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Abstract 

Two experiments examined the differential effects of ground-
ed and formal representations on learning of mathematics. 
Both involved combinatorics, using outcome listing and com-
binatorics formulas as examples of grounded and formal rep-
resentations, respectively. Experiment 1 compared perfor-
mance on near and far transfer problems following instruc-
tions involving listing or formulas. Instruction in formulas led 
to more near transfer, while far transfer performance did not 
differ by condition. Experiment 2 compared performance fol-
lowing four types of instruction: listing only, formulas only, 
listing fading (listing followed by formulas), and listing intro-
duction (formulas followed by listing).  The listing fading 
condition led to performance on par with the formulas only 
condition, and for near transfer problems, significantly higher 
than the listing introduction and pure listing conditions. The 
results support the inclusion of grounded representations in 
combinatorics instruction, and suggest that such representa-
tions should precede rather than follow formal representations 
in the instructional sequence. 

Keywords: mathematics; formalisms; grounded representa-
tions; transfer; analogy; education 

Background 

Alternate Representations in Mathematics 

Mathematical ideas often admit of alternate representa-

tions. Much research has investigated the differential effects 

of mathematics instruction based on formal representations, 

such as equations, or more grounded representations, such 

as diagrams. Formal representations such as algebraic equa-

tions have been found, in some contexts, to promote learn-

ing and transfer better than grounded representations. One 

possible reason is that idealized or abstract representations 

may better draw attention to underlying logical structure, 

while perceptually rich representations distract from it 

(Sloutsky, Kaminski, & Heckler, 2005). There is also evi-

dence that using concrete problems to learn mathematical 

concepts may inhibit transfer (Bassok & Holyoak, 1989). 

Additionally, it is possible that problems represented in 

abstract symbolic form are simply easier to solve than those, 

such as story problems, that refer to concrete entities. This 

view seems prevalent among educators: in one survey of 

primary and secondary mathematics teachers, a majority 

believed that their students found story problems more chal-

lenging than mathematically isomorphic equation problems 

(Nathan, Long, & Alibali, 2002). The same belief is reflect-

ed in the equations-before-story problems sequence preva-

lent in mathematics textbooks. The rationale seems to be 

that story problems must be converted into equations in or-

der to solve them, making equation problems a priori easier. 

In reality, however, primary and secondary school stu-

dents perform better on simple story problems than on 

mathematically equivalent equation problems (Koedinger & 

Nathan, 2004), while the reverse trend obtains only for more 

complex problems (Koedinger et al, 2008). Story problems 

seem to encourage the use of certain intuitions and informal 

solution strategies that, relative to standard algebraic proce-

dures, lead to greater success on simpler problems. Algebra-

ic procedures lead to greater success on more complex prob-

lems for which informal strategies are less feasible. In this 

domain, neither grounded nor formal representations are 

simply preferable to the other; each has its own strengths. 

If simpler problems are facilitated by grounded, and com-

plex problems by formal, representations, then beginning 

with grounded representations and proceeding to more for-

mal representations may be a sound pedagogic strategy. 

Such an approach has been advocated by Freudenthal 

(1991) and also derives support from research on “concrete-

ness fading,” in which learners are exposed first to concrete 

instances of concepts, and later to more idealized represen-

tations. McNeil and Fyfe (2010) trained students on the idea 

of modular arithmetic using either concrete, idealized, or 

concrete followed by idealized, representations. Students in 

the last condition showed the best performance on novel 

transfer problems. Similar benefits of concreteness fading 

have been shown for understanding of complex systems 

principles (Goldstone & Son, 2005). 

The Combinatorics Domain 

The present study uses the domain of combinatorics as a 

testing ground to examine the differential effects of instruc-

tion using formal and grounded representations on learning 

and transfer. From a pedagogic standpoint, combinatorics 

plays an important role both in mathematics education and 

in education more generally. In mathematics education, 

combinatorics is fundamental to the theory of probability 

and statistics, which has a wide range of practical applica-

tions. More generally, insofar as combinatorics requires a 

systematic consideration of what is possible, independent of 

what actually is, its mastery is considered to be one step in 

in the general development of abstract reasoning capabilities 

(Inhelder & Piaget, 1958). 

