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Abstract

Applications of Bayesian inference to human decision-
making have met with mixed success, but new theoretical 
developments and experimental paradigms are helping to 
form a clearer picture of the role that inference plays in 
human cognition. We combine the latest ideas to provide 
evidence that at a computational level, the mind’s ability to 
make predictions may be grounded in Bayesian theory. Our 
results support the idea that the mind’s capacity for statistical 
reasoning is more sophisticated than previously hypothesized.

Keywords: Bayesian inference; iterated learning; prediction; 
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Introduction
Imagine trying to predict your final grade in a math course, 
given only your grade on one homework assignment of 
many. Or consider being stuck in a traffic jam for 30 
minutes, and deciding whether to wait until the traffic 
subsides or to exit the freeway and take slower surface 
streets. On a daily basis, we are bombarded by these types 
of situations in which we must make a decision on the basis 
of a very sparse set of data, often just one relevant 
observation. A powerful paradigm in cognitive science is 
the heuristics and biases approach (Gigerenzer, 1991, p. 84), 
which suggests that humans have difficulty making 
probability assessments. In particular, Tversky (1974) 
suggests that people cannot produce correct posterior 
probabilities on a simple Bayesian inference task with just 2 
hypotheses (p. 1125). Instead, he claims, they produce 
estimates by transforming given data with simple linear or 
constant functions, a phenomenon known as the anchoring 
bias. He cites an experiment in which subjects were given 
either the number 10 or the number 65, and were asked if 
the number under- or over-estimated the percentage of 
African countries in the United Nations. Those who were 
given 10 as a starting number gave an average of 25 as the 
true answer, and those who started with the number 65 gave 
an average of 45 as the true answer. The anchoring effect 
explains this bias, Tversky claims, because people’s 
responses depended heavily upon initial values.

Not content with Tversky’s classical view, some 
researchers now believe that people use given data and prior 
knowledge to make intelligent estimates in accordance with 
statistical theory. After all, if somebody asks you a question 
such as, “Do you think the population of Russia is greater or 
fewer than 180 million?” you assume that the person’s given 
estimate, 180 million, is not purely random and serves as a 
reasonable initial guess at the true answer. The estimate of 
180 million is the only information you have, so why not 
make use of it by treating it as given data?

When results such as these are analyzed from the 
perspective of Bayesian inference, many of the biases 
disappear. To perform a Bayesian inference on a set of data, 
one first hazards a guess on the distribution of the data. 
After observing some real-world data, the guessed 
distribution is then revised – its mean, density, and overall 
shape may differ considerably from the initial guess. When 
the real-world data consists of a single datapoint, known as 
a probe value, the median of the revised, or posterior, 
distribution given the data is the optimal prediction. 
Tenenbaum and Griffiths (2006) tested 350 college 
students’ ability to predict the outcome of everyday events 
(p. 767) by asking them questions such as such as, “Suppose 
that in 2000 B.C. a certain pharaoh has been ruling Egypt 
for 11 years. How long do you predict the total length of his 
reign to be?” After aggregating the results, they found that 
people’s responses closely matched the optimal predictions 
given the single datapoint contained in the question. The 
finding is remarkable because different phenomena have 
wildly different distributions and thus very dissimilar 
optimal prediction functions. Life spans are normally
distributed, movie run times follow a power-law 
distribution, and durations of pharaoh reigns follow an 
Erlang distribution, for example (see Figure 1). Tenenbaum 
and Griffiths concluded that people implicitly store 
knowledge of the distributions of these everyday 
phenomena (p. 771), and use this knowledge to make 
optimal predictions.

Mozer, Pashler, and Homaei (2008) presented the first 
theoretical challenge to these findings. They claimed that 
people’s responses followed real-world distributions only 
when aggregated, as in Tenenbaum and Griffiths’ analysis 
(p. 1134). As a demonstration of this effect, Mozer et al. 
recalled a country fair in which hundreds of people were 
asked to give the weight of an ox, and the average of their 
responses differed from the true value by just one pound (p. 
1134). Their minimum-of-k-samples, or Min(k), algorithm 
produced the same results as in Tenenbaum and Griffiths’ 
experiment, even though it provided responses by simply 
choosing the minimum value from a very sparse (just 2 or 3) 
number of samples. Because the collection of everybody’s 
limited number of real-world samples must match the actual 
distribution of real-world data, their responses should also 
match the appropriate distributions when aggregated. When 
tested hundreds of times on Tenenbaum and Griffith’s 
questions, the Min(k) algorithm’s responses gave near-
optimal predictions (p. 1145), even when assuming that 
each person might have access to just 2 samples.

