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Abstract 

Statistical learning, the process by which people learn patterns 
of information from their environment that they can apply to 
new situations, is central to the development of many higher 
order cognitive skills. Despite a growing research literature, 
little is still known about how statistical learning operates 
across perceptual categories.  To investigate this issue we 
assessed college students on their ability to learn a 
multisensory artificial grammar containing both auditory and 
visual elements and both within-categorical and cross-
categorical associations. The results of Experiment 1 showed 
that participants were sensitive to grammatically correct test 
items and ungrammatical test items that contained within-
categorical grammatical violations, but were not sensitive to 
items that contained cross-categorical violations across 
sensory modalities. Experiment 2 showed that participants 
were not sensitive to items that contained cross-categorical 
violations within the same sensory modality. Our findings 
suggest that multisensory integration across perceptual 
categories does not occur easily during statistical learning. 

Keywords: statistical learning, artificial grammar learning, 
multisensory processing, domain-general 

Introduction 

Statistical learning, the ability to detect statistical 

associations in the environment (Perruchet & Pacton, 2006), 

appears to be important across a range of cognitive domains, 

including language, motor skills, and event segmentation 

(Conway, Pisoni, Anaya, Karpicke, & Henning, 2011; 

Conway, Bauernschmidt, Huang, & Pisoni, 2010; Leclerq & 

Majerus, 2010; Zacks & Swallow, 2007). Despite a growing 

body of research investigating different aspects of statistical 

learning, little is known about how learning takes place 

across perceptual categories and sensory modalities.  

To illustrate the importance of multisensory processing in 

cognition, we briefly consider its role in speech perception 

and production, which require the integration of material 

across perceptual categories. Rosenblum (2008) suggested 

that spoken language processing is naturally a multisensory 

phenomenon, pointing out that infants appear to use visual 

speech cues early in life to help perceive speech. 

Furthermore, when one sensory modality is insufficient for 

perceiving a speech element, the other modality can be 

recruited: for example, phonemes that are auditorily similar 

tend to be visually distinct in terms of facial and mouth 

movements. The importance of multisensory processing in 

speech perception is also seen in the well known McGurk 

illusion (McGurk, 1976) in which participants see a video of 

a person’s mouth verbalizing one syllable, while an auditory 

track is played of a different syllable. When the auditory 

input does not match the visual input, participants report 

perceiving a hybrid syllable constructed from combining the 

visual and auditory information.  

Clearly, multisensory processing is an important 

phenomenon. However, it is still unknown to what extent 

cross-categorical inputs can be integrated in the case of 

statistical learning. One possibility is that statistical learning 

is domain general, and therefore operates equally across all 

modalities and perceptual categories.  Under this view, one 

would expect that multisensory statistical learning would be 

robust, and that learning would be comparable across 

domains. Indeed, Seitz, Kim, Wassenhoven, and Shams 

(2007) used a statistical learning paradigm to demonstrate 

that participants learned both audio and visual patterns 

independently when presented with audio-visual pairings, 

indicating equivalent levels of learning when exposed to 

stimuli from different sensory modalities. Several studies 

have also demonstrated improved performance when stimuli 

are presented in two rather than a single modality (Kim, 

Seitz, & Shams, 2008; Robinson & Sloutsky, 2007), which 

could indicate that stimuli in different modalities are 

integrated together during statistical learning tasks. 

Furthermore, several studies have shown transfer between 

sensory domains, suggesting that knowledge resulting from 

statistical learning processes can be easily integrated across 

input domains and perceptual categories (Altmann, Dienes, 

& Good, 1995; Manza & Reber, 1997). 

On the other hand, recent research suggests that statistical 

learning may not be purely domain-general. For instance, 

modality constraints exist which bias and affect how 

statistical patterns are acquired (Emberson, Conway, & 

Christiansen, in press; Conway & Christiansen, 2005). The 

presence of these modality constraints suggest that although 

learning across perceptual domains might operate using 

similar computational principles, each modality may also be 

biased to acquire certain types of information better than 

others. Even so, whether people are able to learn patterns 

when cross-categorical dependencies are employed is a less 

explored issue. Conway and Christiansen (2006) showed 

that when learning two separate sets of regularities 

concurrently, participants demonstrated learning only when 

the two sets of stimuli were in different sensory modalities 

or perceptual categories. They argued that this demonstrates 

that statistical learning relies on stimulus-specific rather 
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than abstract representations since no “mixing” of the 

information occurred across sensory modalities. These last 

findings suggest that to some extent, information across 

sensory modalities is not easily integrated during statistical 

learning, raising doubts as to a completely domain-general 

view of statistical learning. 

