby
comes to mind easily when cued with stork, but it is
extremely unlikely to respond with stork when cued with
baby due to strong competition from the many other words
that come to mind more easily.

We reproduced Griffiths et al.’s (2007) method of
selecting asymmetric pairs from Nelson’s association
norms. Two words were asymmetrically associated in the
norms if 1) one word was produced as a response to the
other with greater than zero probability, and 2) the forward-
backward ratio of cue-response probability was greater than
an order of magnitude. This procedure produced 38,740
asymmetric associations.
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We then tested the ability of the choice rule to correctly
predict the direction of the asymmetry in these pairs. Note
that the raw semantic space models would produce baseline
chance of ~50%. For each model we varied the threshold
parameter T in the denominator of the choice rule. This
represents the T most similar words to the cue considered as
competitors to the target—t was fixed across pairs within a
given simulation (so all had the same threshold).
Performance did not vary widely depending on t anyways,
so we present only performance with the best T per model
here (with t hand fit).
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Figure 1. Percentage of asymmetries in association norms
predicted by each choice model (horizontal line is chance).

Figure 1 shows the percentage of asymmetric pairs for
which the choice model predicted the correct direction,
varying semantic space. For comparison, the horizontal line
is chance performance without a choice model, and we have
inserted Griffiths et al.’s (2007) Topics model performance
for the same pairs, and raw frequency of the target word.

The first pattern to notice in Figure 1 is that LSA did not
perform any better with a choice rule than it could without.
We found this puzzling, but consistent across a wide range
of 1 (and the model often did worse than chance). While this
could be taken as evidence against spatial models in
isolation, notice that both POC and BEAGLE improve
considerably with the choice rule; both perform as well as
word frequency and the Topic model. This is particularly
intriguing given that POC is not a “deep” inductive model.
When fused with an appropriate process model to simulate
the task of free association, however, it easily predicts the
correct pattern of asymmetry in the association norms.

3.4. The Triangle Inequality

The triangle inequality is more difficult to test because there
is disagreement about what constraints it places on a
semantic similarity space, and how these constraints should
be manifest in a free association task. The triangle
inequality comes from Euclidean geometry, in which the
shortest path between two points is a line. Given this
observation, the inequality states that the length of any side
of a triangle must be less than the sum of the other two
sides. Hence, when translated to proximities among three

words in a metric semantic space, the distance between any
pair of words in a triple may be no greater than the sum of
the distances of the other two pairs, d(x,z) <d(x,y) + d(y,z).

Tversky has demonstrated violations of the triangle
inequality in similarity judgments of low-dimensional
stimuli, in which humans weight feature matches more
heavily than geometry suggests they should. However, it is
difficult to determine what hard constraints the triangle
inequality places on semantic similarity spaces. Griffiths et
al. (2007) interpret the triangle inequality as implying that if
x is similar to y and y is similar to z, then x must be similar
to z. In word association, this leads to the expectation that if
P(w;lw)) is high and P(w;|w,) is high, then P(wsw;) must be
high. However, they note that this constraint is violated in
free association norms—as P(wylw;) and P(wj;lw,) are
selected to exceed an increasing threshold, P(w;|w;) remains
unaffected. To use their example, although asteroid is
highly associated with belt, and belt is highly associated
with buckle, asteroid and buckle have little association.

It is important to note, however, that the triangle
inequality is difficult to explore (and impossible to test)
with association data. The inequality does not state that if x
and y are close points and y and z are close points, then x
and z must also be close points; it simply states that x and z
may be no further apart than the sum of the distances
between x-y and y-z. Hence, the triple asteroid-belt-buckle
in free association may conform to the triangle inequality
(rather than being a violation). Asteroid and buckle need not
be similar under the inequality, just not dissimilar.

