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Abstract 
Semantic space models of lexical semantics learn vector 
representations for words by observing statistical 
redundancies in a text corpus. A word’s meaning is 
represented as a point in a high-dimensional semantic space. 
However, these spatial models have difficulty simulating 
human free association data due to the constraints placed 
upon them by metric axioms which appear to be violated in 
association norms. Here, we build on work by Griffiths, 
Steyvers, and Tenenbaum (2007) and test the ability of spatial 
semantic models to simulate association data when they are 
fused with a Luce choice rule to simulate the process of 
selecting a response in free association. The results provide an 
existence proof that spatial models can produce the patterns of 
data in free association previously thought to be problematic.  

Keywords: Semantic space model; latent semantic analysis; 
semantic networks; word association; metric axioms. 

1. Introduction 
A longstanding belief in theories of lexical semantics 
(dating back at least to Osgood, 1952) is that words can be 
represented as points in a multidimensional semantic space. 
Similarity between words is then defined as some function 
of their distance in space. This classic notion of mental 
space has had an obvious impact on modern computational 
semantic space models, such as Latent Semantic Analysis 
(LSA; Landuaer & Dumais, 1997). Models such as LSA 
borrow techniques from linear algebra to infer the semantic 
representation for words from their contextual co-
occurrences in linguistic corpora. In the resulting space, a 
word’s meaning is represented by a vector over latent 
dimensions. Inter-word similarity is based on Euclidean 
geometry: Words that are more similar are more proximal in 
the learned space.  
      In contrast to spatial models, the recent popularity of 
probabilistic models of cognition has led to the development 
of Bayesian models of semantic representation, such as the 
LDA-based Topic model of Griffiths, Steyvers, and 
Tenenbaum (2007). In the Topic model, a word’s 
representation is a probability distribution over latent 
semantic “topics.”  Given that LSA and the Topic model 
provide similar quantitative accounts of many semantic 
tasks, a popular misconception is that the models are 
isomorphic and that the Topic model is simply a more 
modern and generative version of LSA. However, the issue 
of whether humans represent meaning as a coordinate in 
space or as a conditional probability is a fundamental 
question in cognitive science, and has implications for 
downstream models that make use of these representations.  

      Tversky (1977) has noted that spatial models must 
respect several metric axioms. Firstly, in a metric space the 
distance between a point and itself must be zero by any 
Euclidean metric, 𝑑 𝑥, 𝑥 = 0 (non-negativity). Secondly, 
distance must respect symmetry: 𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥 . Thirdly, 
distance must respect the triangle inequality: If x and y are 
proximal and y and z are proximal, then x and z are likely to 
be proximal points as well (specifically, 𝑑 𝑥, 𝑧 ≤
𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 ). As Tversky & Gati (1982) have 
demonstrated, human judgments of similarity routinely 
violate these axioms (specifically, symmetry and the 
triangle inequality). Tversky used human violations of the 
metric axioms to argue against spatial models of similarity, 
and instead proposed an additive feature comparison model. 
The spatial debate, however, has a long history in cognitive 
science, with Tversky’s work being followed by 
explanations of how metric spaces could produce violations 
of metric axioms (e.g., Krumhansl’s (1978) notion of 
density or Holman’s (1979) similarity and bias model).  
      Griffiths et al. (2007) note that word association norms 
also violate metric axioms, making them problematic for 
semantic space models such as LSA. Probabilistic 
representations, however, are not subject to the same metric 
restrictions as spatial representations, and Griffiths et al. 
provide an elegant demonstration of how their Topic model 
can naturally account for the qualitative nature of these 
violations that LSA cannot.  
      Word association norms contain a significant number of 
asymmetric associations: For example, the probability of 
generating baby as a response to stork as a cue is much 
greater than the reverse. Part of this effect is due to a bias to 
respond with a high frequency target independent of the cue, 
but part appears to be due to some sort of asymmetry in 
similarity. In addition, word association norms contain 
apparent violations of the triangle inequality axiom: To use 
the example from Griffiths et al. (2007), asteroid is strongly 
associated with belt, and belt is strongly associated with 
buckle, but asteroid and buckle have little association. 
Finally, Steyvers and Tenenbaum (2005) demonstrate that 
association norms contain neighborhood structure that is 
incompatible with spatial models. If one constructs an 
associative network with nodes representing words and 
connecting edges based on nonzero association 
probabilities, the resulting networks are scale-free: they 
have power law degree distributions and high clustering 
coefficients. Griffiths et al. demonstrate that while LSA 
(based on a thresholded cosine) cannot reproduce this 
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network structure, the Topic model naturally produces 
scale-free and small-world networks.  

