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Abstract

Two experiments examined the differential effects of ground-
ed and formal representations on learning of mathematics.
Both involved combinatorics, using outcome listing and com-
binatorics formulas as examples of grounded and formal rep-
resentations, respectively. Experiment 1 compared perfor-
mance on near and far transfer problems following instruc-
tions involving listing or formulas. Instruction in formulas led
to more near transfer, while far transfer performance did not
differ by condition. Experiment 2 compared performance fol-
lowing four types of instruction: listing only, formulas only,
listing fading (listing followed by formulas), and listing intro-
duction (formulas followed by listing). The listing fading
condition led to performance on par with the formulas only
condition, and for near transfer problems, significantly higher
than the listing introduction and pure listing conditions. The
results support the inclusion of grounded representations in
combinatorics instruction, and suggest that such representa-
tions should precede rather than follow formal representations
in the instructional sequence.
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Background

Alternate Representations in Mathematics

Mathematical ideas often admit of alternate representa-
tions. Much research has investigated the differential effects
of mathematics instruction based on formal representations,
such as equations, or more grounded representations, such
as diagrams. Formal representations such as algebraic equa-
tions have been found, in some contexts, to promote learn-
ing and transfer better than grounded representations. One
possible reason is that idealized or abstract representations
may better draw attention to underlying logical structure,
while perceptually rich representations distract from it
(Sloutsky, Kaminski, & Heckler, 2005). There is also evi-
dence that using concrete problems to learn mathematical
concepts may inhibit transfer (Bassok & Holyoak, 1989).

Additionally, it is possible that problems represented in
abstract symbolic form are simply easier to solve than those,
such as story problems, that refer to concrete entities. This
view seems prevalent among educators: in one survey of
primary and secondary mathematics teachers, a majority
believed that their students found story problems more chal-
lenging than mathematically isomorphic equation problems
(Nathan, Long, & Alibali, 2002). The same belief is reflect-
ed in the equations-before-story problems sequence preva-
lent in mathematics textbooks. The rationale seems to be

that story problems must be converted into equations in or-
der to solve them, making equation problems a priori easier.

In reality, however, primary and secondary school stu-
dents perform better on simple story problems than on
mathematically equivalent equation problems (Koedinger &
Nathan, 2004), while the reverse trend obtains only for more
complex problems (Koedinger et al, 2008). Story problems
seem to encourage the use of certain intuitions and informal
solution strategies that, relative to standard algebraic proce-
dures, lead to greater success on simpler problems. Algebra-
ic procedures lead to greater success on more complex prob-
lems for which informal strategies are less feasible. In this
domain, neither grounded nor formal representations are
simply preferable to the other; each has its own strengths.

If simpler problems are facilitated by grounded, and com-
plex problems by formal, representations, then beginning
with grounded representations and proceeding to more for-
mal representations may be a sound pedagogic strategy.
Such an approach has been advocated by Freudenthal
(1991) and also derives support from research on “concrete-
ness fading,” in which learners are exposed first to concrete
instances of concepts, and later to more idealized represen-
tations. McNeil and Fyfe (2010) trained students on the idea
of modular arithmetic using either concrete, idealized, or
concrete followed by idealized, representations. Students in
the last condition showed the best performance on novel
transfer problems. Similar benefits of concreteness fading
have been shown for understanding of complex systems
principles (Goldstone & Son, 2005).

The Combinatorics Domain

The present study uses the domain of combinatorics as a
testing ground to examine the differential effects of instruc-
tion using formal and grounded representations on learning
and transfer. From a pedagogic standpoint, combinatorics
plays an important role both in mathematics education and
in education more generally. In mathematics education,
combinatorics is fundamental to the theory of probability
and statistics, which has a wide range of practical applica-
tions. More generally, insofar as combinatorics requires a
systematic consideration of what is possible, independent of
what actually is, its mastery is considered to be one step in
in the general development of abstract reasoning capabilities
(Inhelder & Piaget, 1958).