But because this algorithm assumes that prior knowledge 
is contained in just 2 or 3 samples, it should perform poorly 
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when one set of samples (i.e. one person) is used to answer 
a large number of prediction questions – it would select 
identical answers to almost all questions. To test this idea, 
Griffiths and Kalish (2005) introduced iterated learning (p. 
1), a paradigm in which a subject is repeatedly asked 
prediction questions about one distribution. They argued 
that in the perpetual process of gathering data, forming a 
hypothesis, gathering more data, and refining the 
hypothesis, the generation of each successive hypothesis 
depends only upon the current hypothesis and the current 
data. Thus, the hypotheses form a Markov chain whose 
transitional probabilities eventually converge to the true 
prior probability distributions, meaning that a subject’s 
responses to successive prediction questions will approach 
optimal predictions. In an iterated learning experiment, 
Lewandowsky, Griffiths, and Kalish (2009) asked each of 
35 subjects 160 prediction questions about 8 possible 
distributions, randomly generating each question’s probe 
value from between 1 and the previous question’s response 
(p. 976). They claimed that only sampling from the true 
prior distributions could have produced their finding that 
each individual made optimal predictions. They also 
considered the performance of the Min(k) algorithm, whose 
responses ultimately failed to replicate the subjects’ 
performance on these prediction questions. As predicted, 
Min(k) was only capable of producing identical answers for 
most questions, whereas individual subjects’ predictions 
demonstrated their knowledge of the true prior distributions.

However, Lewandowsky et al.’s analysis of individual, 
and not aggregate, performance on prediction tasks was 
limited by the fact that only 35 students participated, which 
was enough to demonstrate that their paradigm could 
discredit Min(k), but still not enough to thoroughly 
understand the nature of individual performance on these 
prediction tasks. Encouraged by their findings, we will
perform an experiment with a method very similar to theirs, 
but with more participants and fewer experimental trials. 
More participants will allow us to more clearly visualize the 
distributions from which subjects selected their responses. 
We use fewer experimental trials because Lewandowsky et 
al. demonstrated that subjects were able to make optimal 
predictions after only 4 or 5 trials for each distribution – this 
means that the transition probabilities in the Markov chain 
of hypotheses converges rapidly for these prediction tasks. 
A web-based experiment will allow us both to reach more 
participants and to consider responses from those who only 
partially completed the experiment.

Experiment

Method
Participants 72 anonymous subjects participated in the 
Web-based experiment, which was advertised on a popular 
social networking site. It is likely that many of the 
participants were college students. Further, analytics 
revealed that the majority of participants were accessing the 
internet through Brown University servers. 37 subjects 

completed the experiment in full; the remaining 35 subjects, 
who answered at least one question, responded to an 
average of 9.8 questions each.

Apparatus and Design The experiment was implemented 
using a PHP web application which stored responses in a 
MySQL database. Subjects were presented with 4 chains of 
10 prediction questions each. The 4 chains corresponded to 
the 4 distributions: life spans of males, total movie box 
office grosses in US dollars, length of pharaohs’ reigns in 
ancient Egypt, and U.S. Representative term lengths. Each 
question contained a statement and a probe value, t. An 
example question for the movie grosses distribution with 
t=6 would be, “Imagine you hear about a movie that has 
taken in 6 million dollars at the box office, but don’t know 
how long it has been running. What would you predict for 
the total amount of box office intake for that movie, in 
millions of dollars?” The first question in each chain was 
seeded with a value randomly chosen from the set of 5 
possible seed values for the chain, given in Table 1. The 
value of t for the nth question in each chain was an integer 
randomly selected from the interval [1, tn-1], where tn-1 was 
the value of t for the (n-1)th question in the chain. Finally, 
questions from all chains were mixed and presented in 
random order.