Figure 1 shows an example of one type of combinatorics 

problem: sampling with replacement (SWR). SWR prob-

lems may be solved by using the formula mn, where m is the 

number of items in the set being sampled, and n is the num-

ber of times sampling occurs (Figure 1a). In addition to such 
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formal expressions, mathematics students often employ a 

range of more grounded visual representations to solve such 

problems (Corter & Zahner, 2007). One such representation 

is outcome listing (Figure 1b). A complete list of outcomes 

may be generated through a systematic strategy such as the 

“odometer” strategy, which involves exhaustively varying 

the outcome for a single sampling event while holding the 

outcomes of all the other sampling events constant. Another 

category of combinatorics problems is permutations (PER) 

problems. PER problems, like SWR problems, admit of 

solution either by a formula – m!, where m is the number of 

items being permuted – or by a systematic listing strategy. 

 

 
  

Figure 1. A combinatorics problem. 

 

The distinction between standard combinatorics formulas 

and outcome listing corresponds to the more general distinc-

tion between formal and grounded representations in math-

ematics. Clearly, combinatorics formulas constitute formal 

representations. By contrast, lists of possibilities are more 

grounded than formulas, because the former involve actual 

numerosities, the latter only number symbols – for example, 

where the formulas use the numeral 3, the lists actually 

show three different letters. (The fact that letters are also 

symbols does not detract from the general point that out-

come lists represent number in a more grounded way than 

do combinatorics formulas.) The present study explores the 

effects of instruction employing these alternate representa-

tions on learning and transfer. 

Experiment 1 

In this experiment, participants were shown worked ex-

amples of combinatorics story problems belonging to one 

category – either SWR or PER. Subsequent performance on 

novel problems of the same category was used as a measure 

of “near transfer,” while subsequent performance on the 

other category was used as a measure of “far transfer.” Near 

transfer, thus defined, is not trivial: even if the transfer prob-

lems belong to the same category used during instruction, 

differences in their “stories” can make the transfer problems 

challenging. Far transfer, thus defined, is still more difficult: 

it requires participants not only to navigate differences be-

tween the stories of the worked examples and those of the 

transfer problems, but also to derive entirely novel solution 

methods, presumably by adapting the methods shown dur-

ing instruction. Such adaptation might be possible due to the 

structural similarities between the two problem categories 

(Figure 2). The formal solutions for both categories involve 

multiplying a sequence of numbers beginning with the 

number of elements in the set from which selections are 

made, with the total number of multiplications equal to the 

number of elements selected. 

 

 
 

Figure 2. Correspondence between SWR and PER formulas. 

 

This experiment was designed to investigate the differen-

tial effects of formula- and listing-based instruction on near 

and far transfer performance. Insofar as combinatorics for-

mulas make explicit the mathematical structure common to 

all problems of the same category, while outcome listing 

does not, we might expect instruction in formulas to result 

in more near transfer than instruction in outcome listing. As 

for far transfer, however, formal instruction might fare less 

well. It is not at all evident how to derive the PER formula 

from the SWR formula or vice versa. Adaptation of the cor-

responding listing procedures may prove easier for learners.  

Many aspects of a systematic listing strategy apply equally 

well to either problem type, and any adaptation required 

may be relatively intuitive based on the common everyday 

experience of arranging physical objects in sequence. 

This experiment also tested a secondary prediction re-

garding the effects of formula- and listing-based instruction 

on problems of varying degrees of complexity. Koedinger et 

al’s (2008) results suggest that formal solution methods 

might show an advantage on relatively complex combinator-

ics problems. By contrast, the more intuitive approach of 

listing outcomes might be more effective for simpler prob-

lems. In sum, formula-based instruction was predicted to 

lead to better performance on near transfer and complex 

problems, while listing-based instruction was predicted to 

show an advantage on far transfer and simple problems. 

Materials and Methods 

Participants. 126 undergraduate and graduate students from 

Indiana University participated in the experiment, including 

78 students who participated for course credit, and 48 stu-

dents who participated for a financial incentive. 