Figure 1 shows an example of one type of combinatorics
problem: sampling with replacement (SWR). SWR prob-
lems may be solved by using the formula m", where m is the
number of items in the set being sampled, and n is the num-
ber of times sampling occurs (Figure 1a). In addition to such
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formal expressions, mathematics students often employ a
range of more grounded visual representations to solve such
problems (Corter & Zahner, 2007). One such representation
is outcome listing (Figure 1b). A complete list of outcomes
may be generated through a systematic strategy such as the
“odometer” strategy, which involves exhaustively varying
the outcome for a single sampling event while holding the
outcomes of all the other sampling events constant. Another
category of combinatorics problems is permutations (PER)
problems. PER problems, like SWR problems, admit of
solution either by a formula — m!, where m is the number of
items being permuted — or by a systematic listing strategy.

A marketing research company asks people to taste three different brands' pizza (Domino's,
Edwardo's, and Pizza Hut) and then asks which one they liked the best. If the company
surveys TWO people, how many different results are possible?

(a) 32=3x3=9

(b) DD ED PD
DE EE PE
DP EP PP

Figure 1. A combinatorics problem.

The distinction between standard combinatorics formulas
and outcome listing corresponds to the more general distinc-
tion between formal and grounded representations in math-
ematics. Clearly, combinatorics formulas constitute formal
representations. By contrast, lists of possibilities are more
grounded than formulas, because the former involve actual
numerosities, the latter only number symbols — for example,
where the formulas use the numeral 3, the lists actually
show three different letters. (The fact that letters are also
symbols does not detract from the general point that out-
come lists represent number in a more grounded way than
do combinatorics formulas.) The present study explores the
effects of instruction employing these alternate representa-
tions on learning and transfer.

Experiment 1

In this experiment, participants were shown worked ex-
amples of combinatorics story problems belonging to one
category — either SWR or PER. Subsequent performance on
novel problems of the same category was used as a measure
of “near transfer,” while subsequent performance on the
other category was used as a measure of “far transfer.” Near
transfer, thus defined, is not trivial: even if the transfer prob-
lems belong to the same category used during instruction,
differences in their “stories” can make the transfer problems
challenging. Far transfer, thus defined, is still more difficult:
it requires participants not only to navigate differences be-
tween the stories of the worked examples and those of the
transfer problems, but also to derive entirely novel solution
methods, presumably by adapting the methods shown dur-
ing instruction. Such adaptation might be possible due to the
structural similarities between the two problem categories
(Figure 2). The formal solutions for both categories involve
multiplying a sequence of numbers beginning with the
number of elements in the set from which selections are

made, with the total number of multiplications equal to the
number of elements selected.

Sampling with Replacement ,—1—\

(m elements sampled n times) m" = m x m x .. x m

Permutations $ $ 1;

(m elements put in order) m! = m x m-1 x x 2 x 1
\

Figure 2. Correspondence between SWR and PER formulas.

This experiment was designed to investigate the differen-
tial effects of formula- and listing-based instruction on near
and far transfer performance. Insofar as combinatorics for-
mulas make explicit the mathematical structure common to
all problems of the same category, while outcome listing
does not, we might expect instruction in formulas to result
in more near transfer than instruction in outcome listing. As
for far transfer, however, formal instruction might fare less
well. It is not at all evident how to derive the PER formula
from the SWR formula or vice versa. Adaptation of the cor-
responding listing procedures may prove easier for learners.
Many aspects of a systematic listing strategy apply equally
well to either problem type, and any adaptation required
may be relatively intuitive based on the common everyday
experience of arranging physical objects in sequence.

This experiment also tested a secondary prediction re-
garding the effects of formula- and listing-based instruction
on problems of varying degrees of complexity. Koedinger et
al’s (2008) results suggest that formal solution methods
might show an advantage on relatively complex combinator-
ics problems. By contrast, the more intuitive approach of
listing outcomes might be more effective for simpler prob-
lems. In sum, formula-based instruction was predicted to
lead to better performance on near transfer and complex
problems, while listing-based instruction was predicted to
show an advantage on far transfer and simple problems.

Materials and Methods

Participants. 126 undergraduate and graduate students from
Indiana University participated in the experiment, including
78 students who participated for course credit, and 48 stu-
dents who participated for a financial incentive.

