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Abstract 

Neural network models have been used extensively to model 

perceptual learning and the effects of discrimination training 

on generalization, as well as to explore natural classification 

mechanisms. Here we assess the ability of existing models to 

account for the time course of generalization shifts that occur 

when individuals learn to distinguish sounds. A set of 

simulations demonstrates that commonly used single-layer 

networks do not predict transitory shifts in generalization 

over the course of training, but that such dynamics can be 

accounted for when the output functions of these networks are 

modified to mimic the properties of cortical tuning curves. 

The simulations further suggest that prudent selection of 

training criteria can allow for more precise predictions of 

learning-related shifts in generalization gradients in 

behavioral experiments. 

Keywords: discrimination learning, representation, 
similarity, perceptual learning, neural network, peak shift 

Introduction 

When an organism learns that a stimulus results in some 

consequence, it will often generalize that learning to similar 

novel stimuli (Shepard, 1987).  For instance, Watson and 

Raynor (1920) famously demonstrated in experiments with 

Little Albert that fear associated with a white rat can 

generalize to other stimuli such as a rabbit, a fur coat, or 

even a piece of cotton.  Numerous theoretical efforts have 

focused on explaining and predicting generalization 

patterns, with varying degrees of success.  Computational 

models of discrimination learning recently have proven to 

be adept at simulating many of the empirically observed 

differences in generalization that relate to differences in 

stimulus similarity and training variability (e.g., Ghirlanda 

& Enquist, 1998; Livesey, Pearson, & McLaren, 2005; 

Saksida, 1999; Suret & McLaren, 2002).  Such 

computational models are becoming increasingly useful 

tools for generating hypotheses about the mechanisms and 

cues that participants use during learning and generalization.  

In the current study, we assessed the ability of existing 

perceptron models of discrimination learning and 

generalization to account for recent observations of 

learning-related shifts in generalization observed during an 

auditory learning task. 

A phenomenon commonly observed after discrimination 

training is that the highest levels of responding may occur 

for stimuli other than those experienced during training. 

Generally, peak shift results when a participant is trained to 

respond to one stimulus (S+) and not to some other stimulus 

(S-) that varies along a common dimension.  When 

generalization is measured after training, responding is 

strongest not to the trained S+, but to a stimulus that is 

shifted along the dimension even further from S-.  In a 

classic example of this Hanson (1959) trained pigeons to 

peck a key when presented with a 560 nm light (S+), but not 

when presented with a 570 nm light (S-).  During 

generalization tests, pigeons responded most strongly to 

wavelengths other than 560 (such as 540 nm) that were 

farther along the dimension from the trained S-, 570 nm 

light.  

Most of the experimental studies of peak shift have 

focused on the presence, size, or generality of the effect.  

For instance, it is known that the size of peak shift (i.e., the 

degree of displacement of maximal responding away from 

the S+) depends upon the similarity of the S+ and S- during 

training such that the more similar the training stimuli are, 

the further the learner will shift (Purtle, 1973). Additionally, 

work shows that peak shift occurs along simple, single 

dimensions like wavelength (Hanson, 1959), and sine wave 

frequency (Baron, 1973), as well as along more complex 

acoustic (Guillette et al., 2010; Verzijden et al., 2007; 

Wisniewski et al., 2009; 2010), and visual dimensions 

(Spetch, Cheng, & Clifford, 2004; Livesey et al., 2005).  

Theories of discrimination learning and peak shift have 

focused on explaining basic experimental effects and 

species differences.  For instance, several associative 

learning theories (Blough, 1975; Spence, 1937; McLaren & 

Mackintosh, 2002) adequately explain the direction of shift 

and the changes to the size of the effect that result from 
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variations in stimulus similarity. Other theories have posited 

that people learn rules during discrimination and that this is 

what causes peak shift in humans (Thomas, Mood, 

Morrison, & Wiertelak, 1991). Computational models have 

been used to test how well different theories explain peak 

shift and related generalization phenomena across species 

and conditions. 

