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Abstract

Applications of Bayesian inference to human decision-
making have met with mixed success, but new theoretical
developments and experimental paradigms are helping to
form a clearer picture of the role that inference plays in
human cognition. We combine the latest ideas to provide
evidence that at a computational level, the mind’s ability to
make predictions may be grounded in Bayesian theory. Our
results support the idea that the mind’s capacity for statistical
reasoning is more sophisticated than previously hypothesized.

Keywords: Bayesian inference; iterated learning; prediction;
prior distribution.

Introduction

Imagine trying to predict your final grade in a math course,
given only your grade on one homework assignment of
many. Or consider being stuck in a traffic jam for 30
minutes, and deciding whether to wait until the traffic
subsides or to exit the freeway and take slower surface
streets. On a daily basis, we are bombarded by these types
of situations in which we must make a decision on the basis
of a very sparse set of data, often just one relevant
observation. A powerful paradigm in cognitive science is
the heuristics and biases approach (Gigerenzer, 1991, p. 84),
which suggests that humans have difficulty making
probability assessments. In particular, Tversky (1974)
suggests that people cannot produce correct posterior
probabilities on a simple Bayesian inference task with just 2
hypotheses (p. 1125). Instead, he claims, they produce
estimates by transforming given data with simple linear or
constant functions, a phenomenon known as the anchoring
bias. He cites an experiment in which subjects were given
either the number 10 or the number 65, and were asked if
the number under- or over-estimated the percentage of
African countries in the United Nations. Those who were
given 10 as a starting number gave an average of 25 as the
true answer, and those who started with the number 65 gave
an average of 45 as the true answer. The anchoring effect
explains this bias, Tversky claims, because people’s
responses depended heavily upon initial values.

Not content with Tversky’s classical view, some
researchers now believe that people use given data and prior
knowledge to make intelligent estimates in accordance with
statistical theory. After all, if somebody asks you a question
such as, “Do you think the population of Russia is greater or
fewer than 180 million?” you assume that the person’s given
estimate, 180 million, is not purely random and serves as a
reasonable initial guess at the true answer. The estimate of
180 million is the only information you have, so why not
make use of it by treating it as given data?

When results such as these are analyzed from the
perspective of Bayesian inference, many of the biases
disappear. To perform a Bayesian inference on a set of data,
one first hazards a guess on the distribution of the data.
After observing some real-world data, the guessed
distribution is then revised — its mean, density, and overall
shape may differ considerably from the initial guess. When
the real-world data consists of a single datapoint, known as
a probe value, the median of the revised, or posterior,
distribution given the data is the optimal prediction.
Tenenbaum and Griffiths (2006) tested 350 college
students’ ability to predict the outcome of everyday events
(p. 767) by asking them questions such as such as, “Suppose
that in 2000 B.C. a certain pharach has been ruling Egypt
for 11 years. How long do you predict the total length of his
reign to be?” After aggregating the results, they found that
people’s responses closely matched the optimal predictions
given the single datapoint contained in the question. The
finding is remarkable because different phenomena have
wildly different distributions and thus very dissimilar
optimal prediction functions. Life spans are normally
distributed, movie run times follow a power-law
distribution, and durations of pharaoh reigns follow an
Erlang distribution, for example (see Figure 1). Tenenbaum
and Griffiths concluded that people implicitly store
knowledge of the distributions of these everyday
phenomena (p. 771), and use this knowledge to make
optimal predictions.

Mozer, Pashler, and Homaei (2008) presented the first
theoretical challenge to these findings. They claimed that
people’s responses followed real-world distributions only
when aggregated, as in Tenenbaum and Griffiths’ analysis
(p. 1134). As a demonstration of this effect, Mozer et al.
recalled a country fair in which hundreds of people were
asked to give the weight of an ox, and the average of their
responses differed from the true value by just one pound (p.
1134). Their minimum-of-k-samples, or Min(k), algorithm
produced the same results as in Tenenbaum and Griffiths’
experiment, even though it provided responses by simply
choosing the minimum value from a very sparse (just 2 or 3)
number of samples. Because the collection of everybody’s
limited number of real-world samples must match the actual
distribution of real-world data, their responses should also
match the appropriate distributions when aggregated. When
tested hundreds of times on Tenenbaum and Griffith’s
questions, the Min(k) algorithm’s responses gave near-
optimal predictions (p. 1145), even when assuming that
each person might have access to just 2 samples.

