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Abstract

Statistical learning, the process by which people learn patterns
of information from their environment that they can apply to
new situations, is central to the development of many higher
order cognitive skills. Despite a growing research literature,
little is still known about how statistical learning operates
across perceptual categories. To investigate this issue we
assessed college students on their ability to learn a
multisensory artificial grammar containing both auditory and
visual elements and both within-categorical and cross-
categorical associations. The results of Experiment 1 showed
that participants were sensitive to grammatically correct test
items and ungrammatical test items that contained within-
categorical grammatical violations, but were not sensitive to
items that contained cross-categorical violations across
sensory modalities. Experiment 2 showed that participants
were not sensitive to items that contained cross-categorical
violations within the same sensory modality. Our findings
suggest that multisensory integration across perceptual
categories does not occur easily during statistical learning.

Keywords: statistical learning, artificial grammar learning,
multisensory processing, domain-general

Introduction

Statistical learning, the ability to detect statistical
associations in the environment (Perruchet & Pacton, 2006),
appears to be important across a range of cognitive domains,
including language, motor skills, and event segmentation
(Conway, Pisoni, Anaya, Karpicke, & Henning, 2011;
Conway, Bauernschmidt, Huang, & Pisoni, 2010; Leclerq &
Majerus, 2010; Zacks & Swallow, 2007). Despite a growing
body of research investigating different aspects of statistical
learning, little is known about how learning takes place
across perceptual categories and sensory modalities.

To illustrate the importance of multisensory processing in
cognition, we briefly consider its role in speech perception
and production, which require the integration of material
across perceptual categories. Rosenblum (2008) suggested
that spoken language processing is naturally a multisensory
phenomenon, pointing out that infants appear to use visual
speech cues early in life to help perceive speech.
Furthermore, when one sensory modality is insufficient for
perceiving a speech element, the other modality can be
recruited: for example, phonemes that are auditorily similar
tend to be visually distinct in terms of facial and mouth
movements. The importance of multisensory processing in
speech perception is also seen in the well known McGurk
illusion (McGurk, 1976) in which participants see a video of

a person’s mouth verbalizing one syllable, while an auditory
track is played of a different syllable. When the auditory
input does not match the visual input, participants report
perceiving a hybrid syllable constructed from combining the
visual and auditory information.

Clearly, multisensory processing is an important
phenomenon. However, it is still unknown to what extent
cross-categorical inputs can be integrated in the case of
statistical learning. One possibility is that statistical learning
is domain general, and therefore operates equally across all
modalities and perceptual categories. Under this view, one
would expect that multisensory statistical learning would be
robust, and that learning would be comparable across
domains. Indeed, Seitz, Kim, Wassenhoven, and Shams
(2007) used a statistical learning paradigm to demonstrate
that participants learned both audio and visual patterns
independently when presented with audio-visual pairings,
indicating equivalent levels of learning when exposed to
stimuli from different sensory modalities. Several studies
have also demonstrated improved performance when stimuli
are presented in two rather than a single modality (Kim,
Seitz, & Shams, 2008; Robinson & Sloutsky, 2007), which
could indicate that stimuli in different modalities are
integrated together during statistical learning tasks.
Furthermore, several studies have shown transfer between
sensory domains, suggesting that knowledge resulting from
statistical learning processes can be easily integrated across
input domains and perceptual categories (Altmann, Dienes,
& Good, 1995; Manza & Reber, 1997).

On the other hand, recent research suggests that statistical
learning may not be purely domain-general. For instance,
modality constraints exist which bias and affect how
statistical patterns are acquired (Emberson, Conway, &
Christiansen, in press; Conway & Christiansen, 2005). The
presence of these modality constraints suggest that although
learning across perceptual domains might operate using
similar computational principles, each modality may also be
biased to acquire certain types of information better than
others. Even so, whether people are able to learn patterns
when cross-categorical dependencies are employed is a less
explored issue. Conway and Christiansen (2006) showed
that when learning two separate sets of regularities
concurrently, participants demonstrated learning only when
the two sets of stimuli were in different sensory modalities
or perceptual categories. They argued that this demonstrates
that statistical learning relies on stimulus-specific rather
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than abstract representations since no “mixing” of the
information occurred across sensory modalities. These last
findings suggest that to some extent, information across
sensory modalities is not easily integrated during statistical
learning, raising doubts as to a completely domain-general
view of statistical learning.