Table 1: The 4 phenomena, their distributions in nature, 
and the seed values used to initiate the chains.

Chain Distribution Seed Values
Life Spans Gaussian 18, 39, 61, 83, 96
Movie Grosses Power Law 1, 6, 10, 40, 100
Pharaohs’ Reigns Erlang 1, 3, 7, 11, 23
U.S. Rep. Terms Erlang 1, 3, 7, 15, 31

Procedure Upon visiting the website where the web 
application was hosted, subjects were greeted with a 
welcome page indicating that the experiment consisted of 40 
questions that should be answered in no more than a few 
seconds each, and that all responses would be kept 
anonymous. If they agreed to these terms, they clicked on a 
link that took them to the first question. Subjects entered 
their answers in a text box and were then taken to the next 
question’s page. After completing all 40 questions, the 
subject was taken to a page containing a brief thank-you 
message.

Results
Responses from every subject who answered at least one 
question were included in the analyses of aggregate 
performance, but only those subjects who fully completed 
all 40 questions were considered in the individual analyses. 
Website analytics revealed that, excluding the first five 
questions and the last question, subjects spent an average of 
9 seconds on each question (the figure includes page 
loading time, which may have been 1 second or more). The 
web-based experiment included basic controls to ensure
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Figure 1: On the top row are the actual distributions of the 
phenomena. On the bottom row are the distributions of the 

1,823 datapoints entered by participants.

high-quality data. For example, subjects could not leave a
question blank, or enter a response that was less than the 
probe value. In total, 1,828 responses to questions were 
recorded. Of these, 2 responses to pharaoh reign questions 
and 3 responses to U.S. representative questions were 
greater than 100 and were removed. All of the remaining 
1,823 responses were considered in the analyses of 
aggregated data.

Though it is difficult to enforce the rule that each person 
should participate in the experiment only once, the nature of 
this experiment allows the same person to repeatedly 
participate and still generate prediction data that can be 
analyzed. Participants were never given the correct 
(optimal) predictions after answering each question, so the 
act of taking the experiment does not improve their ability 
to make predictions. Only 2 IP addresses were duplicated 
among those who answered at least one question, and these 
could still each be 2 different participants using the same 
computer.

We wanted to test both the hypotheses that the wisdom of 
crowds effect would still hold across a variety of 
distributions, and that each individual’s responses 
represented optimal predictions. Figure 1 shows the 
distributions of all responses entered by all participants 
underneath the true distributions of the phenomena, which
appear to moderately correspond. To verify this 
correspondence, we created quantile-quantile, or Q-Q, plots 
of the 4 phenomena, to help us compare the observed and 
true distributions. In a Q-Q plot, the quantiles of the first 
dataset are plotted against the same quantiles of the second 
dataset – if the plotted points lie on the line y = x, then the 
data very likely have the same distribution. These Q-Q plots 
are shown in Figure 2.

That people’s responses and real-world datapoints come 
from similar distributions is confirmed by the correlation 
coefficients between 25-quantiles of the observed and true 
distributions for each type of phenomena: R2 = .95 for 
lifespans, 0.99 for movie grosses, 0.95 for pharaoh reigns, 
and 0.97 for representative term lengths.

An optimal prediction curve for a given distribution is a 
function whose input is an actual instance from the 
population, and whose output is the predicted “total life” of 
that instance, based on the population’s distribution. We 
define the total life to be the median of the posterior 
distribution when Bayesian inference is performed using the 
input value as the sole observed datapoint. 