However, it is important to recall that an observable 
behavior such as free association is the product of a 
cognitive process operating on a memorial representation 
(Estes, 1975). This notion is ubiquitous in cognitive science. 
For example, Nosofsky (1986) uses a spatial representation 
of stimuli, but the complex classification behavior of his 
model is the result of applying a simple choice rule to this 
spatial representation, not spatial distance itself. Similarly, 
semantic space models are models of memory structure; the 
structural model should not be expected to simulate a 
complex behavior like memory retrieval without the benefit 
of a process account to explain how the memory structure is 
used in a particular task. This also enhances the models’ 
generalizability across different tasks that tap semantic 
structure, and is particularly appealing given the low 
correlation between different tasks thought to utilize the 
same semantic structure (Maki & Buchanan, 2008).  

Griffiths et al. (2007, p. 224) imply that a “more 
complex” spatial metric based on LSA (similar to 
Nosofsky’s 1986, 1991 use of a similarity-choice function) 
could potentially account for the metric axiom violations in 
association norms. We return to the issue of complexity 
with regard to spatial and probabilistic models in the 
discussion. The bulk of this paper will be focused on 
evaluating their suggestion by fusing spatial semantic 
models with a parameter-free version of Luce’s (1959) 
similarity-choice model to evaluate their ability to account 
for the problematic data identified by Griffiths et al. In 
doing so, we provide an existence proof that semantic space 
models can indeed produce asymmetries, violations of the 
triangle inequality, and scale-free network structure with an 
appropriate process rule. It is premature to reject spatial 
models of semantic representation based on violations of 
metric axioms in association data.  

2. A Generic Spatial Choice Model 
In this paper, we evaluate the application of Luce’s (1959) 
choice rule to simulate the cognitive process involved in the 
task of free association when applied to various (metric) 
semantic space models, gradually increasing in complexity. 
Although similarity and distance in the semantic spaces 
respect the metric axioms, the behavior of the choice rule 
applied to these spaces need not (cf. Nosofsky, 1991). The 
Luce choice rule was selected as our generic output model 
here due to its ubiquity in models of cognitive phenomena; 
it has been successfully applied to choice behavior ranging 
from low-level neural networks to high-level economic 
models of group choice behavior.  

The Luce choice rule simulates how humans select from 
possible choice alternatives given a stimulus similarity 
space, governed by probabilities conditioned on the choice 
set. Given a set of stimulus similarities (where similarity is 
defined as an inverse monotonic function of psychological 
distance) the Luce choice rule states that the probability of 
responding to stimulus Si with response Rj is defined as:  

p(𝑅!|𝑆!) =
𝛽!𝜂!,!
𝛽!𝜂!,!!"#

 
(1) 

 
where βj is the response bias for item j, and ηi,j is the 
similarity between stimuli i and j. Given the restrictions of 
metric spaces, the total probability over all responses sums 
to one. Most applications of the choice rule include 
exponential scaling of similarity based on Shepard’s (1987) 
universal law of distance and perceived similarity. Hence, 
this general formula is often referred to as the Shepard-Luce 
choice axiom:  

 

p(𝑅!|𝑆!) =
𝛽!𝑒!!"(!!,!!)

𝛽!𝑒!!"(!!,!!)!"#
 

(2) 

 
 

where d is a psychological distance function, and λ is a free 
parameter for the slope of the exponential (indicating a 
subject’s sensitivity to stimulus differences).  
      Due to computational complexity that would be required 
to fit free parameters in the choice rule for our simulations, 
we evaluate a very simple parameter-free version of the 
choice rule here. Firstly we assume λ = 1, and ignore 
exponential scaling. Secondly, although it is reasonable to 
fix β to normative log word frequency for each word in the 
lexicon, we also ignore bias in our application here to make 
the similarities easily comparable to previous work. Hence, 
given a semantic similarity matrix for all words in the 
lexicon (for example, using LSA cosines) we simulate the 
probability of producing a target word in response to a cue 
word in free association as:  
 

p(target|cue) =
cos (cue, target)
cos (cue, word[i])!

!!!
 

(3) 

 
where τ is a threshold parameter. Hence, this is a very 
simple version of the Luce choice rule, and performance 
should only be seen as a baseline—the model could 
obviously produce better predictions with parameter fitting.  