Reconceptualizing Modality Differences

The previously reviewed findings raise difficulties with
adopting a purely domain-general view of statistical
learning. However, perhaps the problem lies in the
inadequacy of using a strict dichotomous classification of
either purely domain-general versus purely domain-specific
(illustrations of each are depicted in Figure 1) models. In a
domain-general model, all input types and modalities are
treated equally, offering complete integration across
perceptual categories and sensory modalities. On the other
hand, in a domain-specific model, no integration occurs at
all between specific sensory modalities or perceptual
categories. Although there may be some theoretical
usefulness out of depicting these views, sensory integration
is likely more complex than either model would imply.

Phonology

Shape

Phonology

Figure 1. Domain-general model (top) versus domain-specific
model (bottom) of sensory integration.

Cree and McRae (2003) investigated a similar problem in
the  psycholinguistic literature  regarding  semantic
categorization. These authors reconceptualized the
previously debated question as to whether semantic
categorization is stored in a domain- or knowledge-specific
manner, by statistically analyzing a large corpus of nouns
according to various theoretical categorizational constructs,
such as concept familiarity, word frequency, and visual
complexity, among others. From their analyses, they found
that semantic categorization can actually be conceptualized
as a combination of all of the proposed constructs. Thus,
they suggested a reconceptualization of the traditional
domain-general/domain-specific division, into one that is
more integrative (McNorgan, Reid, & McRae, 2011).

As a variation of the domain-general view, which
suggests that all sensory modalities are processed within a
single cognitive mechanism, McNorgan et al. (2011)

proposed a shallow integration model, as depicted in Figure
2 (top). In this model, different modality features, such as
shape and color for vision, enter onto different featural
nodes. These nodes feed input into a central processing
mechanism where the various input is integrated, producing
an overall sensory experience. Importantly, in the shallow
model the sensory features do not load onto a modality-
specific node before moving to the central processing
mechanism. Rather, various visual features, such as shape
and color, and auditory features such as pitch and tone all
interact once reaching the central processing mechanism.
Thus, modalities are initially percept specific, but become
integrated at a higher level of processing.

In addition, as an alternative to the domain-specific view,
which proposes that all sensory modalities are completely
isolated from each other, McNorgan et al. (2011) proposed a
deep integration model (Figure 2, bottom). In this model,
an additional level of nodes is introduced. Sensory input
enters and is loaded onto a featural node as before, then
passes onto a modality-specific sensory node, such as
vision, before entering the central processing mechanism.
As an example, according to this model, once a tone of a
particular pitch is perceived, it loads onto the pitch node,
and then is integrated with phonology and other auditory
features before entering the central processor. Here the
auditory information can be further integrated with
information from other sensory modalities.

Visual Input Auditory Input

Central

Visual Input

Auditory Input

Figure 2. Shallow integration model (top) and deep integration
model (bottom), adapted from McNorgan et al. (2011).

The Present Study
We believe that the perspectives offered from these shallow
and deep integration models can provide insight into better
understanding multisensory statistical learning. The purpose
of the present study is to begin to tease apart which of these
models might offer the most explanatory power for
multisensory/multi-categorical processing in statistical
learning. The present experiments employ an artificial
grammar learning (AGL) paradigm, a common paradigm
used to test such learning (Perruchet & Pacton, 2006; Reber,
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1967; Seger, 1994). The traditional AGL paradigm exploits
the probability between different inputs by using a finite
state grammar. Traditionally, these inputs consist of various
elements in a single modality or perceptual category. Thus,
a particular input sequence may be a series of pictures,
tones, or letters, the order of each element being determined
by the grammatical rules. Our paradigm differed from the
traditional in that instead of using inputs from a single
perceptual category, we used elements from multiple
domains, such that both within-categorical and cross-
categorical associations were present. Other studies
(Robinson & Sloutsky, 2007) that have used inputs from
multiple domains have bound them in such a way that when
an element from one perceptual category (e.g. a visual
element) appeared, it always co-occurred with an element
from a different category (e.g. an auditory element). In
contrast, we treated all sensory category inputs as individual
units of the grammar. Thus, in Experiment 1, participants
were exposed to a learning phase in which they heard tones
interspersed with pictures that appeared on a screen (see
Figure 3). Each auditory element could be followed by a
visual or auditory element, and vice versa, creating a unique
grammar consisting of three independent visual and three
individual auditory elements. Importantly, because the
learning phase consisted of both within-categorical and
cross-categorical associations, we could test to what extent
participants can acquire each, which may help us distinguish
between the four possible models of multisensory
integration discussed above. In Experiment 1, we employed
two sets of stimuli from two different sensory modalities
(visual shapes and auditory tones); in Experiment 2, we
employed two categories of auditory stimuli (tones and
nonwords).
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Figure 3: Example of a possible input sequence used in the
present study.