Although there has been much work exploring the basic 

predictions of current theories regarding peak shift, 

relatively few studies, experimental or theoretical, have 

looked at the dynamics of generalization over time.  A few 

studies have shown that extinction can occur during testing, 

such that shifts in generalization dissipate as more non-

differentially reinforced testing trials are experienced 

(Cheng et al., 1997; Purtle, 1973).  For instance, pigeons 

that exhibit a strong peak shift in the first block of testing 

show a reduction in the strength of that shift in the 

following test blocks (Cheng et al., 1997).  Other studies 

have shown that in both humans (Wisniewski et al., 2009) 

and nonhumans (Moye & Thomas, 1982), peak shift is 

stable over time in that it lasts at least 24 hours post-

discrimination training.  Very few studies, however, have 

looked at how the extent of training impacts peak shift. 

Recent work suggests that peak shift can be a transitory 

effect related to differential amounts of discrimination 

learning.  Wisniewski et al. (2010) trained humans for 60, 

100, 140, 180, 220, or 260 trials on a task requiring the 

discrimination of two complex sounds that varied in the rate 

of periodic frequency modulation.  Participants who were 

trained with the fewest trials (60 or 100) or the most trials 

(220 or 260) did not show a peak shift effect.  However, 

participants who were trained with an intermediate number 

of trials (140 or 180) did exhibit peak shift.  These results 

suggest that in at least some training conditions, peak shift 

may only occur at intermediate levels of learning. 

The dynamics of generalization have been analyzed in 

past computer simulations of generalization. For example 

the shape of generalization gradients produced by 

connectionist networks shift from being Gaussian to 

exponential as more training iterations are experienced 

(Shepard, 1990; Staddon & Reid, 1990).  However, to our 

knowledge, simulations investigating the dynamics of shifts 

in generalization gradients have not been closely analyzed. 

The current study assessed whether existing  

connectionist approaches can capture the quadratic trend in 

peak shift that occurs over the course of auditory 

discrimination training in humans (Wisniewski et al., 2010).  

Toward this goal, variants of a previously developed 

perceptron model (Dawson, 2004; 2005) of auditory 

perception in chickadees that is known to exhibit peak shift 

effects (Guillette et al., 2010), were used to model human 

learning.  The hypothesis was that the neural networks 

would show transitory peak-shifts in generalization, 

comparable to those seen previously in humans (Wisniewski 

et al., 2010).  Given that this model was not originally 

developed to account for human discrimination, similarities 

between the simulations and experimental data would 

provide support for general learning mechanisms mediating 

the peak shift effect in humans (Ghirlanda & Enquist, 2006; 

Mercado, 2008; Spetch et al., 2004; Wisniewski et al., 

2009), as opposed to rule-based mechanisms not used by 

non-humans (Thomas et al., 1991).    Also, because past 

studies of generalization shifts have used different amounts 

of training (Bizo & McMahon, 2007; Baron, 1973; Derenne, 

2010; Galizio, 1980; Lewis & Johnston, 1999; Newlin et al., 

1979; Thomas, Mood, Morrison, & Wiertelak, 1991; 

Wisniewski et al., 2009; 2010), and because there can be 

large individual differences in improvements during training 

and generalization (Nicholson & Grey, 1972; Withagen & 

van Wermeskerken, 2009), we assessed how different 

criteria for ending training affected the variability of 

generalization gradients. 