3. Testing the Semantic Choice Model 
In this section, we test the ability of the simple Luce 

choice rule (free of parameters except for a maximum 
candidates threshold in the denominator) to account for 
violations of the metric axioms. Each of the metric spaces 
conform to the metric axioms, but the simple behavior of 
making a choice in this space does not. 

 
3.1. Training Corpus 
We trained each semantic space model on the standard 
TASA corpus (Landauer & Dumais, 1997), and duplicated 
the modifications to the corpus made by Griffiths et al. 
(2007) for easy comparison to their results. The models 
were restricted to words that occurred with a frequency of at 
least 10, and were not contained on the standard LSA 
stoplist of function words. This reduced the model 
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vocabularies to 26,240 words with ~4.2 million tokens in 
the modified TASA, consistent with the version used by 
Griffiths et al. 
 
3.2. Semantic Space Models 
We tested three semantic space models, ranging in 
assumptions and complexity: LSA, POC, and BEAGLE. 
The semantic spaces produced by each of the models 
conform to the three metric axioms (non-negativity, 
symmetry, and the triangle inequality).  
  
Latent Semantic Analysis (LSA): LSA spaces were 
constructed based on a word-by-document (W x D) co-
occurrence matrix, in which each word is initially 
represented as a frequency distribution over documents. 
Entries are then weighted inversely proportionate to the 
word’s frequency and entropy (− 𝑝 log 𝑝 ) over 
documents. Singular value decomposition was applied to 
this matrix, and only the components with the largest 
eigenvalues were retained. The resulting word vectors are 
thought to represent the latent semantic dimensions which 
best explain the co-occurrence pattern of words over 
contexts.  

We constructed LSA spaces using both 300 and 700 
dimensions. Similar to Griffiths et al. (2007), we found little 
difference in performance on the association task as a 
function of dimensionality. Our 300-dimensional version 
matched the version on the LSA website. However, we use 
the 700-dimensional version here so our results are directly 
comparable to Griffiths et al.  
 
Proportion of Co-Occurrence (POC): We also tested a 
much simpler direct co-occurrence metric based on mutual 
information, as recent work has demonstrated superior 
performance on some semantic tasks using simple models 
based only on the surface form of language (e.g., Recchia & 
Jones, 2009), suggesting that “deep” models like LSA may 
be over-thinking the problem of human semantic learning. 
Here we use proportion of co-occurrence (POC), a variant 
of mutual information metrics:  
 

POC!,! =
𝑓!"

𝑓! + 𝑓! − 𝑓!"
 

(4) 

 

where 𝑓! and 𝑓! are the raw frequencies of words i and j, 
respectively, and 𝑓!" is the co-occurrence frequency of i and 
j together in the same document. POC is essentially the 
intersection of the Venn, and can be applied efficiently to 
the same W x D matrix LSA learns from, but without the 
complexity of inferring latent semantic dimensions.  
 
BEAGLE: In addition to LSA and POC, we use a model 
intermediate to the two in complexity—the context learning 
mechanism from the BEAGLE model of Jones and 
Mewhort (2007), which is similar in spirit to other random 
accumulation models (Kanerva, 2009). BEAGLE begins by 
assigning initial random vectors to all words in the corpus, 

with elements sampled randomly from 𝑁 0, !
!

, where D is 
an arbitrary vector dimensionality. As BEAGLE 
experiences sentences, the model updates the memory 
vectors for each word in the sentence as the sum of the 
random initial vectors representing each other word in the 
sentence. Across learning, semantically similar words 
naturally develop similar distributed vector patterns because 
they have had common random vectors summed into their 
memory representations. This has the effect that words 
which frequently co-occur develop similar vectors (a pattern 
learned by POC), but also that words which occur in similar 
sentences develop similar vectors (a pattern learned by 
LSA), even if they never directly co-occurred. Note that the 
original BEAGLE model of Jones and Mewhort (2007) also 
uses holographic binding to learn grammatical information 
about word usage—however, here we just use the very 
simple random vector summation to learn semantic structure 
in TASA (the convolution-based holographic learning 
mechanism would introduce unnecessary complexity, as 
grammatical similarity is unlikely to play a large role in free 
association). Here, we use BEAGLE trained with 1024 
dimensions trained on TASA using context learning only.  
 
