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Abstract

Neural network models have been used extensively to model
perceptual learning and the effects of discrimination training
on generalization, as well as to explore natural classification
mechanisms. Here we assess the ability of existing models to
account for the time course of generalization shifts that occur
when individuals learn to distinguish sounds. A set of
simulations demonstrates that commonly used single-layer
networks do not predict transitory shifts in generalization
over the course of training, but that such dynamics can be
accounted for when the output functions of these networks are
modified to mimic the properties of cortical tuning curves.
The simulations further suggest that prudent selection of
training criteria can allow for more precise predictions of
learning-related shifts in generalization gradients in
behavioral experiments.
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Introduction

When an organism learns that a stimulus results in some
consequence, it will often generalize that learning to similar
novel stimuli (Shepard, 1987). For instance, Watson and
Raynor (1920) famously demonstrated in experiments with
Little Albert that fear associated with a white rat can
generalize to other stimuli such as a rabbit, a fur coat, or
even a piece of cotton. Numerous theoretical efforts have
focused on explaining and predicting generalization
patterns, with varying degrees of success. Computational
models of discrimination learning recently have proven to
be adept at simulating many of the empirically observed
differences in generalization that relate to differences in
stimulus similarity and training variability (e.g., Ghirlanda
& Enquist, 1998; Livesey, Pearson, & McLaren, 2005;
Saksida, 1999; Suret & McLaren, 2002). Such
computational models are becoming increasingly useful
tools for generating hypotheses about the mechanisms and
cues that participants use during learning and generalization.
In the current study, we assessed the ability of existing

perceptron models of discrimination learning and
generalization to account for recent observations of
learning-related shifts in generalization observed during an
auditory learning task.

A phenomenon commonly observed after discrimination
training is that the highest levels of responding may occur
for stimuli other than those experienced during training.
Generally, peak shift results when a participant is trained to
respond to one stimulus (S+) and not to some other stimulus
(S-) that varies along a common dimension. When
generalization is measured after training, responding is
strongest not to the trained S+, but to a stimulus that is
shifted along the dimension even further from S-. In a
classic example of this Hanson (1959) trained pigeons to
peck a key when presented with a 560 nm light (S+), but not
when presented with a 570 nm light (S-). During
generalization tests, pigeons responded most strongly to
wavelengths other than 560 (such as 540 nm) that were
farther along the dimension from the trained S-, 570 nm
light.

Most of the experimental studies of peak shift have
focused on the presence, size, or generality of the effect.
For instance, it is known that the size of peak shift (i.e., the
degree of displacement of maximal responding away from
the S+) depends upon the similarity of the S+ and S- during
training such that the more similar the training stimuli are,
the further the learner will shift (Purtle, 1973). Additionally,
work shows that peak shift occurs along simple, single
dimensions like wavelength (Hanson, 1959), and sine wave
frequency (Baron, 1973), as well as along more complex
acoustic (Guillette et al., 2010; Verzijden et al., 2007;
Wisniewski et al., 2009; 2010), and visual dimensions
(Spetch, Cheng, & Clifford, 2004; Livesey et al., 2005).

Theories of discrimination learning and peak shift have
focused on explaining basic experimental effects and
species differences.  For instance, several associative
learning theories (Blough, 1975; Spence, 1937; McLaren &
Mackintosh, 2002) adequately explain the direction of shift
and the changes to the size of the effect that result from
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variations in stimulus similarity. Other theories have posited
that people learn rules during discrimination and that this is
what causes peak shift in humans (Thomas, Mood,
Morrison, & Wiertelak, 1991). Computational models have
been used to test how well different theories explain peak
shift and related generalization phenomena across species
and conditions.

Although there has been much work exploring the basic
predictions of current theories regarding peak shift,
relatively few studies, experimental or theoretical, have
looked at the dynamics of generalization over time. A few
studies have shown that extinction can occur during testing,
such that shifts in generalization dissipate as more non-
differentially reinforced testing trials are experienced
(Cheng et al., 1997; Purtle, 1973). For instance, pigeons
that exhibit a strong peak shift in the first block of testing
show a reduction in the strength of that shift in the
following test blocks (Cheng et al., 1997). Other studies
have shown that in both humans (Wisniewski et al., 2009)
and nonhumans (Moye & Thomas, 1982), peak shift is
stable over time in that it lasts at least 24 hours post-
discrimination training. Very few studies, however, have
looked at how the extent of training impacts peak shift.