Reconceptualizing Modality Differences 

The previously reviewed findings raise difficulties with 

adopting a purely domain-general view of statistical 

learning. However, perhaps the problem lies in the 

inadequacy of using a strict dichotomous classification of 

either purely domain-general versus purely domain-specific 

(illustrations of each are depicted in Figure 1) models. In a 

domain-general model, all input types and modalities are 

treated equally, offering complete integration across 

perceptual categories and sensory modalities. On the other 

hand, in a domain-specific model, no integration occurs at 

all between specific sensory modalities or perceptual 

categories. Although there may be some theoretical 

usefulness out of depicting these views, sensory integration 

is likely more complex than either model would imply.  

 

 

 
 

 

 
 
Figure 1. Domain-general model (top) versus domain-specific 

model (bottom) of sensory integration.  

 

Cree and McRae (2003) investigated a similar problem in 

the psycholinguistic literature regarding semantic 

categorization. These authors reconceptualized the 

previously debated question as to whether semantic 

categorization is stored in a domain- or knowledge-specific 

manner, by statistically analyzing a large corpus of nouns 

according to various theoretical categorizational constructs, 

such as concept familiarity, word frequency, and visual 

complexity, among others.  From their analyses, they found 

that semantic categorization can actually be conceptualized 

as a combination of all of the proposed constructs. Thus, 

they suggested a reconceptualization of the traditional 

domain-general/domain-specific division, into one that is 

more integrative (McNorgan, Reid, & McRae, 2011). 

As a variation of the domain-general view, which 

suggests that all sensory modalities are processed within a 

single cognitive mechanism, McNorgan et al. (2011) 

proposed a shallow integration model, as depicted in Figure 

2 (top). In this model, different modality features, such as 

shape and color for vision, enter onto different featural 

nodes. These nodes feed input into a central processing 

mechanism where the various input is integrated, producing 

an overall sensory experience. Importantly, in the shallow 

model the sensory features do not load onto a modality-

specific node before moving to the central processing 

mechanism. Rather, various visual features, such as shape 

and color, and auditory features such as pitch and tone all 

interact once reaching the central processing mechanism. 

Thus, modalities are initially percept specific, but become 

integrated at a higher level of processing. 

In addition, as an alternative to the domain-specific view, 

which proposes that all sensory modalities are completely 

isolated from each other, McNorgan et al. (2011) proposed a 

deep integration model (Figure 2, bottom).  In this model, 

an additional level of nodes is introduced. Sensory input 

enters and is loaded onto a featural node as before, then 

passes onto a modality-specific sensory node, such as 

vision, before entering the central processing mechanism.  

As an example, according to this model, once a tone of a 

particular pitch is perceived, it loads onto the pitch node, 

and then is integrated with phonology and other auditory 

features before entering the central processor. Here the 

auditory information can be further integrated with 

information from other sensory modalities.  

 

 
 

 

 
 
Figure 2. Shallow integration model (top) and deep integration 

model (bottom), adapted from McNorgan et al. (2011). 

 

The Present Study 
We believe that the perspectives offered from these shallow 

and deep integration models can provide insight into better 

understanding multisensory statistical learning. The purpose 

of the present study is to begin to tease apart which of these 

models might offer the most explanatory power for 

multisensory/multi-categorical processing in statistical 

learning.  The present experiments employ an artificial 

grammar learning (AGL) paradigm, a common paradigm 

used to test such learning (Perruchet & Pacton, 2006; Reber, 
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1967; Seger, 1994). The traditional AGL paradigm exploits 