Methods 

Networks were single layer perceptrons with an input 

layer consisting of 54 units.  Each unit in the input layer was 

connected to a single output unit. Either sigmoid or value 

output units were used (see Dawson, 2004; 2005).  Sigmoid 

units are often used in connectionist models and have been 

used extensively to model generalization and peak shift 

(Dawson, 2004; 2005; Ghirlanda & Enquist, 1998; 2006; 

Guillette et al., 2010; Livesey et al., 2005, Suret & 

McLaren, 2002; Tanaka & Simon, 1996).  Previous results, 

however, showed that using such units in discrimination 

training can yield gradients that are biased to one side of the 

generalization distribution, especially when networks are 

trained extensively (Tanaka & Simon, 1996). We also tested 

networks using value units.  Value units use a Gaussian 

rather than a sigmoid activation function to convert the sum 

of the weighted values from each input unit into an output 

value that ranges between 0 and 1.  Like a dose response 

curve, both very low and very high sums produce smaller 

outputs than intermediate sums.  This allows units to 

become selective to a range of input values, as is seen in the 

receptive fields of many cortical neurons (e.g., Elhilali, 

Fritz, Chi, Shamma, 2007).  In contrast, the sigmoid 

activation function is monotonic.  Testing networks using 

units with different activation functions can thus yield 

insights into how stimuli are represented and/or what types 

of receptive fields are important in learning discriminations 

of complex sounds (Enquist & Ghirlanda, 2005). A detailed 

description of both the sigmoid and value unit types can be 

found in Dawson (2004). A 2 (output unit type) x 6 (training 

criteria) design was used to test how networks with different 

output unit types and levels of training performance would 

generalize.  Five networks were trained per group. 

 

Stimulus Representations 

Wisniewski et al. (2010) tested participants with a set of 8 

repetition rates of frequency-modulated sweeps, rank 

ordered 1-8 (from slow to fast), with rank 5 used as the S+ 

and rank 4 used as the S-. Two additional sounds, that were 

not part of the generalization distribution, were used during 

pre-training. Here, we use overlapping patterns of Gaussian 
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shaped inputs to represent these stimuli. The inputs had a 

variance of 5 and a maximum value of 1. The inputs are 

distributed representations of time-varying sounds in which 

each input value can be viewed as a population of neurons 

with selectivity to a particular modulation rate (Gluck, 

1992). Similar representations have been used previously in 

models of peak shift for stimuli that are complex in nature 

(Livesey et al., 2005; Suret & McLaren, 2002). The input 

stimulus sets used are shown in Figure 1.  

 

 
 

Figure 1. Representations of stimuli used in a) pre-training; 

b) S+/S- discrimination and c) generalization testing. X-axes 

depict the unit in the input layer.  Y-axes depict the 

activation in each unit for each pattern. The thicker solid 

line corresponds to the target stimulus, dotted lines are non-

targets, thinner solid lines are novel stimuli. 

Training and Testing 

All networks were trained using the Rosenblatt learning 

algorithm (Dawson, 2004; 2005). Initial network weights 

were set at random between -0.1 and 0.1. Networks were 

pre-trained with the desired response to S+ as 1 and the 

response to stimuli displaced on either side of the 

generalization distribution as 0. Network pre-training 

continued until the sum of the squared error (SSE) for the 

single output unit was less than 0.05. SSE provided a 

measure of the difference between the model’s output and 

the desired output. The pre-training procedure was 

analogous to pre-training used previously in experimental 

studies (Spetch et al., 2004; Wisniewski et al., 2009; 2010) 

and served mainly to initialize the perceptron (Fernández-

Redondo & Hernández-Espinosa, 2001; Li, Alnuweiri, & 

Wu, 1993).  This initialization enabled the networks to 

perform the S+/S- discrimination at levels above chance 

early in training, as is seen experimentally, rather than 

starting from a completely naïve state.  

After pre-training, all networks were given S+/S- 

discrimination training.  The desired output for networks 

was set at 1 for the S+ and 0 for the S-.  In order to compare 

each model’s generalization after different levels of training 

experience, we trained groups of networks to 6 different 

criteria that were defined by (SSE) in the output unit.  The 6 

criteria were SSEs of 0.4, 0.3, 0.2, 0.1, 0.05, and 0.02.  

Network training was stopped after the respective SSE level 

was reached.  SSE was used instead of the number of 

training trials because networks with different unit types 

learn at different rates (Dawson, 2004; 2005), and we 

wanted to make sure that networks in different unit 

conditions reached similar levels of performance on the 

S+/S- discrimination. 