But because this algorithm assumes that prior knowledge
is contained in just 2 or 3 samples, it should perform poorly
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when one set of samples (i.e. one person) is used to answer
a large number of prediction questions — it would select
identical answers to almost all questions. To test this idea,
Griffiths and Kalish (2005) introduced iterated learning (p.
1), a paradigm in which a subject is repeatedly asked
prediction questions about one distribution. They argued
that in the perpetual process of gathering data, forming a
hypothesis, gathering more data, and refining the
hypothesis, the generation of each successive hypothesis
depends only upon the current hypothesis and the current
data. Thus, the hypotheses form a Markov chain whose
transitional probabilities eventually converge to the true
prior probability distributions, meaning that a subject’s
responses to successive prediction questions will approach
optimal predictions. In an iterated learning experiment,
Lewandowsky, Griffiths, and Kalish (2009) asked each of
35 subjects 160 prediction questions about 8 possible
distributions, randomly generating each question’s probe
value from between 1 and the previous question’s response
(p. 976). They claimed that only sampling from the true
prior distributions could have produced their finding that
each individual made optimal predictions. They also
considered the performance of the Min(k) algorithm, whose
responses ultimately failed to replicate the subjects’
performance on these prediction questions. As predicted,
Min(k) was only capable of producing identical answers for
most questions, whereas individual subjects’ predictions
demonstrated their knowledge of the true prior distributions.

However, Lewandowsky et al.’s analysis of individual,
and not aggregate, performance on prediction tasks was
limited by the fact that only 35 students participated, which
was enough to demonstrate that their paradigm could
discredit Min(k), but still not enough to thoroughly
understand the nature of individual performance on these
prediction tasks. Encouraged by their findings, we will
perform an experiment with a method very similar to theirs,
but with more participants and fewer experimental trials.
More participants will allow us to more clearly visualize the
distributions from which subjects selected their responses.
We use fewer experimental trials because Lewandowsky et
al. demonstrated that subjects were able to make optimal
predictions after only 4 or 5 trials for each distribution — this
means that the transition probabilities in the Markov chain
of hypotheses converges rapidly for these prediction tasks.
A web-based experiment will allow us both to reach more
participants and to consider responses from those who only
partially completed the experiment.

Experiment

Method

Participants 72 anonymous subjects participated in the
Web-based experiment, which was advertised on a popular
social networking site. It is likely that many of the
participants were college students. Further, analytics
revealed that the majority of participants were accessing the
internet through Brown University servers. 37 subjects

completed the experiment in full; the remaining 35 subjects,
who answered at least one question, responded to an
average of 9.8 questions each.

Apparatus and Design The experiment was implemented
using a PHP web application which stored responses in a
MySQL database. Subjects were presented with 4 chains of
10 prediction questions each. The 4 chains corresponded to
the 4 distributions: life spans of males, total movie box
office grosses in US dollars, length of pharaohs’ reigns in
ancient Egypt, and U.S. Representative term lengths. Each
question contained a statement and a probe value, t. An
example question for the movie grosses distribution with
t=6 would be, “Imagine you hear about a movie that has
taken in 6 million dollars at the box office, but don’t know
how long it has been running. What would you predict for
the total amount of box office intake for that movie, in
millions of dollars?” The first question in each chain was
seeded with a value randomly chosen from the set of 5
possible seed values for the chain, given in Table 1. The
value of t for the nth question in each chain was an integer
randomly selected from the interval [1, t,], where t,; was
the value of t for the (n-1)th question in the chain. Finally,
questions from all chains were mixed and presented in
random order.

Table 1: The 4 phenomena, their distributions in nature,
and the seed values used to initiate the chains.

Chain Distribution Seed Values

Life Spans Gaussian 18, 39, 61, 83, 96
Movie Grosses Power Law 1, 6, 10, 40, 100
Pharaohs’ Reigns  Erlang 1,3,7,11,23
U.S. Rep. Terms Erlang 1,3,7,15,31

Procedure Upon visiting the website where the web
application was hosted, subjects were greeted with a
welcome page indicating that the experiment consisted of 40
questions that should be answered in no more than a few
seconds each, and that all responses would be kept
anonymous. If they agreed to these terms, they clicked on a
link that took them to the first question. Subjects entered
their answers in a text box and were then taken to the next
question’s page. After completing all 40 questions, the
subject was taken to a page containing a brief thank-you
message.

Results

Responses from every subject who answered at least one
question were included in the analyses of aggregate
performance, but only those subjects who fully completed
all 40 questions were considered in the individual analyses.
Website analytics revealed that, excluding the first five
questions and the last question, subjects spent an average of
9 seconds on each question (the figure includes page
loading time, which may have been 1 second or more). The
web-based experiment included basic controls to ensure
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Figure 1: On the top row are the actual distributions of the
phenomena. On the bottom row are the distributions of the
1,823 datapoints entered by participants.

high-quality data. For example, subjects could not leave a
question blank, or enter a response that was less than the
probe value. In total, 1,828 responses to questions were
recorded. Of these, 2 responses to pharaoh reign questions
and 3 responses to U.S. representative questions were
greater than 100 and were removed. All of the remaining
1,823 responses were considered in the analyses of
aggregated data.