It is difficult to determine from free association data
whether the triangle inequality has been violated because
association is a coarse indicator of similarity—a word is
produced in response to a cue word or not. But the fact that
a target is not produced in response to a cue is not evidence
that they have no similarity, nor is it evidence of violating
the triangle inequality. Griffiths et al. (2007) demonstrate
that even as P(w,|lw;) and P(wsw,) increase in the norms,
there are still many cases in which P(w;lw;) = 0. While they
are careful to note that this only suggests a violation of the
triangle inequality, we worry about the reliance on zero
probabilities in this type of analysis. A zero probability
association simply means that the event did not occur. It can
be problematic to make inferences based largely on events
that were unobserved (although this is a strength of
Bayesian models). In addition, the practice assumes that all
word pairs with zero probability (unobserved) have equal
similarity, an assumption that is certain to be wrong.

We duplicated the thresholding analysis conducted by
Griffiths et al. (2007), but instead used only triples for
which all three pairs exist in the association norms. Hence,
all probabilities in our analysis are nonzero, and we can
examine whether P(wsw;) is related to systematic increases
in P(wylw;) and P(wjsw,), relying on variance of observed
events only. Our selection resulted in 80,212 triples. We
systematically increased the threshold t above which
P(wylw;) and P(wj;lw;) were required to lie, and examined
the distribution of P(wsw;) values. In the analysis by
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Griffiths et al. (2007) which included zero probabilities,
they essentially found that P(w;/w;) was uncorrelated with .
However, in our data (which excluded zero probabilities),
we observed a significant correlation between the median of
the P(w;lw;) distribution and t, » = 0.42. This indicates that
the triangle inequality may indeed apply to association data
when missing values (zero probabilities) are removed.

With the Luce choice rule applied to simulate the process
of selecting a response in a free association task given a
spatial semantic similarity space, metric models can produce
violations of the triangle inequality. However, given that it
is unclear whether humans violate this axiom in free
association, it is important to note that metric models also
can conform to the inequality. This is particularly important
given that we are still uncertain as to whether or not human
free associations actually contain evidence of a mental space
that violates the inequality. In addition, it would seem from
other types of semantic data that the triangle inequality is
alive and well in the head. For example, mediated priming is
a well-established semantic phenomenon that relies on
triangulation: priming with lion facilitates recognition of
stripes due to their mediated relationship through tiger.

3.5. Semantic Network Structure

In addition to constraints from metric axioms, the
neighborhood structure of semantic spaces (specifically
LSA) is inconsistent with what is suggested from word
association. To create the mental connectivity structure
necessary to produce association norms, LSA would need
more words with extremely dense semantic neighborhoods
than it appears to have. For example, Steyvers and
Tenenbaum (2005) created network graphs based on free
association norms and then investigated the ability of
different growth models to produce this structure, as well as
the network graphs of WordNet and various thesauri.

Steyvers and Tenenbaum (2005) created graphs based on
association norms in which each word is a node and nodes
are connected if they have nonzero probability of
association. The resulting graphs are scale-free, a common
property of connectivity in nature. If a word’s degree £ is
defined as the number of other words connected to it, a
scale-free network is one in which the distribution of
degrees over all nodes follows a power law, P(k) ~k7Y
where y is the constant rate of the power function. If
both P(k) and k are plotted on a log scale, the result is a
straight line with a slope of — y. In addition, Steyvers and
Tenenbaum found that association networks had much
higher clustering of interconnected nodes than would be
expected in a randomly constructed network. LSA was
unable to reproduce this scale-free small-world structure for
a variety of generation methods attempted by Steyvers and
Tenenbaum: LSA produces degree distributions that fall off
too slowly for small values of £ and then too steeply as k
increases, and LSA’s clustering properties are both too high
and are qualitatively distinct from association networks.

In contrast, Griffiths et al. (2007) found that networks
created from the Topic model produced power law degree

distributions and clustering properties that closely matched
association networks. It is unclear, however, whether LSA’s
failure to reproduce the structure of the association network
is common to all spatial models, or whether LSA would fail
to produce the correct structure if it had the benefit of the
Luce choice rule to simulate the process of free association.