Materials. Two sets of combinatorics story problems were
developed for testing participants. Each set consisted of four
problems: two SWR and two PER, with one “simple” and
one “complex” problem for each category. The complex
problems required solution of three simple sub-problems
followed by summation of their solutions. For example,
finding how many sequences of the notes C, E, and G are
possible that are 5 notes long (answer: 3°=243) constitutes a
simple SWR problem, while finding how many such se-
guences are possible that are 3, 4, or 5 notes long (answer:
3%+3*+3°=351) constitutes a complex SWR problem. The
two test problem sets were mathematically isomorphic, but
used different cover stories.
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In addition to the test problem sets, several training se-
quences were developed. Each sequence consisted of three
story problems, all belonging to the same category, and a
Powerpoint slideshow presenting worked solutions. The
sequences differed in terms of problem category — SWR or
PER — and method used in the worked solutions — either
combinatorics formulas or outcome listing, as described in
the Background. For a given problem category, the same set
of problems were used for the formula and listing versions.
There were thus four training sequences altogether: one for
each possible combination of category and solution method.

Procedure. The study employed a pretest — training — post-
test design. Participants were given paper questionnaires
consisting of one of the test problem sets, referred to as
“pretest,” one training problem set, and the other test prob-
lem set, referred to as “posttest.” Which test problem set
was used as pretest and which as posttest, and which prob-
lem category was used for the training problem set, were
assigned randomly. Participants were randomly assigned to
view either the formula or the listing version of the worked
solutions to their training problem set, and worked in front
of computers containing the appropriate Powerpoint
slideshows. The type of solution method viewed constitutes
the principal between-subjects variable of the study, and is
henceforth referred to as “training condition.”

Participants were asked to solve the problems in order and
not to return to any problems after completing them. They
were encouraged to show their work as much as possible.
Participants were instructed to view the slideshows on the
computers when directed to do so by the paper questionnaire
(i.e. when solving the corresponding training problems).

Coding. Pretest and posttest responses were classified as
either correct or incorrect. Numeric expressions that evalu-
ated to the correct answer, such as “3x3x3x3x3” for “243”,
were accepted as correct. Correct answers were assigned a
value of 1, and incorrect answers a value of 0. A transfer
score was calculated for each of the four test problem types
by subtracting the scores for the pretest problems from those
for the corresponding posttest problems. Thus, each partici-
pant received a transfer score for each problem type ranging
from -1 (decrement) to 0 (no change) to 1 (improvement).

Transfer performance data was re-categorized according
to transfer distance without regard to problem category. In
other words, the data for PER problems were classified as
near transfer for participants trained on PER and as far
transfer for those trained on SWR, and vice versa for SWR
problems. Thus, each participant received four transfer
scores: one for each combination of transfer distance (near
or far) and problem complexity (simple or complex).

Results and Discussion

Results. Mean transfer performance data is shown in Figure
3. One-sample two-tailed t-tests conducted for each problem
type found that transfer performance was significantly
greater than 0 (with the criterion a=.05) for both near trans-

fer problems, but not for either far transfer problem. Within
each training condition, improvement was significant in the
formula condition for simple near transfer only, and in the
listing condition for complex near transfer only.

m Listing m Formula

0.50
0.40 -+

0.30 -

Ziij“H#

(0.10) -

(0.20)

Transfer Performance (Post - Pre Score)

Far Transfer /
Complex

Near Transfer / Near Transfer/  Far Transfer /
Simple Complex Simple

Figure 3. Mean Transfer Performance.

The data were entered into a linear mixed model, with
performance change as the dependent variable, transfer dis-
tance and problem complexity as within-subjects variables,
training condition as a between-subjects variable, and pre-
test score as a covariate. There was a significant effect of
distance, indicating more improvement for near transfer
(0.16) than for far transfer (0.04), F(1,361.1)=24.6, p<.001.
The main effects of problem complexity and training condi-
tion were not significant. However, there was a significant
interaction between distance and condition, F(1,360.3)=4.5,
p=.035, reflecting an advantage of the formula condition on
near transfer (formula: 0.19, listing: 0.13) but little differ-
ence between conditions on far transfer (formula: 0.04, list-
ing: 0.05). No other interactions reached significance.

Discussion. For near transfer problems, both formula and
listing instruction resulted in significant posttest improve-
ment, and the observed interaction effect suggests a relative
advantage for formula instruction, consistent with our pre-
dictions. For far transfer problems, significant posttest im-
provement was not observed in either condition. This appar-
ent floor effect precludes any claim as to the superiority of
either type of instruction for promoting far transfer.