the probability between different inputs by using a finite 

state grammar. Traditionally, these inputs consist of various 

elements in a single modality or perceptual category.  Thus, 

a particular input sequence may be a series of pictures, 

tones, or letters, the order of each element being determined 

by the grammatical rules. Our paradigm differed from the 

traditional in that instead of using inputs from a single 

perceptual category, we used elements from multiple 

domains, such that both within-categorical and cross-

categorical associations were present. Other studies 

(Robinson & Sloutsky, 2007) that have used inputs from 

multiple domains have bound them in such a way that when 

an element from one perceptual category (e.g. a visual 

element) appeared, it always co-occurred with an element 

from a different category (e.g. an auditory element). In 

contrast, we treated all sensory category inputs as individual 

units of the grammar.  Thus, in Experiment 1, participants 

were exposed to a learning phase in which they heard tones 

interspersed with pictures that appeared on a screen (see 

Figure 3).  Each auditory element could be followed by a 

visual or auditory element, and vice versa, creating a unique 

grammar consisting of three independent visual and three 

individual auditory elements. Importantly, because the 

learning phase consisted of both within-categorical and 

cross-categorical associations, we could test to what extent 

participants can acquire each, which may help us distinguish 

between the four possible models of multisensory 

integration discussed above. In Experiment 1, we employed 

two sets of stimuli from two different sensory modalities 

(visual shapes and auditory tones); in Experiment 2, we 

employed two categories of auditory stimuli (tones and 

nonwords). 

 

 
 

Figure 3: Example of a possible input sequence used in the 

present study. 

 

Experiment 1 

Method 

Participants Fifteen undergraduate students from Saint 

Louis University participated in the study. All participants 

received credit toward partial fulfillment of an 

undergraduate course as compensation for their time.  All 

participants reported being native speakers of English with 

vision and hearing at normal or corrected to normal levels. 

 

Stimulus Materials For the learning task, we used an 

artificial grammar consisting of three visual elements and 

three auditory elements.  The visual elements were abstract 

black shapes that were difficult to verbally label.  The 

auditory elements were three tones generated using 

Audacity software having frequencies of 210, 286, and 

389Hz.  These frequencies were used because they neither 

conform to standard musical notes nor have standard 

musical intervals between them (Conway & Christiansen, 

2005).  

We used an artificial grammar with constrained 

probabilities to generate the input sequences (see Table 1). 

To generate a sequence from such a grammar, one randomly 

picks a starting element on the left (A-1, V-2, A-3, V-4, A-

5, or V6) and then uses the listed probability to generate the 

next item. For instance, if V-2 is the starting element, it can 

be followed by either A-3 or V-4; if A-3 is the element 

occurring next, it can be followed by either V-4 or A-5. 

Thus, V-2, A-3, A-5 is an example of a short three-item 

input sequence that can be generated by this grammar. 

In general, the grammar specifies that each auditory 

element has .5 probability of being followed by one other 

auditory element and a .5 probability of being followed by a 

visual element.  Likewise, each visual element can be 

followed half of the time by one other visual element, and 

half of the time by a single auditory element.  Thus, each 

element of the grammar could be followed by two other 

elements, one of the same modality, and one from the other 

modality. For Experiment 1 the within-categorical items 

were also within-modal (e.g., auditory-auditory and visual-

visual), and the cross-categorical items were also cross-

modal (e.g., auditory-visual or visual-auditory). Two types 

of ungrammatical items were also generated, within-modal 

violations and cross-modal violations. To create within-

modal violation items, all within-modal dependencies were 

altered so that they violated the grammar; however, all 

cross-modal dependences remained grammatical.  For cross-

modal violation items, all cross-modal dependencies did not 

conform to the grammar; however, the within-modal 

dependencies remained grammatical.  

 

Table 1: The probabilities used to formulate grammatical 

sequences for the learning phase and test items, which 

consisted of visual (“V”) and auditory (“A”) elements. 

 

 A-1 V-2 A-3 V-4 A-5 V-6 

A-1 0 .5 .5 0 0 0 

V-2 0 0 .5 .5 0 0 

A-3 0 0 0 .5 .5 0 

V-4 0 0 0 0 .5 .5 

A-5 .5 0 0 0 0 .5 

V-6 .5 .5 0 0 0 0 

 

Procedure All participants completed two phases of the 

task: a learning phase and a test phase. In the learning phase, 

participants were directed to put on a pair of headphones, 
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and pay attention to the pictures that flashed on the screen as 

well as any sounds they heard through the headphones.  