3.3. Simulating Asymmetric Associations 
We do not bother with simulations based on the raw 
semantic spaces here, as they are obviously unable to 
simulate asymmetries in free association (i.e., cos(A,B) = 
cos(B,A)). However, a choice rule applied to these spaces to 
simulate the process of free association need not respect 
symmetry. The reason for this is very similar to 
Krumhansl’s  (1978) notion of similarity density. In 
addition, the density asymmetry in semantic space models 
has been previously identified and discussed elsewhere 
(Burgess & Lund, 2000; Jones & Kintsch, 2006).  
    Although the distance between baby and stork is equal in 
either direction, the structure of the landscape is not. If one 
computes and ranks the similarity of every word in the 
lexicon to baby and stork, baby is the 22nd most similar 
word to stork, but stork is only the 9,279th more similar 
word to baby (cosines from BEAGLE). Hence, while the 
numerator of the choice rule is the same for both baby-stork 
and stork-baby, the denominator changes drastically 
depending on the ratio of similarity to other competitors. 
When a simple choice rule is applied to a metric space, baby 
comes to mind easily when cued with stork, but it is 
extremely unlikely to respond with stork when cued with 
baby due to strong competition from the many other words 
that come to mind more easily.  
    We reproduced Griffiths et al.’s (2007) method of 
selecting asymmetric pairs from Nelson’s association 
norms. Two words were asymmetrically associated in the 
norms if 1) one word was produced as a response to the 
other with greater than zero probability, and 2) the forward-
backward ratio of cue-response probability was greater than 
an order of magnitude. This procedure produced 38,740 
asymmetric associations. 
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    We then tested the ability of the choice rule to correctly 
predict the direction of the asymmetry in these pairs. Note 
that the raw semantic space models would produce baseline 
chance of ~50%. For each model we varied the threshold 
parameter τ in the denominator of the choice rule. This 
represents the τ most similar words to the cue considered as 
competitors to the target—τ was fixed across pairs within a 
given simulation (so all had the same threshold). 
Performance did not vary widely depending on τ anyways, 
so we present only performance with the best τ per model 
here (with τ hand fit).  
 

 
 

Figure 1. Percentage of asymmetries in association norms 
predicted by each choice model (horizontal line is chance).  
 
    Figure 1 shows the percentage of asymmetric pairs for 
which the choice model predicted the correct direction, 
varying semantic space. For comparison, the horizontal line 
is chance performance without a choice model, and we have 
inserted Griffiths et al.’s (2007) Topics model performance 
for the same pairs, and raw frequency of the target word.  
    The first pattern to notice in Figure 1 is that LSA did not 
perform any better with a choice rule than it could without. 
We found this puzzling, but consistent across a wide range 
of τ (and the model often did worse than chance). While this 
could be taken as evidence against spatial models in 
isolation, notice that both POC and BEAGLE improve 
considerably with the choice rule; both perform as well as 
word frequency and the Topic model. This is particularly 
intriguing given that POC is not a “deep” inductive model. 
When fused with an appropriate process model to simulate 
the task of free association, however, it easily predicts the 
correct pattern of asymmetry in the association norms.  
 
3.4. The Triangle Inequality 
The triangle inequality is more difficult to test because there 
is disagreement about what constraints it places on a 
semantic similarity space, and how these constraints should 
be manifest in a free association task. The triangle 
inequality comes from Euclidean geometry, in which the 
shortest path between two points is a line. Given this 
observation, the inequality states that the length of any side 
of a triangle must be less than the sum of the other two 
sides. Hence, when translated to proximities among three 