Aside from the sheer difficulty of the far transfer prob-
lems — an issue addressed in the next experiment — there are
several possible explanations for why listing training failed
to show the predicted advantage over formula training. First,
it is possible that participants actively resisted the outcome
listing approach. Although some participants in the listing
condition did produce outcome lists on posttest, many did
not, preferring to use purely numerical calculations. One
such participant commented that she would have preferred
simply being told how to do the problems — that is, how to
solve them with formulas — reflecting a belief that outcome
listing was not a “real” solution method. Such a belief might
relate to the greater efficiency of formulas, or to a greater
emphasis on formulas in previous education.
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Second, participants in the listing condition may have
been impeded by the need to integrate lists with numerical
calculations. The test problems (though not the training
problems) involved numbers sufficiently large that solution
by outcome listing alone was not feasible in the time pro-
vided. Use of outcome listing would require creation of a
partial list followed by some form of numerical operation,
such as multiplication of the partial list size by the number
of partial lists that would occur in a complete list. This addi-
tional step might be challenging, either simply by virtue of
being an additional step, or because it requires integration of
two very different modes of thought: grounded and formal.

Experiment 2

Although it is useful to know how instruction based on
formalisms alone compares to instruction using only
grounded representations, actual classroom instruction often
involves a mixture of both types. Some existing research has
supported this approach, showing a learning advantage for
instruction involving both concrete and idealized representa-
tions over instruction involving only one or the other (Gold-
stone & Son, 2005; McNeil & Fyfe, 2010). Goldstone and
Son (2005) additionally found effects of order: “concrete-
ness fading,” i.e. beginning with concrete representations
and proceeding to idealized ones, worked better than the
reverse sequence, “concreteness introduction.” Van Reeu-
wijk (1995) employed a similar “progressive formalization”
approach, beginning with grounded representations and pro-
ceeding to algebraic formalisms.

Experiment 2 explored the effectiveness of such ap-
proaches in the context of combinatorics, using the same
instances of grounded and formal representations as in Ex-
periment 1: outcome lists and combinatorics formulas. Two
specific hypotheses were suggested by the above-mentioned
literature on concreteness fading and progressive formaliza-
tion. First, better transfer performance was predicted after
instruction incorporating both lists and formulas than after
instruction employing only one or the other. Second, for
instruction employing both lists and formulas, better per-
formance was expected when lists were introduced before
formulas rather than after.

Materials and Methods

Participants. 111 undergraduate students from Indiana
University participated in the experiment for course credit.

Materials. Like Experiment 1, this experiment employed
two test problem sets and a training sequence. All four test
problems belonged to the PER category and involved the
same cover stories used for this category in Experiment 1.
The first two problems were categorized as “near transfer”
because they could be solved by direct application of the
solution method shown during training. The first of these
was mathematically isomorphic to one of the training prob-
lems, while the second was identical to the “simple” PER
problem used in Experiment 1. The next two problems were
categorized as “far transfer” because they required some

adaptation of the solution method shown in training. The
first of these was identical to the “complex” PER problem
used in Experiment 1, while the second was a novel problem
requiring permutation of a partial subset — a less “distant”
far transfer problem than that used in Experiment 1.

As in Experiment 1, the training sequences consisted of
combinatorics story problems accompanied by Powerpoint
slideshows. The sequences involved four story problems, all
belonging to the PER category, the first two using one cover
story and the second two using a different cover story. There
were four versions of the accompanying slideshows. (1) The
pure listing version demonstrated solution of all four prob-
lems by systematic listing of possible outcomes. (2) The
pure formula version demonstrated solution by numerical
computation. (3) The listing fading version used outcome
lists for the first two problems and formulas for the latter
two. (4) The listing introduction version employed the same
content as in (3), but in the reverse sequence. Both formula
and listing solution methods were presented in a slightly
different way from that in Experiment 1.