Different distributions produce wildly different optimal 
prediction curves. A simple application of Bayes’ Law with 
a power-law prior reveals that the optimal prediction curve 
is a straight line passing through the origin, with slope 
dependent on the parameter of the power function 
(Tenenbaum and Griffiths, 2006, p. 773). Similarly, the 
optimal prediction curve for Erlang-distributed data is a 
straight line with slope 1 and y-intercept dependent on the 
Erlang parameter. The optimal prediction curve for 
normally-distributed data has no simple analytical form. We 
should expect optimal prediction curves with shapes similar 
to these for our real-world data. Figure 3 shows all of the 
ordered pairs of datapoints, with the probe value in the 
question as the independent variable, and the subjects’ 
response as the dependent variable. We fit a cubic 
polynomial to the lifespan data as an approximation for its 
optimal prediction curve. That it reasonably matches the 
true optimal prediction curve for actual lifespan data, 
despite the curve being fit to over 450 datapoints, supports 
the idea that people are capable of making optimal 
predictions about life spans. We performed a linear 
regression on the movie grosses, pharaoh reigns, and 
representative term length data, since we expect their 
optimal prediction curves to be linear. For movie grosses, 
we obtained a line with y-intercept 2.1379. Considering the 
range of data values, this line very nearly passes through the 
origin. However, it is much steeper than the true optimal 
prediction curve. This is representative of a power-law 
distribution with a longer tail – one in which more movies 
earned large amounts of money. The real-world movie data 
were gathered in 2003, so it is not unreasonable to expect 
that people’s prior distributions for movies have been 
adjusted recently to account for the growing number of 
billion-dollar blockbusters. For pharaohs and representative 
term lengths, we obtained lines with slopes 1.0223 and 
1.2398, respectively, both of which do not pass through the 
origin. The observed prediction curve for pharaohs is 
consistently above the prediction curve for the actual data –
Tenenbaum and Griffiths (2006) also found that people 
consistently but reliably overestimated the length of pharaoh 
reigns (p. 771), explaining that they most likely did not 
realize how low the average life span was in ancient Egypt,
which produced subjects’ overestimated predictions for the 
length of pharaoh reigns.
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Figure 2: Q-Q plots of the distributions of responses entered by participants 
for each phenomenon. We removed the top and bottom 3% of each distribution and used 4% increments to plot the quantiles. 
If the points lie on the line y = x, then the two distributions are virtually identi
however, indicates that the data may still come from similarly

The nature of the Min(k) hypothesis suggests that the few 
values in the long tail for movie distributions might just be 
outliers that subjects enter for lower probe values, and not 
optimal predictions. We counter by noting that for all 
subjects whose seed value for movie questions was 1, the 
highest probe value was 6 and the highest respons
The responses for modest-grossing movies resemble a 
power-law shape, with no outliers, suggesting that people do 
sample from a power-law distribution even when the probe 
values come from the densest part of the power law graph.

We must now test whether individual subjects were able 
to make optimal predictions. For all 37 subjects who 
completed the experiment, we should expect that even 
though their prior distributions may not have the same 
means, the line of best fit through their prediction data 
should have positive slope. We would expect this even for 
life span data, despite the fact that the optimal prediction 
curve for normally-distributed data is not linear. We 
performed linear regression on all 37 subjects for each of 
the 4 chains, and found that the mean slope of the regression 
line was above zero for all 4 chains. The results and 
associated statistics are shown in Table 2. Moreover, the 
slope for representative term lengths is very close to 1, in 
accordance with the fact that the optimal pre
for an Erlang distribution has slope 1. We were not able to 
observe such remarkable results for pharaoh reigns, but we 
note that the mean slope for subjects’ prediction curves for 
pharaohs is significantly above 0. The mean slope for 
lifespan prediction curves is slightly positive (0.1765) with 
y-intercept approximately 69, which is expected if the true 
optimal prediction curve is horizontal but tends slightly 
upward for ages close to and greater than the mean of 76. 
We observed dramatically higher levels of significance (as 
indicated by the respective p-values) than Lewandowsky et 
al. (2009) when they performed the same analysis for their 
data (p. 988).

Q plots of the distributions of responses entered by participants (observed) against the actual distributions
for each phenomenon. We removed the top and bottom 3% of each distribution and used 4% increments to plot the quantiles. 

, then the two distributions are virtually identical. Any sort of linear correspondence, 
come from similarly-shaped distributions with different parameters. 
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life span data, despite the fact that the optimal prediction 
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al. (2009) when they performed the same analysis for their 

Discussion
Our experiment is but the most recent in a line of studies 
that demonstrate people’s ability to make optimal 
predictions when presented with a single datapoint. This 
finding holds across data with different distributions, and 
suggests that people might be able to perform quite 
sophisticated Bayesian inference even without conscious 
awareness. The first important conclusion from this 
experiment is that because the 1,823 responses entered by 
subjects closely matched the true distributions of the 
respective datasets, we cannot attribute their responses to 
the Wisdom of Crowds effect – sub
least some familiarity with the true prior distributions of 
data, beyond just a few relevant examples, in order to 
consistently enter data that matched the real
distributions.