After training, generalization was assessed by presenting 

networks with the S+, the S-, and 6 novel stimuli with no 

feedback.  The output unit’s activations to presentations of 

test stimuli in each group of networks are reported.  Since 

the quadratic trend in shift over the course of learning has 

not been modeled before, our main focus was on examining 

how the performance of different models qualitatively fit the 

data.  The behavioral results from Wisniewski et al. (2010) 

are shown in Figure 2. 

 

 
 

Figure 2. The generalization gradients reported by 

Wisniewski et al. (2010) for groups of participants trained 

for different amounts of trials. The y-axis depicts the 

proportion of times participants indicated a stimulus was the 

S+. The x-axis shows each stimulus in the generalization 

distribution. Solid vertical line is the S+; dashed line is the 

trained S-.  

 

Results 

The mean generalization gradients for networks in each 

group are shown in Figure 3.  

Sigmoid Output Units: Perceptrons with sigmoid units 

showed an increase in shift as SSE decreased on the S+/S- 

discrimination. The peak activation of the output unit 

shifted away from the S+, even in the most extensively 

trained group of networks.  

Value Output Units: Conversely, the single layer 

perceptrons made up of value units that were trained to an 

SSE of 0.05 and 0.02 were most strongly activated by the  

S+.  Value unit networks that were trained to the criterions 
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of 0.2 and 0.10 SSE showed shifts in peak activation to 

stimulus 6.  

 

 
 

Figure 3. Shown are (top) the generalization gradients for 

sigmoid unit networks, and (bottom) gradients for networks 

trained with value units. Solid vertical line is the S+; dashed 

line is the trained S-. 

Training to criteria based on number of trials vs. 

performance levels 

Many studies of generalization and peak shift involve 

training participants for a specific number of trials (Bizo & 

McMahon, 2007; Baron, 1973; Galizio, 1980; Lewis & 

Johnston, 1999; Newlin et al., 1979; Thomas et al., 1991), 

rather than to specific discrimination performance criteria. 

Recent experimental data (Wisniewski et al., 2010) and the 

simulations presented here, however, showed that 

generalization differs strongly and nonlinearly with changes 

in discrimination performance. Therefore, training to a 

specific trial criterion may lead to more variability between 

participants in generalization than training to a performance 

criterion.  To examine this possibility, single layer networks 

of value units were trained to the 6 criteria levels, rank-

ordered from lowest to highest, and defined by the 

previously used SSEs or for a pre-specified number of 

training trials (10, 160, 320, 640, 1280, or 2560 trials).  

Learning rates of 0.01, 0.02, 0.04, and 0.08 were used to 

simulate individual differences in learning capacity.  Three 

networks were trained per learning rate and per criterion 

level defined by SSE or number of training trials. The 

standard deviation of generalization gradient means was 

higher for networks that were trained for a specified number 

of trials than for networks that were trained to criterion 

levels 1-4.  Criterion levels 5 and 6 showed similar standard 

deviations for networks trained to a criterion defined by 

SSE and number of trials. 

Discussion 

The current simulations demonstrate that perceptron models 

of discrimination learning can replicate the quadratic trend 

for shifts in generalization gradients reported by Wisniewski 

et al. (2010), in which a peak shift effect emerges and then 

dissipates during the course of learning.  However, networks 

constructed with a sigmoid output unit were not successful 

in capturing this trend.  Sigmoid units have been popular in 

previous perceptron models of peak shift, which is 

understandable given that they predict peak shift and are 

consistent with theories of how stimulus characteristics are 

associatively reweighted after learning (more informative 

characteristics gain more weight) (Ghirlanda & Enquist, 

1998; 2006; Livesey et al., 2005; Suret & McLaren, 2002; 