Procedure. The study employed a pretest — training — post-
test design similar to that used in Experiment 1, with two
important differences. First, SWR problems were not used,
so all participants received only PER problems in both the
test and training problem sets. Second, the internal sequence
of training problems was rotated among participants, inde-
pendently of the type of training received, by randomly as-
signing which pair of problems came first and which se-
cond. The method of data collection was also similar to that
used in Experiment 1, with two important differences. First,
all problems were presented via computer, and participants
were asked to show their work and enter their answers di-
rectly into the computer. Second, participants were allowed
to use calculators, which were shown on the computer
screen beside the experiment interface.

Coding. Pretest performance, posttest performance, and
transfer performance were calculated for each test problem
in the same way as for Experiment 1. The data from the first
two test problems were combined to derive aggregate scores
for near transfer, and those from the second two problems to
derive scores for far transfer. Additionally, participants’
shown work for each problem was assigned one or more
codes according to the solution method(s) used. The analy-
sis presented here concerns only two of the codes employed
for this task: “numerical calculation” and “outcome listing.”

Results and Discussion

Results. Mean transfer performance data are shown in Fig-
ure 4. One-sample two-tailed t-tests conducted for each
transfer distance and training condition found that transfer
performance was significantly higher than zero for all con-
ditions except listing introduction for near transfer, and for
all conditions except pure listing for far transfer, using the
criterion a=.05.
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Figure 4: Mean Transfer Performance.

The data were entered into a linear mixed model, with
performance change as the dependent variable, transfer dis-
tance as a within-subjects variable, training condition as a
between-subjects variable, and pretest score as a covariate.
There was a significant effect of distance, indicating more
improvement for near transfer (0.22) than for far transfer
(0.12), F(1,125.6)=42.2, p<.001. The main effect of training
condition was not significant, but there was a significant
interaction between distance and condition, F(1,107.2)=4.3,
p=.006. The same model run for near transfer problems only
showed a significant effect of training condition,
F(3,106)=2.9, p=.04. Pairwise comparisons between condi-
tions for near transfer showed significantly greater transfer
performance in the listing fading (0.36) than the pure listing
(0.22) and listing introduction (0.05) conditions,
F(1,52)=4.4, p=.040 and F(1,54)=6.5, p=.013 respectively.
No other pair of conditions differed significantly for near
transfer. The same model run for far transfer problems only
found no significant effect of training condition.

Finally, the codes assigned to participants’ shown work
were analyzed to determine whether participants actually
used the methods they were instructed to use on the training
problems. Participants were considered to have followed
instructions if they used the instructed method at least once
for both the first and second pairs of training problems. By
this standard, participants followed instructions most in the
pure formalism condition (100%), followed by listing fading
(57%), pure listing (52%), and listing introduction (28%).
The difference among conditions was significant, p<.001 by
Pearson’s Chi-Square, and was primarily driven by low us-
age of outcome listing in the latter three conditions.

Discussion. This experiment was designed to explore the
effectiveness of a listing fading approach to combinatorics
instruction, in which a grounded representation — outcome
lists — precedes a corresponding formal representation — a
combinatorics formula. Consistent with our predictions,
listing fading led to the highest average transfer perfor-
mance of the conditions tested, and for near transfer prob-
lems, showed a significant advantage not only over pure
listing, but also over listing introduction. The latter ad-
vantage is striking because listing fading and listing intro-

duction employed the same materials, differing only in the
sequence of presentation. These results suggest that listing
fading is indeed a viable instructional approach in combina-
torics, and are consistent with the general view that “fading”
from grounded to formal representations is an effective
strategy, especially in comparison to the reverse sequence.

However, this conclusion must be qualified in two re-
spects. First, despite its strong performance, the listing fad-
ing condition showed no advantage over the pure formula
condition. Thus, the results do not support a strong claim as
to the necessity of including outcome listing in combinator-
ics instruction. Second, for far transfer problems, no signifi-
cant effect of training condition was found. Thus, the results
do not support any claim that listing fading leads to more
flexible knowledge and thus greater far transfer than either
pure formula or listing introduction instruction.

During training, while participants virtually always fol-
lowed instructions to use numerical calculations, they often
did not use outcome listing when instructed to do so. This
apparent resistance to outcome listing may result from sim-
ple unfamiliarity, or from a belief that numerical methods
are superior and/or more appropriate for problems in this
domain. Resistance to grounded representations by students
with prior exposure to formal methods has also been found
in the domain of algebra equation solving (van Reeuwijk,
1995). Thus, students may not spontaneously reap whatever
benefits are to be gained from exposure to grounded repre-
sentations in combinatorics. Teacher intervention may be
crucial to realizing any such benefits.