Recent work suggests that peak shift can be a transitory
effect related to differential amounts of discrimination
learning. Wisniewski et al. (2010) trained humans for 60,
100, 140, 180, 220, or 260 trials on a task requiring the
discrimination of two complex sounds that varied in the rate
of periodic frequency modulation. Participants who were
trained with the fewest trials (60 or 100) or the most trials
(220 or 260) did not show a peak shift effect. However,
participants who were trained with an intermediate number
of trials (140 or 180) did exhibit peak shift. These results
suggest that in at least some training conditions, peak shift
may only occur at intermediate levels of learning.

The dynamics of generalization have been analyzed in
past computer simulations of generalization. For example
the shape of generalization gradients produced by
connectionist networks shift from being Gaussian to
exponential as more training iterations are experienced
(Shepard, 1990; Staddon & Reid, 1990). However, to our
knowledge, simulations investigating the dynamics of shifts
in generalization gradients have not been closely analyzed.

The current study assessed whether existing
connectionist approaches can capture the quadratic trend in
peak shift that occurs over the course of auditory
discrimination training in humans (Wisniewski et al., 2010).
Toward this goal, variants of a previously developed
perceptron model (Dawson, 2004; 2005) of auditory
perception in chickadees that is known to exhibit peak shift
effects (Guillette et al., 2010), were used to model human
learning. The hypothesis was that the neural networks
would show transitory peak-shifts in generalization,
comparable to those seen previously in humans (Wisniewski
et al., 2010). Given that this model was not originally
developed to account for human discrimination, similarities
between the simulations and experimental data would

provide support for general learning mechanisms mediating
the peak shift effect in humans (Ghirlanda & Enquist, 2006;
Mercado, 2008; Spetch et al.,, 2004; Wisniewski et al.,
2009), as opposed to rule-based mechanisms not used by
non-humans (Thomas et al., 1991).  Also, because past
studies of generalization shifts have used different amounts
of training (Bizo & McMahon, 2007; Baron, 1973; Derenne,
2010; Galizio, 1980; Lewis & Johnston, 1999; Newlin et al.,
1979; Thomas, Mood, Morrison, & Wiertelak, 1991;
Wisniewski et al., 2009; 2010), and because there can be
large individual differences in improvements during training
and generalization (Nicholson & Grey, 1972; Withagen &
van Wermeskerken, 2009), we assessed how different
criteria for ending training affected the variability of
generalization gradients.

Methods

Networks were single layer perceptrons with an input
layer consisting of 54 units. Each unit in the input layer was
connected to a single output unit. Either sigmoid or value
output units were used (see Dawson, 2004; 2005). Sigmoid
units are often used in connectionist models and have been
used extensively to model generalization and peak shift
(Dawson, 2004; 2005; Ghirlanda & Enquist, 1998; 2006;
Guillette et al., 2010; Livesey et al., 2005, Suret &
McLaren, 2002; Tanaka & Simon, 1996). Previous results,
however, showed that using such units in discrimination
training can yield gradients that are biased to one side of the
generalization distribution, especially when networks are
trained extensively (Tanaka & Simon, 1996). We also tested
networks using value units. Value units use a Gaussian
rather than a sigmoid activation function to convert the sum
of the weighted values from each input unit into an output
value that ranges between 0 and 1. Like a dose response
curve, both very low and very high sums produce smaller
outputs than intermediate sums. This allows units to
become selective to a range of input values, as is seen in the
receptive fields of many cortical neurons (e.g., Elhilali,
Fritz, Chi, Shamma, 2007). In contrast, the sigmoid
activation function is monotonic. Testing networks using
units with different activation functions can thus yield
insights into how stimuli are represented and/or what types
of receptive fields are important in learning discriminations
of complex sounds (Enquist & Ghirlanda, 2005). A detailed
description of both the sigmoid and value unit types can be
found in Dawson (2004). A 2 (output unit type) x 6 (training
criteria) design was used to test how networks with different
output unit types and levels of training performance would
generalize. Five networks were trained per group.

Stimulus Representations

Wisniewski et al. (2010) tested participants with a set of 8
repetition rates of frequency-modulated sweeps, rank
ordered 1-8 (from slow to fast), with rank 5 used as the S+
and rank 4 used as the S-. Two additional sounds, that were
not part of the generalization distribution, were used during
pre-training. Here, we use overlapping patterns of Gaussian
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shaped inputs to represent these stimuli. The inputs had a
variance of 5 and a maximum value of 1. The inputs are
distributed representations of time-varying sounds in which
each input value can be viewed as a population of neurons
with selectivity to a particular modulation rate (Gluck,
1992). Similar representations have been used previously in
models of peak shift for stimuli that are complex in nature
(Livesey et al., 2005; Suret & McLaren, 2002). The input
stimulus sets used are shown in Figure 1.