Tanaka & Simon, 1996). Here, however, they appear to 

result in stronger shifts with greater learning on the S+/S- 

discrimination. In contrast, networks trained with value 

units qualitatively replicated the quadratic trend in gradient 

shifts.  Shifts in gradients only occurred after intermediate 

levels of performance were reached on the S+/S- 

discrimination.  Discrimination performance on the S+/S- 

discrimination that was too poor, or too good, led to little or 

no shift in the generalization gradients of networks. Because 

the value, but not sigmoid units were successful in capturing 

the quadratic trend in generalization with perceptrons, it 

could be the case that, during learning, elements of a 

stimulus are not always reweighted in the manner proposed 

by previous theory. A connectionist architecture more 

complicated than a single-layer perceptron may be capable 

of simulating the behavioral data using only sigmoid units, 

but previously proposed perceptron models are not. 

Value units may have been better for simulating the 

empirical results of Wisniewski et al. (2010) for a couple of 

reasons.  First, the receptive fields of many neurons in 

cortex that code for the features of sound selectively 

respond to specific features of an input with response 

decreasing to properties that are dissimilar to those features 

(e.g., Elhilali et al., 2007; Linden et al., 2003). It could be 

that Gaussian activation functions simulate these types of 

receptive fields and that these receptive fields are important 

for discrimination training.  Second, Wisniewski et al. 

(2010), and many others studying generalization (Baron, 

1973; Bizo & McMahon, 2007; Lewis & Johnston, 1999; 

Spetch et al. 2004; Thomas et al., 1991; Wisniewski et al., 

2009), used a task for which participants were told to make 

a response only to the trained stimulus and nothing else.  In 

single-layer perceptron models Gaussian activation 

functions may be best for modeling types of tasks for which 

responses should be withheld in the presence of stimuli that 

are different from the trained stimulus in both directions on 

the dimension.  In contrast, sigmoid functions may be best 

at modeling tasks for which participants are instructed to 
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generalize responses to novel stimuli as done in studies of 

the caricature effect (Tanaka & Simon, 1996).  

We also found that generalization was more variable 

when networks were trained to a criterion based on the 

number of training trials than to a criterion based on 

discrimination performance.  This finding suggests that 

when investigating trajectories of changes in generalization, 

the method of training for a certain number of trials (Bizo & 

McMahon, 2007; Baron, 1973; Derenne, 2010; Galizio, 

1980; Lewis & Johnston, 1999; Newlin et al., 1979; Thomas 

et al., 1991; Wisniewski et al., 2009; 2010) may be less 

effective than training to a performance criterion (Spetch et 

al., 2004; Thomas, Svinicki, & Vogt, 1973; Wills & 

Mackintosh, 1998).  In addition, there are large individual 

differences in how participants generalize (Landau, 1968; 

Guttman & Kalish, 1956; Nicholson & Gray, 1972).  Some 

of the previously reported differences in generalization may 

stem from participants not reaching similar levels of 

performance.  

Finally, the fact that we were able to simulate the 

temporal dynamics of human generalization with a model 

that can model songbird perceptual discriminations of 

naturally occurring stimuli strongly suggests that there are 

similar mechanisms for human and nonhuman 

generalization and learning (Ghirlanda & Enquist, 2006; 

Mercado, 2008; Spetch et al., 2004; Wisniewski et al., 

2009).  Some have argued that different mechanisms 

account for the peak shift effect in humans versus 

nonhumans (Bizo & McMahon, 2007; Thomas et al., 1991), 

whereas others have challenged this idea (Ghirlanda & 

Enquist, 2006; Livesey et al., 2005; Spetch et al., 2004; 

Suret & McLaren, 2002; Wisniewski et al., 2009). The fact 

that simple perceptron models can adequately model 

learning and generalization across species is consistent with 

the involvement of common underlying mechanisms.  

In conclusion, the simulations presented here suggest that: 

1) it is important to consider how stimuli are neurally coded 

as well as task design when simulating behavioral data from 

discrimination learning experiments; 2) equalizing 

subjects/participants on performance leads to less variable 

generalization than equalizing trial numbers; and 3) 

common learning mechanisms, shared between human and 

nonhuman species, likely mediate the peak shift effect.  
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