Though it is difficult to enforce the rule that each person
should participate in the experiment only once, the nature of
this experiment allows the same person to repeatedly
participate and still generate prediction data that can be
analyzed. Participants were never given the correct
(optimal) predictions after answering each question, so the
act of taking the experiment does not improve their ability
to make predictions. Only 2 IP addresses were duplicated
among those who answered at least one question, and these
could still each be 2 different participants using the same
computer.

We wanted to test both the hypotheses that the wisdom of
crowds effect would still hold across a variety of
distributions, and that each individual’s responses
represented optimal predictions. Figure 1 shows the
distributions of all responses entered by all participants
underneath the true distributions of the phenomena, which
appear to moderately correspond. To verify this
correspondence, we created quantile-quantile, or Q-Q, plots
of the 4 phenomena, to help us compare the observed and
true distributions. In a Q-Q plot, the quantiles of the first
dataset are plotted against the same quantiles of the second
dataset — if the plotted points lie on the line y = x, then the
data very likely have the same distribution. These Q-Q plots
are shown in Figure 2.

That people’s responses and real-world datapoints come
from similar distributions is confirmed by the correlation
coefficients between 25-quantiles of the observed and true
distributions for each type of phenomena: R? = .95 for
lifespans, 0.99 for movie grosses, 0.95 for pharaoh reigns,
and 0.97 for representative term lengths.

An optimal prediction curve for a given distribution is a
function whose input is an actual instance from the
population, and whose output is the predicted “total life” of
that instance, based on the population’s distribution. We
define the total life to be the median of the posterior
distribution when Bayesian inference is performed using the
input value as the sole observed datapoint.

Different distributions produce wildly different optimal
prediction curves. A simple application of Bayes’ Law with
a power-law prior reveals that the optimal prediction curve
is a straight line passing through the origin, with slope
dependent on the parameter of the power function
(Tenenbaum and Griffiths, 2006, p. 773). Similarly, the
optimal prediction curve for Erlang-distributed data is a
straight line with slope 1 and y-intercept dependent on the
Erlang parameter. The optimal prediction curve for
normally-distributed data has no simple analytical form. We
should expect optimal prediction curves with shapes similar
to these for our real-world data. Figure 3 shows all of the
ordered pairs of datapoints, with the probe value in the
guestion as the independent variable, and the subjects’
response as the dependent variable. We fit a cubic
polynomial to the lifespan data as an approximation for its
optimal prediction curve. That it reasonably matches the
true optimal prediction curve for actual lifespan data,
despite the curve being fit to over 450 datapoints, supports
the idea that people are capable of making optimal
predictions about life spans. We performed a linear
regression on the movie grosses, pharaoh reigns, and
representative term length data, since we expect their
optimal prediction curves to be linear. For movie grosses,
we obtained a line with y-intercept 2.1379. Considering the
range of data values, this line very nearly passes through the
origin. However, it is much steeper than the true optimal
prediction curve. This is representative of a power-law
distribution with a longer tail — one in which more movies
earned large amounts of money. The real-world movie data
were gathered in 2003, so it is not unreasonable to expect
that people’s prior distributions for movies have been
adjusted recently to account for the growing number of
billion-dollar blockbusters. For pharaohs and representative
term lengths, we obtained lines with slopes 1.0223 and
1.2398, respectively, both of which do not pass through the
origin. The observed prediction curve for pharaohs is
consistently above the prediction curve for the actual data —
Tenenbaum and Griffiths (2006) also found that people
consistently but reliably overestimated the length of pharaoh
reigns (p. 771), explaining that they most likely did not
realize how low the average life span was in ancient Egypt,
which produced subjects’ overestimated predictions for the
length of pharaoh reigns.
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Figure 2: Q-Q plots of the distributions of responses entered by participants (observed) against the actual distributions (true)
for each phenomenon. We removed the top and bottom 3% of each distribution and used 4% increments to plot the quantiles.
If the points lie on the line y = x, then the two distributions are virtually identical. Any sort of linear correspondence,
however, indicates that the data may still come from similarly-shaped distributions with different parameters.