Both the large number of subjects and the number of
questions each subject answered allows us to more 
accurately determine the methods by which humans make 
predictions. Individual subjects’ prediction curves closely 
resembled true optimal prediction curves, even with a 
variety of seed values and probe valu
respective distributions, and the iterated learning paradigm 
produced rapid convergence to prior distributions 
subjects who partially completed the experiment. This lends 
some support in favor of the idea that humans stor
statistical knowledge about real-world distributions of data, 
and then recall this knowledge to make predictions when 
asked. More experimentation with this paradigm should 
help form a clearer picture of the powers and limits of 
human statistical inference.

Most subjects had at least some familiarity with the real
world distributions used in these and previous experiments. 
An important extension of these results would be the use of 
the iterated learning paradigm to capture people’s statistical 
knowledge for unfamiliar distributions, including data for 
which it is difficult or impossible to determine a real
distribution. The proliferation of online prediction markets, 

gainst the actual distributions (true) 
for each phenomenon. We removed the top and bottom 3% of each distribution and used 4% increments to plot the quantiles. 

cal. Any sort of linear correspondence, 
shaped distributions with different parameters. 
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Both the large number of subjects and the number of
questions each subject answered allows us to more 
accurately determine the methods by which humans make 
predictions. Individual subjects’ prediction curves closely 
resembled true optimal prediction curves, even with a 
variety of seed values and probe values from each end of the 

and the iterated learning paradigm 
produced rapid convergence to prior distributions – even for 
subjects who partially completed the experiment. This lends 
some support in favor of the idea that humans store implicit 

world distributions of data, 
and then recall this knowledge to make predictions when 
asked. More experimentation with this paradigm should 
help form a clearer picture of the powers and limits of 

Most subjects had at least some familiarity with the real-
world distributions used in these and previous experiments. 
An important extension of these results would be the use of 
the iterated learning paradigm to capture people’s statistical 

wledge for unfamiliar distributions, including data for 
which it is difficult or impossible to determine a real-world 
distribution. The proliferation of online prediction markets, 
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Table 2: Summary of individual linear regression statistics for the 37 subjects who fully completed the experiment. We give 
the mean slope and y-intercept of the 37 regression lines for each chain; the associated t-statistics with 36df; p-values for the 
hypothesis that the mean slope is 0 against the hypothesis that it is different from 0; 95% confidence intervals for the slope; 
and in the last column, the number of individuals for whom the line of best fit had non-positive slope.

Chain Mean Slope Mean Intercept 1-sample t p-value 95% CI Slope ≤ 0
Life Spans 0.1785 69.3968 4.3850 < 10-4 (0.0959, 0.2610) 6
Movie Grosses 1.1277 22.0560 10.4560 < 10-11 (0.9090, 1.3465) 2
Pharaohs’ Reigns 0.6514 17.6097 7.3599 < 10-7 (0.4719, 0.8309) 5
U.S. Rep. Terms 0.9524 6.6026 15.0075 < 10-16 (0.8237, 1.0811) 0

and their relatively high degree of success in making 
predictions about unknown parameters, might serve as the 
ideal place to test the power of iterated learning beyond 
tightly-controlled experiments. Making use of our 
individual capacity to perform optimal statistical inference 
could dramatically improve collective prediction making, 
and consequently our ability to make decisions in uncertain 
conditions. After all, the intelligence of crowds depends 
solely upon the intelligent individuals that constitute them.
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Figure 3. Red circles are question values (t) vs. subjects’ responses (ttotal). Solid blue lines represent true optimal prediction 
curves for the real-world data. Dashed grey lines represent best-fit curves for experimental data. For normally-distributed 
data, the optimal prediction curve has no simple analytic form, so we fit a cubic polynomial as an approximation. Optimal 
prediction curves for the other 3 distributions are linear, so we fit lines for these distributions.
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