words in a metric semantic space, the distance between any 
pair of words in a triple may be no greater than the sum of 
the distances of the other two pairs, d(x,z) ≤ d(x,y) + d(y,z).  
    Tversky has demonstrated violations of the triangle 
inequality in similarity judgments of low-dimensional 
stimuli, in which humans weight feature matches more 
heavily than geometry suggests they should. However, it is 
difficult to determine what hard constraints the triangle 
inequality places on semantic similarity spaces. Griffiths et 
al. (2007) interpret the triangle inequality as implying that if 
x is similar to y and y is similar to z, then x must be similar 
to z. In word association, this leads to the expectation that if 
P(w2|w1) is high and P(w3|w2) is high, then P(w3|w1) must be 
high. However, they note that this constraint is violated in 
free association norms—as P(w2|w1) and P(w3|w2) are 
selected to exceed an increasing threshold, P(w3|w1) remains 
unaffected. To use their example, although asteroid is 
highly associated with belt, and belt is highly associated 
with buckle, asteroid and buckle have little association.  
    It is important to note, however, that the triangle 
inequality is difficult to explore (and impossible to test) 
with association data. The inequality does not state that if x 
and y are close points and y and z are close points, then x 
and z must also be close points; it simply states that x and z 
may be no further apart than the sum of the distances 
between x-y and y-z. Hence, the triple asteroid-belt-buckle 
in free association may conform to the triangle inequality 
(rather than being a violation). Asteroid and buckle need not 
be similar under the inequality, just not dissimilar.  
    It is difficult to determine from free association data 
whether the triangle inequality has been violated because 
association is a coarse indicator of similarity—a word is 
produced in response to a cue word or not. But the fact that 
a target is not produced in response to a cue is not evidence 
that they have no similarity, nor is it evidence of violating 
the triangle inequality. Griffiths et al. (2007) demonstrate 
that even as P(w2|w1) and P(w3|w2) increase in the norms, 
there are still many cases in which P(w3|w1) = 0. While they 
are careful to note that this only suggests a violation of the 
triangle inequality, we worry about the reliance on zero 
probabilities in this type of analysis. A zero probability 
association simply means that the event did not occur. It can 
be problematic to make inferences based largely on events 
that were unobserved (although this is a strength of 
Bayesian models). In addition, the practice assumes that all 
word pairs with zero probability (unobserved) have equal 
similarity, an assumption that is certain to be wrong.  
    We duplicated the thresholding analysis conducted by 
Griffiths et al. (2007), but instead used only triples for 
which all three pairs exist in the association norms. Hence, 
all probabilities in our analysis are nonzero, and we can 
examine whether P(w3|w1) is related to systematic increases 
in P(w2|w1) and P(w3|w2), relying on variance of observed 
events only. Our selection resulted in 80,212 triples. We 
systematically increased the threshold τ above which 
P(w2|w1) and P(w3|w2) were required to lie, and examined 
the distribution of P(w3|w1) values. In the analysis by 
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Griffiths et al. (2007) which included zero probabilities, 
they essentially found that P(w3|w1) was uncorrelated with τ. 
However, in our data (which excluded zero probabilities), 
we observed a significant correlation between the median of 
the P(w3|w1) distribution and τ, r = 0.42. This indicates that 
the triangle inequality may indeed apply to association data 
when missing values (zero probabilities) are removed.  
    With the Luce choice rule applied to simulate the process 
of selecting a response in a free association task given a 
spatial semantic similarity space, metric models can produce 
violations of the triangle inequality. However, given that it 
is unclear whether humans violate this axiom in free 
association, it is important to note that metric models also 
can conform to the inequality. This is particularly important 
given that we are still uncertain as to whether or not human 
free associations actually contain evidence of a mental space 
that violates the inequality. In addition, it would seem from 
other types of semantic data that the triangle inequality is 
alive and well in the head. For example, mediated priming is 
a well-established semantic phenomenon that relies on 
triangulation: priming with lion facilitates recognition of 
stripes due to their mediated relationship through tiger.  
 
3.5. Semantic Network Structure 
In addition to constraints from metric axioms, the 
neighborhood structure of semantic spaces (specifically 
LSA) is inconsistent with what is suggested from word 
association. To create the mental connectivity structure 
necessary to produce association norms, LSA would need 
more words with extremely dense semantic neighborhoods 
than it appears to have. For example, Steyvers and 
Tenenbaum (2005) created network graphs based on free 
association norms and then investigated the ability of 
different growth models to produce this structure, as well as 
the network graphs of WordNet and various thesauri.  
    Steyvers and Tenenbaum (2005) created graphs based on 
association norms in which each word is a node and nodes 
are connected if they have nonzero probability of 
association. The resulting graphs are scale-free, a common 
property of connectivity in nature. If a word’s degree k is 
defined as the number of other words connected to it, a 
scale-free network is one in which the distribution of 
degrees over all nodes follows a power law, 𝑃(𝑘) ~𝑘!! 
where γ is the constant rate of the power function. If 
both 𝑃(𝑘) and k are plotted on a log scale, the result is a 
straight line with a slope of – γ. In addition, Steyvers and 
Tenenbaum found that association networks had much 
higher clustering of interconnected nodes than would be 
expected in a randomly constructed network. LSA was 
unable to reproduce this scale-free small-world structure for 
a variety of generation methods attempted by Steyvers and 
Tenenbaum: LSA produces degree distributions that fall off 
too slowly for small values of k and then too steeply as k 
increases, and LSA’s clustering properties are both too high 
and are qualitatively distinct from association networks.  
    In contrast, Griffiths et al. (2007) found that networks 
created from the Topic model produced power law degree 