The nature of the Min(k) hypothesis suggests that the few
values in the long tail for movie distributions might just be
outliers that subjects enter for lower probe values, and not
optimal predictions. We counter by noting that for all
subjects whose seed value for movie questions was 1, the
highest probe value was 6 and the highest response was 10.
The responses for modest-grossing movies resemble a
power-law shape, with no outliers, suggesting that people do
sample from a power-law distribution even when the probe
values come from the densest part of the power law graph.

We must now test whether individual subjects were able
to make optimal predictions. For all 37 subjects who
completed the experiment, we should expect that even
though their prior distributions may not have the same
means, the line of best fit through their prediction data
should have positive slope. We would expect this even for
life span data, despite the fact that the optimal prediction
curve for normally-distributed data is not linear. We
performed linear regression on all 37 subjects for each of
the 4 chains, and found that the mean slope of the regression
line was above zero for all 4 chains. The results and
associated statistics are shown in Table 2. Moreover, the
slope for representative term lengths is very close to 1, in
accordance with the fact that the optimal prediction curve
for an Erlang distribution has slope 1. We were not able to
observe such remarkable results for pharaoh reigns, but we
note that the mean slope for subjects’ prediction curves for
pharaohs is significantly above 0. The mean slope for
lifespan prediction curves is slightly positive (0.1765) with
y-intercept approximately 69, which is expected if the true
optimal prediction curve is horizontal but tends slightly
upward for ages close to and greater than the mean of 76.
We observed dramatically higher levels of significance (as
indicated by the respective p-values) than Lewandowsky et
al. (2009) when they performed the same analysis for their
data (p. 988).

Discussion

Our experiment is but the most recent in a line of studies
that demonstrate people’s ability to make optimal
predictions when presented with a single datapoint. This
finding holds across data with different distributions, and
suggests that people might be able to perform quite
sophisticated Bayesian inference even without conscious
awareness. The first important conclusion from this
experiment is that because the 1,823 responses entered by
subjects closely matched the true distributions of the
respective datasets, we cannot attribute their responses to
the Wisdom of Crowds effect — subjects must have had at
least some familiarity with the true prior distributions of
data, beyond just a few relevant examples, in order to
consistently enter data that matched the real-world
distributions.

Both the large number of subjects and the number of
questions each subject answered allows us to more
accurately determine the methods by which humans make
predictions. Individual subjects’ prediction curves closely
resembled true optimal prediction curves, even with a
variety of seed values and probe values from each end of the
respective distributions, and the iterated learning paradigm
produced rapid convergence to prior distributions — even for
subjects who partially completed the experiment. This lends
some support in favor of the idea that humans store implicit
statistical knowledge about real-world distributions of data,
and then recall this knowledge to make predictions when
asked. More experimentation with this paradigm should
help form a clearer picture of the powers and limits of
human statistical inference.

Most subjects had at least some familiarity with the real-
world distributions used in these and previous experiments.
An important extension of these results would be the use of
the iterated learning paradigm to capture people’s statistical
knowledge for unfamiliar distributions, including data for
which it is difficult or impossible to determine a real-world
distribution. The proliferation of online prediction markets,
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Table 2: Summary of individual linear regression statistics for the 37 subjects who fully completed the experiment. We give
the mean slope and y-intercept of the 37 regression lines for each chain; the associated t-statistics with 36df; p-values for the
hypothesis that the mean slope is 0 against the hypothesis that it is different from 0; 95% confidence intervals for the slope;

and in the last column, the number of individuals for whom the line of best fit had non-positive slope.

Chain Mean Slope Mean Intercept  1-sample t p-value 95% CI Slope <0
Life Spans 0.1785 69.3968 4.3850 <10* (0.0959, 0.2610) 6
Movie Grosses 1.1277 22.0560 10.4560 <10 (0.9090, 1.3465) 2
Pharaohs’ Reigns 0.6514 17.6097 7.3599 <107 (0.4719, 0.8309) 5
U.S. Rep. Terms 0.9524 6.6026 15.0075 <10"° (0.8237,1.0811) 0

and their relatively high degree of success in making
predictions about unknown parameters, might serve as the
ideal place to test the power of iterated learning beyond
tightly-controlled experiments. Making use of our
individual capacity to perform optimal statistical inference
could dramatically improve collective prediction making,
and consequently our ability to make decisions in uncertain
conditions. After all, the intelligence of crowds depends
solely upon the intelligent individuals that constitute them.
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Figure 3. Red circles are question values (t) vs. subjects’ responses (ti). Solid blue lines represent true optimal prediction
curves for the real-world data. Dashed grey lines represent best-fit curves for experimental data. For normally-distributed
data, the optimal prediction curve has no simple analytic form, so we fit a cubic polynomial as an approximation. Optimal
prediction curves for the other 3 distributions are linear, so we fit lines for these distributions.
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