 

Materials. Two sets of combinatorics story problems were 

developed for testing participants. Each set consisted of four 

problems: two SWR and two PER, with one “simple” and 

one “complex” problem for each category. The complex 

problems required solution of three simple sub-problems 

followed by summation of their solutions. For example, 

finding how many sequences of the notes C, E, and G are 

possible that are 5 notes long (answer: 35=243) constitutes a 

simple SWR problem, while finding how many such se-

quences are possible that are 3, 4, or 5 notes long (answer: 

33+34+35=351) constitutes a complex SWR problem. The 

two test problem sets were mathematically isomorphic, but 

used different cover stories. 
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In addition to the test problem sets, several training se-

quences were developed. Each sequence consisted of three 

story problems, all belonging to the same category, and a 

Powerpoint slideshow presenting worked solutions. The 

sequences differed in terms of problem category – SWR or 

PER – and method used in the worked solutions – either 

combinatorics formulas or outcome listing, as described in 

the Background. For a given problem category, the same set 

of problems were used for the formula and listing versions. 

There were thus four training sequences altogether: one for 

each possible combination of category and solution method.  

 

Procedure. The study employed a pretest – training – post-

test design. Participants were given paper questionnaires 

consisting of one of the test problem sets, referred to as 

“pretest,” one training problem set, and the other test prob-

lem set, referred to as “posttest.” Which test problem set 

was used as pretest and which as posttest, and which prob-

lem category was used for the training problem set, were 

assigned randomly. Participants were randomly assigned to 

view either the formula or the listing version of the worked 

solutions to their training problem set, and worked in front 

of computers containing the appropriate Powerpoint 

slideshows. The type of solution method viewed constitutes 

the principal between-subjects variable of the study, and is 

henceforth referred to as “training condition.” 

Participants were asked to solve the problems in order and 

not to return to any problems after completing them. They 

were encouraged to show their work as much as possible. 

Participants were instructed to view the slideshows on the 

computers when directed to do so by the paper questionnaire 

(i.e. when solving the corresponding training problems). 

 

Coding. Pretest and posttest responses were classified as 

either correct or incorrect. Numeric expressions that evalu-

ated to the correct answer, such as “3×3×3×3×3” for “243”, 

were accepted as correct. Correct answers were assigned a 

value of 1, and incorrect answers a value of 0. A transfer 

score was calculated for each of the four test problem types 

by subtracting the scores for the pretest problems from those 

for the corresponding posttest problems. Thus, each partici-

pant received a transfer score for each problem type ranging 

from -1 (decrement) to 0 (no change) to 1 (improvement). 

Transfer performance data was re-categorized according 

to transfer distance without regard to problem category. In 

other words, the data for PER problems were classified as 

near transfer for participants trained on PER and as far 

transfer for those trained on SWR, and vice versa for SWR 

problems. Thus, each participant received four transfer 

scores: one for each combination of transfer distance (near 

or far) and problem complexity (simple or complex). 

Results and Discussion 

Results. Mean transfer performance data is shown in Figure 

3. One-sample two-tailed t-tests conducted for each problem 

type found that transfer performance was significantly 

greater than 0 (with the criterion α=.05) for both near trans-

fer problems, but not for either far transfer problem. Within 

each training condition, improvement was significant in the 

formula condition for simple near transfer only, and in the 

listing condition for complex near transfer only. 

 

 
 

Figure 3. Mean Transfer Performance. 

 

The data were entered into a linear mixed model, with 

performance change as the dependent variable, transfer dis-

tance and problem complexity as within-subjects variables, 

training condition as a between-subjects variable, and pre-

test score as a covariate. There was a significant effect of 

distance, indicating more improvement for near transfer 

(0.16) than for far transfer (0.04), F(1,361.1)=24.6, p<.001. 

The main effects of problem complexity and training condi-

tion were not significant. However, there was a significant 

interaction between distance and condition, F(1,360.3)=4.5, 

p=.035, reflecting an advantage of the formula condition on 

near transfer (formula: 0.19, listing: 0.13) but little differ-

ence between conditions on far transfer (formula: 0.04, list-

ing: 0.05). No other interactions reached significance. 

 

Discussion. For near transfer problems, both formula and 

listing instruction resulted in significant posttest improve-

ment, and the observed interaction effect suggests a relative 

advantage for formula instruction, consistent with our pre-

dictions. For far transfer problems, significant posttest im-

provement was not observed in either condition. This appar-

ent floor effect precludes any claim as to the superiority of 

either type of instruction for promoting far transfer. 