1 —

Activation

Input Unit

Figure 1. Representations of stimuli used in a) pre-training;
b) S+/S- discrimination and c¢) generalization testing. X-axes
depict the unit in the input layer. Y-axes depict the
activation in each unit for each pattern. The thicker solid
line corresponds to the target stimulus, dotted lines are non-
targets, thinner solid lines are novel stimuli.

Training and Testing

All networks were trained using the Rosenblatt learning
algorithm (Dawson, 2004; 2005). Initial network weights
were set at random between -0.1 and 0.1. Networks were
pre-trained with the desired response to S+ as 1 and the
response to stimuli displaced on either side of the
generalization distribution as 0. Network pre-training
continued until the sum of the squared error (SSE) for the
single output unit was less than 0.05. SSE provided a
measure of the difference between the model’s output and
the desired output. The pre-training procedure was
analogous to pre-training used previously in experimental
studies (Spetch et al., 2004; Wisniewski et al., 2009; 2010)
and served mainly to initialize the perceptron (Fernandez-
Redondo & Hernandez-Espinosa, 2001; Li, Alnuweiri, &
Wu, 1993). This initialization enabled the networks to
perform the S+/S- discrimination at levels above chance
early in training, as is seen experimentally, rather than
starting from a completely naive state.

After pre-training, all networks were given S+/S-
discrimination training. The desired output for networks

was set at 1 for the S+ and 0 for the S-. In order to compare
each model’s generalization after different levels of training
experience, we trained groups of networks to 6 different
criteria that were defined by (SSE) in the output unit. The 6
criteria were SSEs of 0.4, 0.3, 0.2, 0.1, 0.05, and 0.02.
Network training was stopped after the respective SSE level
was reached. SSE was used instead of the number of
training trials because networks with different unit types
learn at different rates (Dawson, 2004; 2005), and we
wanted to make sure that networks in different unit
conditions reached similar levels of performance on the
S+/S- discrimination.

After training, generalization was assessed by presenting
networks with the S+, the S-, and 6 novel stimuli with no
feedback. The output unit’s activations to presentations of
test stimuli in each group of networks are reported. Since
the quadratic trend in shift over the course of learning has
not been modeled before, our main focus was on examining
how the performance of different models qualitatively fit the
data. The behavioral results from Wisniewski et al. (2010)
are shown in Figure 2.

Training Trials
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Figure 2. The generalization gradients reported by

Wisniewski et al. (2010) for groups of participants trained
for different amounts of trials. The y-axis depicts the
proportion of times participants indicated a stimulus was the
S+. The x-axis shows each stimulus in the generalization
distribution. Solid vertical line is the S+; dashed line is the
trained S-.

Results

The mean generalization gradients for networks in each
group are shown in Figure 3.

Sigmoid Output Units: Perceptrons with sigmoid units
showed an increase in shift as SSE decreased on the S+/S-
discrimination. The peak activation of the output unit
shifted away from the S+, even in the most extensively
trained group of networks.

Value Output Units: Conversely, the single layer
perceptrons made up of value units that were trained to an
SSE of 0.05 and 0.02 were most strongly activated by the
S+. Value unit networks that were trained to the criterions
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of 0.2 and 0.10 SSE showed shifts in peak activation to
stimulus 6.
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Figure 3. Shown are (top) the generalization gradients for
sigmoid unit networks, and (bottom) gradients for networks
trained with value units. Solid vertical line is the S+; dashed
line is the trained S-.

Training to criteria based on number of trials vs.
performance levels

Many studies of generalization and peak shift involve
training participants for a specific number of trials (Bizo &
McMahon, 2007; Baron, 1973; Galizio, 1980; Lewis &
Johnston, 1999; Newlin et al., 1979; Thomas et al., 1991),
rather than to specific discrimination performance criteria.
Recent experimental data (Wisniewski et al., 2010) and the
simulations presented here, however, showed that
generalization differs strongly and nonlinearly with changes
in discrimination performance. Therefore, training to a
specific trial criterion may lead to more variability between
participants in generalization than training to a performance
criterion. To examine this possibility, single layer networks
of value units were trained to the 6 criteria levels, rank-
ordered from lowest to highest, and defined by the
previously used SSEs or for a pre-specified number of
training trials (10, 160, 320, 640, 1280, or 2560 trials).
Learning rates of 0.01, 0.02, 0.04, and 0.08 were used to
simulate individual differences in learning capacity. Three
networks were trained per learning rate and per criterion
level defined by SSE or number of training trials. The
standard deviation of generalization gradient means was
higher for networks that were trained for a specified number
of trials than for networks that were trained to criterion

levels 1-4. Criterion levels 5 and 6 showed similar standard
deviations for networks trained to a criterion defined by
SSE and number of trials.