General Discussion

The two experiments described herein investigated the ef-
fects on near and far transfer performance of instruction
employing grounded and formal representations in the
mathematics of combinatorics. Outcome listing and combi-
natorics formulas were taken as examples of grounded and
formal representations, respectively. Instruction involving
formulas only led to rates of near and far transfer equal or
superior to the best results produced by instruction involv-
ing outcome listing. Other studies of combinatorics learning
have also found either no advantage of grounded representa-
tions, or even an actual advantage for formulas (e.g.
Kolloffel, 2008). Clearly, formulas remain an effective,
probably essential, element of combinatorics instruction.

Nevertheless, the present results do suggest that grounded
representations such as outcome listing may have potential
benefits as well. Instruction employing only outcome listing
resulted in moderate or poor transfer in both experiments.
However, in the listing fading condition of Experiment 2,
instruction using both listing and formulas resulted in as
much transfer as that using formulas only, and more near
transfer than that using listing only. It is reasonable to as-
cribe some positive effect to the listing part of that instruc-
tion, because if it had none — if only the formula part was
effective — then its effects on transfer should have been infe-
rior rather than equal to those of pure formula instruction,
which included twice as much exposure to formulas.
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The listing fading condition of Experiment 2 also led to
more near transfer than the listing introduction condition.
This result is consistent with the general view that introduc-
ing grounded representations before, rather than after, for-
mal ones leads to better learning outcomes (Goldstone &
Son, 2005; Koedinger et al, 2008). One possible explanation
is that grounded representations provide learners with intui-
tively comprehensible scaffolding on which they can subse-
quently build formal knowledge. Another explanation, dis-
cussed further below, is that learners, if first exposed to
formal representations, may perceive grounded representa-
tions as irrelevant and consequently ignore them. Of course,
these two possibilities are not mutually exclusive.

Instruction involving outcome listing was predicted to
promote far transfer more than formulas-only instruction, on
the grounds that learners would find lists more intuitive and
flexible than formulas. One might also make the same pre-
diction on the basis that, relative to formulas alone, outcome
lists should promote greater conceptual understanding, on
which far transfer presumably relies (Rittle-Johnson &
Alibali, 1999). However, this prediction was not confirmed.
Rates of far transfer did not differ by training condition in
either of the experiments reported. This negative result
might have been caused by a floor effect in Experiment 1,
but not in Experiment 2, in which significant far transfer
was observed. Outcome listing seems to have conferred no
particular advantage for far transfer.

The absence of such an advantage may indicate that out-
come listing simply does not, as supposed, conduce to more
flexible knowledge or greater conceptual understanding of
combinatorics. However, it is also possible that the potential
cognitive benefits of outcome listing were diluted by re-
sistance to this representation on the part of some partici-
pants. Consistent with this interpretation, participants in
Experiment 2 often did not use outcome listing when in-
structed to do so, especially after prior exposure to formulas.
Understanding the degree to which such resistance exists,
and the reasons behind it, would be crucial to successful use
of outcome listing in combinatorics instruction, and by
analogy, of grounded representations in instruction in other
areas of mathematics as well.

One possible reason why learners might resist the use of
outcome listing in combinatorics is that they perceive it as
non-mathematical and irrelevant to the “real” (i.e. formal)
solution methods. However, outcome lists must be relevant
to combinatorics formulas at least in the sense that the two
interact in learners’ minds, as if they did not, it would not
matter in what order they were encountered. In Experiment
2, such interaction was relatively uncontrolled: participants
in the mixed conditions were simply exposed to both repre-
sentations in sequence. Instruction that more actively en-
couraged learners to integrate their knowledge of alternate
representations to form coherent conceptual understanding
would likely increase the benefits of using both representa-
tions. Such integration might be achieved through drawing
explicit connections between corresponding elements of
alternate representations and / or by practice in translating

from each representation to the other. The potential of such
methods to increase the benefits of grounded representations
to mathematics instruction is likely to be a fruitful direction
for further research.
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