Aside from the sheer difficulty of the far transfer prob-

lems – an issue addressed in the next experiment – there are 

several possible explanations for why listing training failed 

to show the predicted advantage over formula training. First, 

it is possible that participants actively resisted the outcome 

listing approach. Although some participants in the listing 

condition did produce outcome lists on posttest, many did 

not, preferring to use purely numerical calculations. One 

such participant commented that she would have preferred 

simply being told how to do the problems – that is, how to 

solve them with formulas – reflecting a belief that outcome 

listing was not a “real” solution method. Such a belief might 

relate to the greater efficiency of formulas, or to a greater 

emphasis on formulas in previous education. 
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Second, participants in the listing condition may have 

been impeded by the need to integrate lists with numerical 

calculations. The test problems (though not the training 

problems) involved numbers sufficiently large that solution 

by outcome listing alone was not feasible in the time pro-

vided. Use of outcome listing would require creation of a 

partial list followed by some form of numerical operation, 

such as multiplication of the partial list size by the number 

of partial lists that would occur in a complete list. This addi-

tional step might be challenging, either simply by virtue of 

being an additional step, or because it requires integration of 

two very different modes of thought: grounded and formal. 

Experiment 2 

Although it is useful to know how instruction based on 

formalisms alone compares to instruction using only 

grounded representations, actual classroom instruction often 

involves a mixture of both types. Some existing research has 

supported this approach, showing a learning advantage for 

instruction involving both concrete and idealized representa-

tions over instruction involving only one or the other (Gold-

stone & Son, 2005; McNeil & Fyfe, 2010). Goldstone and 

Son (2005) additionally found effects of order: “concrete-

ness fading,” i.e. beginning with concrete representations 

and proceeding to idealized ones, worked better than the 

reverse sequence, “concreteness introduction.” Van Reeu-

wijk (1995) employed a similar “progressive formalization” 

approach, beginning with grounded representations and pro-

ceeding to algebraic formalisms. 

Experiment 2 explored the effectiveness of such ap-

proaches in the context of combinatorics, using the same 

instances of grounded and formal representations as in Ex-

periment 1: outcome lists and combinatorics formulas. Two 

specific hypotheses were suggested by the above-mentioned 

literature on concreteness fading and progressive formaliza-

tion. First, better transfer performance was predicted after 

instruction incorporating both lists and formulas than after 

instruction employing only one or the other. Second, for 

instruction employing both lists and formulas, better per-

formance was expected when lists were introduced before 

formulas rather than after. 

Materials and Methods 

Participants. 111 undergraduate students from Indiana 

University participated in the experiment for course credit. 

 

Materials. Like Experiment 1, this experiment employed 

two test problem sets and a training sequence. All four test 

problems belonged to the PER category and involved the 

same cover stories used for this category in Experiment 1. 

The first two problems were categorized as “near transfer” 

because they could be solved by direct application of the 

solution method shown during training. The first of these 

was mathematically isomorphic to one of the training prob-

lems, while the second was identical to the “simple” PER 

problem used in Experiment 1. The next two problems were 

categorized as “far transfer” because they required some 

adaptation of the solution method shown in training. The 

first of these was identical to the “complex” PER problem 

used in Experiment 1, while the second was a novel problem 

requiring permutation of a partial subset – a less “distant” 

far transfer problem than that used in Experiment 1. 

As in Experiment 1, the training sequences consisted of 

combinatorics story problems accompanied by Powerpoint 

slideshows. The sequences involved four story problems, all 

belonging to the PER category, the first two using one cover 

story and the second two using a different cover story. There 

were four versions of the accompanying slideshows. (1) The 

pure listing version demonstrated solution of all four prob-

lems by systematic listing of possible outcomes. (2) The 

pure formula version demonstrated solution by numerical 

computation.  (3) The listing fading version used outcome 

lists for the first two problems and formulas for the latter 

two. (4) The listing introduction version employed the same 

content as in (3), but in the reverse sequence. Both formula 

and listing solution methods were presented in a slightly 

different way from that in Experiment 1. 

 

Procedure. The study employed a pretest – training – post-

test design similar to that used in Experiment 1, with two 

important differences. First, SWR problems were not used, 

so all participants received only PER problems in both the 

test and training problem sets. Second, the internal sequence 

of training problems was rotated among participants, inde-

pendently of the type of training received, by randomly as-

signing which pair of problems came first and which se-

cond. The method of data collection was also similar to that 

used in Experiment 1, with two important differences. First, 

all problems were presented via computer, and participants 

were asked to show their work and enter their answers di-

rectly into the computer. Second, participants were allowed 

to use calculators, which were shown on the computer 

screen beside the experiment interface. 