Experiment 1

Method

Participants Fifteen undergraduate students from Saint
Louis University participated in the study. All participants
received credit toward partial fulfillment of an
undergraduate course as compensation for their time. All
participants reported being native speakers of English with
vision and hearing at normal or corrected to normal levels.

Stimulus Materials For the learning task, we used an
artificial grammar consisting of three visual elements and
three auditory elements. The visual elements were abstract
black shapes that were difficult to verbally label. The
auditory elements were three tones generated using
Audacity software having frequencies of 210, 286, and
389Hz. These frequencies were used because they neither
conform to standard musical notes nor have standard
musical intervals between them (Conway & Christiansen,
2005).

We wused an artificial grammar with constrained
probabilities to generate the input sequences (see Table 1).
To generate a sequence from such a grammar, one randomly
picks a starting element on the left (A-1, V-2, A-3, V-4, A-
5, or V6) and then uses the listed probability to generate the
next item. For instance, if V-2 is the starting element, it can
be followed by either A-3 or V-4; if A-3 is the element
occurring next, it can be followed by either V-4 or A-5.
Thus, V-2, A-3, A-5 is an example of a short three-item
input sequence that can be generated by this grammar.

In general, the grammar specifies that each auditory
element has .5 probability of being followed by one other
auditory element and a .5 probability of being followed by a
visual element. Likewise, each visual element can be
followed half of the time by one other visual element, and
half of the time by a single auditory element. Thus, each
element of the grammar could be followed by two other
elements, one of the same modality, and one from the other
modality. For Experiment 1 the within-categorical items
were also within-modal (e.g., auditory-auditory and visual-
visual), and the cross-categorical items were also cross-
modal (e.g., auditory-visual or visual-auditory). Two types
of ungrammatical items were also generated, within-modal
violations and cross-modal violations. To create within-
modal violation items, all within-modal dependencies were
altered so that they violated the grammar; however, all
cross-modal dependences remained grammatical. For cross-
modal violation items, all cross-modal dependencies did not
conform to the grammar; however, the within-modal
dependencies remained grammatical.

Table 1: The probabilities used to formulate grammatical
sequences for the learning phase and test items, which
consisted of visual (“V”’) and auditory (“A”) elements.

Al | V-2 | A3 |V4 )| A5 | V-6
A-1 0 5 5 0 0 0
V-2 0 0 5 5 0 0
A-3 0 0 0 5 5 0
V-4 0 0 0 0 5 5
A-5 5 0 0 0 0 5
V-6 5 5 0 0 0 0

Procedure All participants completed two phases of the
task: a learning phase and a test phase. In the learning phase,
participants were directed to put on a pair of headphones,
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and pay attention to the pictures that flashed on the screen as
well as any sounds they heard through the headphones.
Participants were exposed to a continuous 7-8 minute
sequence of pictures and tones that coincided with the
grammar. In the second phase of the experiment,
participants observed novel six-item sequences and had to
determine if each item was grammatical (i.e., it “followed
the rules” of the sequences they heard during the learning
phase) or ungrammatical (i.e., it “did not follow the rules”).
Participants were given 20 novel grammatical test items, 10
ungrammatical cross-modal violation items, and 10
ungrammatical within-modal violation items, in random
order. Participants made their responses by pressing one of
two buttons on a button box, one signifying grammatical
items, the other signifying ungrammatical items. For each
participant, the auditory and visual tokens were randomly
assigned to the elements in the grammar; thus, for one
participant, A-1 might be the 210 Hz tone, but for another
participant, A-1 might be the 389 Hz tone.

Results and Discussion

The present study serves as an initial test of the domain-
general and domain-specific models of sensory integration.
If people process statistical information domain-generally,
we expect to see no difference between performance in
detecting within-modal and cross-modal violations. Under
this view, what is important is that there exists a violation to
the grammatical regularities, and participants should
therefore be able to detect such violations, regardless if it is
a cross-modal violation (e.g., detecting that A-1, V-4 is an
illegal transition). However, if statistical learning is domain-
specific, with learning focused solely on transitions within a
sensory modality, then it might be expected that participants
should fail to identify cross-modal violations.