distributions and clustering properties that closely matched 
association networks. It is unclear, however, whether LSA’s 
failure to reproduce the structure of the association network 
is common to all spatial models, or whether LSA would fail 
to produce the correct structure if it had the benefit of the 
Luce choice rule to simulate the process of free association.  
    We constructed semantic networks analogously to 
Griffiths et al. (2007) both for LSA based on raw cosines as 
they did, but also for LSA, POC, and BEAGLE with the 
addition of the Luce choice rule to simulate free association. 
Here, we discuss only undirected networks. Only normed 
words were used to create the networks. For each model, a 
threshold was set to determine whether to connect two 
nodes in the network (based either on cosine for raw LSA, 
or cue-target probability predictions from the Luce rule for 
the others). For each network, we fit the degree distribution 
to both a power and exponential function, and computed the 
clustering coefficient (Watts & Strogatz, 1998). The results 
are displayed in Table 1 (LC = Luce choice rule applied to a 
similarity space). For comparison, we have also added the 
network properties from the free association norms in the 
first row of Table 1.  
 
Table 1. Network structure statistics for word association 
norms, raw LSA, and spatial + choice models (LC). 

 

Network Power R2 Exp R2 CC CC/CCer 
Association .877 .571 .187 42.59 
LSA-Raw .882 .872 .449 85.41 
LSA-LC .830 .909 .352 72.58 
POC-LC .952 .939 .092 18.81 
BEAG-LC .882 .550 .290 59.03 
 
    Although the degree distribution for raw LSA was 
slightly better fit by a power function than an exponential, it 
shows little preference between the two, and the clustering 
properties of LSA are several orders of magnitude greater 
than the association network. The final column in Table 1 
gives the ratio of the clustering coefficient in the model’s 
network to the clustering coefficient expected in a random 
Erdos-Rényi graph constructed with the same density. The 
CC/CCer ratio for raw LSA is much greater than that 
observed in the association network. As with the asymmetry 
simulation, the Luce choice rule integrated with LSA 
actually produces network structure more incompatible with 
the association network than did the raw LSA space, 
producing an exponentially distributed degree distribution. 
In contrast, POC-LC produces relatively weak clustering. 
    When fused with the Luce choice rule, BEAGLE 
produces network structure that is remarkably similar to the 
structure observed in the association network. The degree 
distributions show a strong preference for a power function 
over an exponential, and the slope of the power function for 
BEAGLE (γ = 2.22) is very close to that of the association 
network (γ = 2.25). For comparison, the slope of the power 
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fit for LSA-LC was γ = 3.96. Figures 2 and 3 show the log-
log degree distributions for the Luce choice version of LSA 
and BEAGLE, respectively. Recall that the log-log degree 
distribution of the association network is linear with a slope 
of γ = 2.25. Hence, while network connectivity structure is a 
more difficult test for these models, BEAGLE demonstrates 
that it is certainly possible for a spatial model to produce the 
connectivity structure observed in association norms with 
the benefit of a process model to simulate the task of free 
association.   
    

 
Figure 2. Log-log degree distribution for Luce-LSA 

 

 
Figure 3. Log-log degree distribution for Luce-BEAGLE 

 
4. Discussion 

The purpose of this paper is simply to provide an existence 
proof that spatial models can produce the structure observed 
in free association data provided that they have a plausible 
process model to simulate the association task. It is 
premature to reject spatial models of lexical semantic 
representation simply because the raw spaces must respect 
metric axioms but human behavior does not. Human 
semantic memory may also respect metric axioms, but the 
behavior produced when a choice mechanism is applied to 
this memorial representation can produce violations of 

asymmetry, the triangle inequality, and can produce 
association networks that are small-world and scale-free.  
    As an existence proof, these results should not be taken as 
evidence against any particular model. Even with the Luce 
choice rule, LSA had difficulties with network structure and 
the violations of metric axioms. However, this may be due 
to our assumptions when fixing parameters of the choice 
model. The choice rule should be able to reproduce the 
behavior of the raw space (with free parameters), so it is 
suspect that it did worse than raw LSA on occasion. Fitting 
the sensitivity and bias parameters to the data may well have 
produced a model that performed very well when applied to 
LSA. Nonetheless, the performance of the simpler 
BEAGLE-LC and POC-LC models make it clear that spatial 
representations of semantics are still viable models.  
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