 

Coding. Pretest performance, posttest performance, and 

transfer performance were calculated for each test problem 

in the same way as for Experiment 1. The data from the first 

two test problems were combined to derive aggregate scores 

for near transfer, and those from the second two problems to 

derive scores for far transfer. Additionally, participants’ 

shown work for each problem was assigned one or more 

codes according to the solution method(s) used. The analy-

sis presented here concerns only two of the codes employed 

for this task: “numerical calculation” and “outcome listing.” 

Results and Discussion 

Results. Mean transfer performance data are shown in Fig-

ure 4. One-sample two-tailed t-tests conducted for each 

transfer distance and training condition found that transfer 

performance was significantly higher than zero for all con-

ditions except listing introduction for near transfer, and for 

all conditions except pure listing for far transfer, using the 

criterion α=.05.  
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Figure 4: Mean Transfer Performance. 

 

The data were entered into a linear mixed model, with 

performance change as the dependent variable, transfer dis-

tance as a within-subjects variable, training condition as a 

between-subjects variable, and pretest score as a covariate. 

There was a significant effect of distance, indicating more 

improvement for near transfer (0.22) than for far transfer 

(0.12), F(1,125.6)=42.2, p<.001. The main effect of training 

condition was not significant, but there was a significant 

interaction between distance and condition, F(1,107.2)=4.3, 

p=.006. The same model run for near transfer problems only 

showed a significant effect of training condition, 

F(3,106)=2.9, p=.04. Pairwise comparisons between condi-

tions for near transfer showed significantly greater transfer 

performance in the listing fading (0.36) than the pure listing 

(0.22) and listing introduction (0.05) conditions, 

F(1,52)=4.4, p=.040 and F(1,54)=6.5, p=.013 respectively. 

No other pair of conditions differed significantly for near 

transfer. The same model run for far transfer problems only 

found no significant effect of training condition. 

Finally, the codes assigned to participants’ shown work 

were analyzed to determine whether participants actually 

used the methods they were instructed to use on the training 

problems. Participants were considered to have followed 

instructions if they used the instructed method at least once 

for both the first and second pairs of training problems. By 

this standard, participants followed instructions most in the 

pure formalism condition (100%), followed by listing fading 

(57%), pure listing (52%), and listing introduction (28%). 

The difference among conditions was significant, p<.001 by 

Pearson’s Chi-Square, and was primarily driven by low us-

age of outcome listing in the latter three conditions. 

 

Discussion. This experiment was designed to explore the 

effectiveness of a listing fading approach to combinatorics 

instruction, in which a grounded representation – outcome 

lists – precedes a corresponding formal representation – a 

combinatorics formula. Consistent with our predictions, 

listing fading led to the highest average transfer perfor-

mance of the conditions tested, and for near transfer prob-

lems, showed a significant advantage not only over pure 

listing, but also over listing introduction. The latter ad-

vantage is striking because listing fading and listing intro-

duction employed the same materials, differing only in the 

sequence of presentation. These results suggest that listing 

fading is indeed a viable instructional approach in combina-

torics, and are consistent with the general view that “fading” 

from grounded to formal representations is an effective 

strategy, especially in comparison to the reverse sequence. 

However, this conclusion must be qualified in two re-

spects. First, despite its strong performance, the listing fad-

ing condition showed no advantage over the pure formula 

condition. Thus, the results do not support a strong claim as 

to the necessity of including outcome listing in combinator-

ics instruction. Second, for far transfer problems, no signifi-

cant effect of training condition was found. Thus, the results 

do not support any claim that listing fading leads to more 

flexible knowledge and thus greater far transfer than either 

pure formula or listing introduction instruction. 

During training, while participants virtually always fol-

lowed instructions to use numerical calculations, they often 

did not use outcome listing when instructed to do so. This 

apparent resistance to outcome listing may result from sim-

ple unfamiliarity, or from a belief that numerical methods 

are superior and/or more appropriate for problems in this 

domain. Resistance to grounded representations by students 

with prior exposure to formal methods has also been found 

in the domain of algebra equation solving (van Reeuwijk, 

1995). Thus, students may not spontaneously reap whatever 

benefits are to be gained from exposure to grounded repre-

sentations in combinatorics. Teacher intervention may be 

crucial to realizing any such benefits. 