Table 2 lists percent correct judgments for each of the
three item types (grammatical, ungrammatical within-modal
violations, and ungrammatical cross-modal violations). A
series of single sample t-tests were run comparing the group
means to chance performance (50%). A group mean
significantly higher than chance would signify learning.

Table 2: Mean performance for Experiments 1 and 2.
Values presented are percentage correct for each condition.

Group Mean (SD)

Gram Within-Cat  Cross-Cat
Experiment 1 59.35(11.3)* 65.3(13.0)* 50.7(17.5)
Experiment 2 60.65(9.4)* 78.7(14.6)* 51.3(22.3)

As can be seen from Table 2, learning occurred for the
grammatical items (t = 3.19, p < .01) and the within-modal
violation items (t = 4.56, p < .001). However, no learning
was seen for the cross-modal violation items (t = 0.15, p >
.5).

In other words, participants could reliably recognize a
grammatical item as grammatical and could detect within-
modal violations. However, they were unable to detect
statistical violations that occurred between two elements
from two different modalities. These results indicate that
learning statistical associations between two elements may
be more difficult when it takes place across two modalities
compared to when it occurs within the same modality.
Because no cross-modal integration was seen in Experiment
1, we can conclude that the domain-general modal is not an
accurate depiction of the type of processing taking place in
multisensory statistical learning.

Experiment 2

The results of Experiment 1 show that participants may be
unable to use knowledge gained through statistical learning
to identify sequences that contain a cross-categorical
violation.  However, Experiment 1 tells us only how
information is integrated between sensory modalities, but
nothing about how information is integrated within a single
modality. Experiment 2 was conducted to further investigate
to what extent different features from a single modality are
integrated and learned, in order to test the shallow
integration model of statistical learning.

Method

Participants Participants in this study were fifteen
undergraduate students from Saint Louis University. As in
Experiment 1, all participants received credit toward partial
fulfillment of an undergraduate course as compensation for
their time. All participants reported being native speakers
of English with vision and hearing at normal or corrected to
normal levels.

Stimulus Materials For Experiment 2, the stimulus
materials were two different types of auditory stimuli. The
same three tones used in Experiment 1 were used in this
experiment with the addition of two tones, at frequencies
245 and 333 Hz, to give a total set of five tones. As in
Experiment 1, the two additional tones did not conform to
standard musical notes or contain intervals of any standard
musical scale. In addition, five nonsense syllables were
used for the second stimulus type: “vot,” “pel,” “dak,” “jic,”
and “rud” (from Gomez, 2002). For each participant, three
of the tones and three nonsense syllables were randomly
selected and mapped onto the sequences. Thus, each
participant received the same sequences (generated from the
grammar in Table 1), but the actual tones and syllables used
differed across participants.

The grammar used for constructing the learning and test
items was the same as in Experiment 1. The learning
sequence and test items used were nearly identical, except
that two items from the list containing within-categorical
violations and two containing cross-categorical violations
were modified slightly. The test phase again consisted of
three types of items: grammatical, ungrammatical within-
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category violations,
violations.

and ungrammatical cross-category

Procedure The procedure was identical to the one

undergone by the participants in Experiment 1.

Results and Discussion

If cross-categorical violations are easier to identify when
presented within a single sensory modality, we would
expect to see improved performance on the cross-categorical
violations in Experiment 2, because the violations span
perceptual categories but are within the same sensory
modality (e.g., tone-syllable or syllable-tone). This finding
would provide evidence in support of the shallow
integration model. On the other hand, if cross-categorical
violations are equally difficult to identify regardless of
whether they are presented in a single or multiple sensory
modality, we should see no evidence of learning for the
cross-categorical items. This scenario would provide further
support for domain-specific processing in statistical
learning.

To test these possible outcomes, a series of t-tests were
run on the data to ascertain if learning was greater than
chance levels for the three types of test items. The means for
each item type can be seen in Table 2. As is evident,
learning was observed for the grammatical items (t = 4.384,
p < .001) and for the within-categorical violation items (t =
7.618, p < .001) but not for the cross-categorical violation
items (t=0.23, p > .8).