We constructed semantic networks analogously to
Griffiths et al. (2007) both for LSA based on raw cosines as
they did, but also for LSA, POC, and BEAGLE with the
addition of the Luce choice rule to simulate free association.
Here, we discuss only undirected networks. Only normed
words were used to create the networks. For each model, a
threshold was set to determine whether to connect two
nodes in the network (based either on cosine for raw LSA,
or cue-target probability predictions from the Luce rule for
the others). For each network, we fit the degree distribution
to both a power and exponential function, and computed the
clustering coefficient (Watts & Strogatz, 1998). The results
are displayed in Table 1 (LC = Luce choice rule applied to a
similarity space). For comparison, we have also added the
network properties from the free association norms in the
first row of Table 1.

Table 1. Network structure statistics for word association
norms, raw LSA, and spatial + choice models (LC).

Network  Power R>  Exp R’ CC  CC/CCer
Association 877 571 187 42.59
LSA-Raw 882 872 449 85.41
LSA-LC 830 909 352 72.58
POC-LC 952 939 092 18.81
BEAG-LC 882 550 290 59.03

Although the degree distribution for raw LSA was
slightly better fit by a power function than an exponential, it
shows little preference between the two, and the clustering
properties of LSA are several orders of magnitude greater
than the association network. The final column in Table 1
gives the ratio of the clustering coefficient in the model’s
network to the clustering coefficient expected in a random
Erdos-Rényi graph constructed with the same density. The
CC/CCer ratio for raw LSA is much greater than that
observed in the association network. As with the asymmetry
simulation, the Luce choice rule integrated with LSA
actually produces network structure more incompatible with
the association network than did the raw LSA space,
producing an exponentially distributed degree distribution.
In contrast, POC-LC produces relatively weak clustering.

When fused with the Luce choice rule, BEAGLE
produces network structure that is remarkably similar to the
structure observed in the association network. The degree
distributions show a strong preference for a power function
over an exponential, and the slope of the power function for
BEAGLE (y = 2.22) is very close to that of the association
network (y = 2.25). For comparison, the slope of the power

3448



fit for LSA-LC was y = 3.96. Figures 2 and 3 show the log-
log degree distributions for the Luce choice version of LSA
and BEAGLE, respectively. Recall that the log-log degree
distribution of the association network is linear with a slope
of y =2.25. Hence, while network connectivity structure is a
more difficult test for these models, BEAGLE demonstrates
that it is certainly possible for a spatial model to produce the
connectivity structure observed in association norms with
the benefit of a process model to simulate the task of free
association.
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Figure 2. Log-log degree distribution for Luce-LSA
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Figure 3. Log-log degree distribution for Luce-BEAGLE

4. Discussion

The purpose of this paper is simply to provide an existence
proof that spatial models can produce the structure observed
in free association data provided that they have a plausible
process model to simulate the association task. It is
premature to reject spatial models of lexical semantic
representation simply because the raw spaces must respect
metric axioms but human behavior does not. Human
semantic memory may also respect metric axioms, but the
behavior produced when a choice mechanism is applied to
this memorial representation can produce violations of

asymmetry, the triangle inequality, and can produce
association networks that are small-world and scale-free.

As an existence proof, these results should not be taken as
evidence against any particular model. Even with the Luce
choice rule, LSA had difficulties with network structure and
the violations of metric axioms. However, this may be due
to our assumptions when fixing parameters of the choice
model. The choice rule should be able to reproduce the
behavior of the raw space (with free parameters), so it is
suspect that it did worse than raw LSA on occasion. Fitting
the sensitivity and bias parameters to the data may well have
produced a model that performed very well when applied to
LSA. Nonetheless, the performance of the simpler
BEAGLE-LC and POC-LC models make it clear that spatial
representations of semantics are still viable models.
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