General Discussion 

The two experiments described herein investigated the ef-

fects on near and far transfer performance of instruction 

employing grounded and formal representations in the 

mathematics of combinatorics. Outcome listing and combi-

natorics formulas were taken as examples of grounded and 

formal representations, respectively. Instruction involving 

formulas only led to rates of near and far transfer equal or 

superior to the best results produced by instruction involv-

ing outcome listing. Other studies of combinatorics learning 

have also found either no advantage of grounded representa-

tions, or even an actual advantage for formulas (e.g. 

Kolloffel, 2008). Clearly, formulas remain an effective, 

probably essential, element of combinatorics instruction. 

Nevertheless, the present results do suggest that grounded 

representations such as outcome listing may have potential 

benefits as well. Instruction employing only outcome listing 

resulted in moderate or poor transfer in both experiments. 

However, in the listing fading condition of Experiment 2, 

instruction using both listing and formulas resulted in as 

much transfer as that using formulas only, and more near 

transfer than that using listing only. It is reasonable to as-

cribe some positive effect to the listing part of that instruc-

tion, because if it had none – if only the formula part was 

effective – then its effects on transfer should have been infe-

rior rather than equal to those of pure formula instruction, 

which included twice as much exposure to formulas. 
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The listing fading condition of Experiment 2 also led to 

more near transfer than the listing introduction condition. 

This result is consistent with the general view that introduc-

ing grounded representations before, rather than after, for-

mal ones leads to better learning outcomes (Goldstone & 

Son, 2005; Koedinger et al, 2008). One possible explanation 

is that grounded representations provide learners with intui-

tively comprehensible scaffolding on which they can subse-

quently build formal knowledge. Another explanation, dis-

cussed further below, is that learners, if first exposed to 

formal representations, may perceive grounded representa-

tions as irrelevant and consequently ignore them. Of course, 

these two possibilities are not mutually exclusive. 

Instruction involving outcome listing was predicted to 

promote far transfer more than formulas-only instruction, on 

the grounds that learners would find lists more intuitive and 

flexible than formulas. One might also make the same pre-

diction on the basis that, relative to formulas alone, outcome 

lists should promote greater conceptual understanding, on 

which far transfer presumably relies (Rittle-Johnson & 

Alibali, 1999). However, this prediction was not confirmed. 

Rates of far transfer did not differ by training condition in 

either of the experiments reported. This negative result 

might have been caused by a floor effect in Experiment 1, 

but not in Experiment 2, in which significant far transfer 

was observed. Outcome listing seems to have conferred no 

particular advantage for far transfer. 

The absence of such an advantage may indicate that out-

come listing simply does not, as supposed, conduce to more 

flexible knowledge or greater conceptual understanding of 

combinatorics. However, it is also possible that the potential 

cognitive benefits of outcome listing were diluted by re-

sistance to this representation on the part of some partici-

pants. Consistent with this interpretation, participants in 

Experiment 2 often did not use outcome listing when in-

structed to do so, especially after prior exposure to formulas. 

Understanding the degree to which such resistance exists, 

and the reasons behind it, would be crucial to successful use 

of outcome listing in combinatorics instruction, and by 

analogy, of grounded representations in instruction in other 

areas of mathematics as well. 

One possible reason why learners might resist the use of 

outcome listing in combinatorics is that they perceive it as 

non-mathematical and irrelevant to the “real” (i.e. formal) 

solution methods. However, outcome lists must be relevant 

to combinatorics formulas at least in the sense that the two 

interact in learners’ minds, as if they did not, it would not 

matter in what order they were encountered. In Experiment 

2, such interaction was relatively uncontrolled: participants 

in the mixed conditions were simply exposed to both repre-

sentations in sequence. Instruction that more actively en-

couraged learners to integrate their knowledge of alternate 

representations to form coherent conceptual understanding 

would likely increase the benefits of using both representa-

tions. Such integration might be achieved through drawing 

explicit connections between corresponding elements of 

alternate representations and / or by practice in translating 

from each representation to the other. The potential of such 

methods to increase the benefits of grounded representations 

to mathematics instruction is likely to be a fruitful direction 

for further research. 
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