The data from Experiment 2 replicate and extend the
results seen in the previous experiment. Once again,
learning was robust for grammatical items and
ungrammatical items when the grammatical violation was
present between two units of the same feature type (i.e., two
tones or two syllables). However, when the violation
appeared between a tone and a syllable, participants were
unable to identify it as ungrammatical at levels above
chance. Thus, the difficulty seen in Experiment 1 for
individuals identifying grammatical violations in cross-
modal situations extends to instances where the grammatical
elements are in the same sensory modality, but in different
perceptual categories.

General Discussion

The present studies investigated categorical integration in a
statistical learning paradigm. Experiment 1 used visual and
auditory elements in a single artificial grammar to
investigate within-modal and cross-modal processing.
Experiment 2 investigated how learning takes place when
two distinct features within a single modality are employed.
The findings were used to evaluate four models of
multisensory integration, based on those recently applied to
linguistic processing (McNorgan, Reid & McRae, 2011).

Taken together, the studies demonstrate that participants
are capable of learning grammatical and within-categorical
violations, but have difficulty with cross-categorical
violations. The discrepancy in performance between within-

and cross-category violations may be due to a tendency to
focus first on within-category patterns, which may be
adaptive. That is, it may be more useful to learn within-
category associations at the expense of cross-category ones,
assuming that only a limited amount of cognitive resources
are available to detect violations. The reasons for this are
currently unexplored, though several possible explanations
exist. It is a possible that it is more cognitively efficient to
look for patterns in stimuli that are more similar before
trying to find rules in patterns that exist across domains.
Perhaps participants would have shown learning if they had
greater exposure to the cross-categorical patterns in the
learning phase, which would support this claim. It is also
possible that within-category associations are encountered
more frequently or are more informative, though this
possibility seems less likely given the infant literature
showing that learning is enhanced when infants are given
stimuli in multiple modalities (Lewkowitcz, 2004).

The two studies presented here provide initial evidence in
support of a domain-specific model of multisensory
integration, suggesting that people have difficulty
integrating sensory input across perceptual domains.
However, this finding is preliminary. Interestingly, this
conclusion does not correspond to the conclusions in
McNorgan et al.’s (2011) initial test of their linguistic
model, in which they determined that the deep model of
processing best accounts for linguistic categorization.
Several reasons for this discrepancy may exist. First, it is
possible that statistical learning is a functionally different
process than linguistic processing, at least as assessed by the
two different tasks used in our study and theirs. One major
difference between our statistical learning task and their
linguistic task is that in the McNogran et al. (2011) study,
participants did not actually perceive stimuli in different
modalities. Instead, they were presented with words that
theoretically appealed to different sensory modalities. If
processing operates differently in these two domains
(linguistic and statistical learning), it is not unreasonable to
assume that a test of linguistic categorization would yield a
different pattern of results than a test of statistical learning.

A second explanation deals with the previously
mentioned issue of exposure time. It is possible that
learning would have occurred if participants had been given
more exposure to the cross-categorical dependencies in the
learning phase. If this were the case, then the shallow and
deep integration models could be directly tested against
each other by integrating multiple features of each sensory
modality into a single grammar. By varying the amount of
exposure time with such a grammar, it could be possible to
determine whether learning associations across different
sensory modalities differs in comparison to learning
associations across different perceptual categories within the
same modality.

An important issue for further study is how these
processes work in infants and children, as it has implications
for multisensory aspects of cognitive processing such as
speech perception. Since speech processing is one of many
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cognitive skills that is considered multisensory, especially
for young infants (Rosenblum, 2008), it is necessary to
determine if they are capable of detecting cross-category
violations.  Little is currently known about the
developmental trajectory of multisensory learning in
children. Other cognitive processes not systematically
studied in these experiments may also be involved, such as
to what extent attention is specifically deployed in the
learning phase toward learning the within-modal versus the
cross-modal associations. These are important issues for
future study.

In summary, the present experiments indicate that
statistical learning is a complex process with constraints
present in categorization. Though people are capable of
correctly identifying grammatical information and within-
categorical violations, they have difficulty learning
grammatical violations when the violation appears between
elements from two different categories of information.
These categories may be different sense modalities, or
different features within the same modality. On the other
hand, people are very skilled at identifying violations that
occur within a single perceptual category. On the one hand
these findings would appear to suggest a purely domain-
specific view of multisensory statistical learning, in which
sensory integration does not occur at all. On the other hand,
there may be other factors not explicitly explored in the
current experiment (e.g., exposure time, attention) that could
instead make cross-modal statistical learning more
amenable.
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