Discussion

The current simulations demonstrate that perceptron models
of discrimination learning can replicate the quadratic trend
for shifts in generalization gradients reported by Wisniewski
et al. (2010), in which a peak shift effect emerges and then
dissipates during the course of learning. However, networks
constructed with a sigmoid output unit were not successful
in capturing this trend. Sigmoid units have been popular in
previous perceptron models of peak shift, which is
understandable given that they predict peak shift and are
consistent with theories of how stimulus characteristics are
associatively reweighted after learning (more informative
characteristics gain more weight) (Ghirlanda & Enquist,
1998; 2006; Livesey et al., 2005; Suret & McLaren, 2002;
Tanaka & Simon, 1996). Here, however, they appear to
result in stronger shifts with greater learning on the S+/S-
discrimination. In contrast, networks trained with value
units qualitatively replicated the quadratic trend in gradient
shifts. Shifts in gradients only occurred after intermediate
levels of performance were reached on the S+/S-
discrimination. Discrimination performance on the S+/S-
discrimination that was too poor, or too good, led to little or
no shift in the generalization gradients of networks. Because
the value, but not sigmoid units were successful in capturing
the quadratic trend in generalization with perceptrons, it
could be the case that, during learning, elements of a
stimulus are not always reweighted in the manner proposed
by previous theory. A connectionist architecture more
complicated than a single-layer perceptron may be capable
of simulating the behavioral data using only sigmoid units,
but previously proposed perceptron models are not.

Value units may have been better for simulating the
empirical results of Wisniewski et al. (2010) for a couple of
reasons. First, the receptive fields of many neurons in
cortex that code for the features of sound selectively
respond to specific features of an input with response
decreasing to properties that are dissimilar to those features
(e.g., Elhilali et al., 2007; Linden et al., 2003). It could be
that Gaussian activation functions simulate these types of
receptive fields and that these receptive fields are important
for discrimination training. Second, Wisniewski et al.
(2010), and many others studying generalization (Baron,
1973; Bizo & McMahon, 2007; Lewis & Johnston, 1999;
Spetch et al. 2004; Thomas et al., 1991; Wisniewski et al.,
2009), used a task for which participants were told to make
a response only to the trained stimulus and nothing else. In
single-layer perceptron models Gaussian activation
functions may be best for modeling types of tasks for which
responses should be withheld in the presence of stimuli that
are different from the trained stimulus in both directions on
the dimension. In contrast, sigmoid functions may be best
at modeling tasks for which participants are instructed to
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generalize responses to novel stimuli as done in studies of
the caricature effect (Tanaka & Simon, 1996).

We also found that generalization was more variable
when networks were trained to a criterion based on the
number of training trials than to a criterion based on
discrimination performance. This finding suggests that
when investigating trajectories of changes in generalization,
the method of training for a certain number of trials (Bizo &
McMahon, 2007; Baron, 1973; Derenne, 2010; Galizio,
1980; Lewis & Johnston, 1999; Newlin et al., 1979; Thomas
et al., 1991; Wisniewski et al., 2009; 2010) may be less
effective than training to a performance criterion (Spetch et
al., 2004; Thomas, Svinicki, & Vogt, 1973; Wills &
Mackintosh, 1998). In addition, there are large individual
differences in how participants generalize (Landau, 1968;
Guttman & Kalish, 1956; Nicholson & Gray, 1972). Some
of the previously reported differences in generalization may
stem from participants not reaching similar levels of
performance.

Finally, the fact that we were able to simulate the
temporal dynamics of human generalization with a model
that can model songbird perceptual discriminations of
naturally occurring stimuli strongly suggests that there are
similar mechanisms for human and nonhuman
generalization and learning (Ghirlanda & Enquist, 2006;
Mercado, 2008; Spetch et al., 2004; Wisniewski et al.,
2009). Some have argued that different mechanisms
account for the peak shift effect in humans versus
nonhumans (Bizo & McMahon, 2007; Thomas et al., 1991),
whereas others have challenged this idea (Ghirlanda &
Enquist, 2006; Livesey et al., 2005; Spetch et al., 2004;
Suret & McLaren, 2002; Wisniewski et al., 2009). The fact
that simple perceptron models can adequately model
learning and generalization across species is consistent with
the involvement of common underlying mechanisms.

In conclusion, the simulations presented here suggest that:
1) it is important to consider how stimuli are neurally coded
as well as task design when simulating behavioral data from
discrimination learning experiments; 2) equalizing
subjects/participants on performance leads to less variable
generalization than equalizing trial numbers; and 3)
common learning mechanisms, shared between human and
nonhuman species, likely mediate the peak shift effect.
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