Participants were exposed to a continuous 7-8 minute 

sequence of pictures and tones that coincided with the 

grammar. In the second phase of the experiment, 

participants observed novel six-item sequences and had to 

determine if each item was grammatical (i.e., it “followed 

the rules” of the sequences they heard during the learning 

phase) or ungrammatical (i.e., it “did not follow the rules”). 

Participants were given 20 novel grammatical test items, 10 

ungrammatical cross-modal violation items, and 10 

ungrammatical within-modal violation items, in random 

order.  Participants made their responses by pressing one of 

two buttons on a button box, one signifying grammatical 

items, the other signifying ungrammatical items. For each 

participant, the auditory and visual tokens were randomly 

assigned to the elements in the grammar; thus, for one 

participant, A-1 might be the 210 Hz tone, but for another 

participant, A-1 might be the 389 Hz tone. 

 

Results and Discussion 
The present study serves as an initial test of the domain-

general and domain-specific models of sensory integration. 

If people process statistical information domain-generally, 

we expect to see no difference between performance in 

detecting within-modal and cross-modal violations.  Under 

this view, what is important is that there exists a violation to 

the grammatical regularities, and participants should 

therefore be able to detect such violations, regardless if it is 

a cross-modal violation (e.g., detecting that A-1, V-4 is an 

illegal transition). However, if statistical learning is domain-

specific, with learning focused solely on transitions within a 

sensory modality, then it might be expected that participants 

should fail to identify cross-modal violations. 

Table 2 lists percent correct judgments for each of the 

three item types (grammatical, ungrammatical within-modal 

violations, and ungrammatical cross-modal violations). A 

series of single sample t-tests were run comparing the group 

means to chance performance (50%). A group mean 

significantly higher than chance would signify learning. 

 

Table 2: Mean performance for Experiments 1 and 2. 

Values presented are percentage correct for each condition. 

                 

Group   Mean (SD)   

 Gram Within-Cat     Cross-Cat 

 

Experiment 1 59.35(11.3)* 65.3(13.0)* 50.7(17.5) 

 

Experiment 2 60.65(9.4)* 78.7(14.6)* 51.3(22.3) 

 
As can be seen from Table 2, learning occurred for the 

grammatical items (t = 3.19, p < .01) and the within-modal 

violation items (t = 4.56, p < .001).  However, no learning 

was seen for the cross-modal violation items (t = 0.15, p > 

.5).  

In other words, participants could reliably recognize a 

grammatical item as grammatical and could detect within-

modal violations.  However, they were unable to detect 

statistical violations that occurred between two elements 

from two different modalities. These results indicate that 

learning statistical associations between two elements may 

be more difficult when it takes place across two modalities 

compared to when it occurs within the same modality. 

Because no cross-modal integration was seen in Experiment 

1, we can conclude that the domain-general modal is not an 

accurate depiction of the type of processing taking place in 

multisensory statistical learning.  

 

Experiment 2 
The results of Experiment 1 show that participants may be 

unable to use knowledge gained through statistical learning 

to identify sequences that contain a cross-categorical 

violation.  However, Experiment 1 tells us only how 

information is integrated between sensory modalities, but 

nothing about how information is integrated within a single 

modality. Experiment 2 was conducted to further investigate 

to what extent different features from a single modality are 

integrated and learned, in order to test the shallow 

integration model of statistical learning. 

 

Method 
Participants Participants in this study were fifteen 

undergraduate students from Saint Louis University. As in 

Experiment 1, all participants received credit toward partial 

fulfillment of an undergraduate course as compensation for 

their time.  All participants reported being native speakers 

of English with vision and hearing at normal or corrected to 

normal levels. 

 

Stimulus Materials For Experiment 2, the stimulus 

materials were two different types of auditory stimuli.  The 

same three tones used in Experiment 1 were used in this 

experiment with the addition of two tones, at frequencies 

245 and 333 Hz, to give a total set of five tones. As in 

Experiment 1, the two additional tones did not conform to 

standard musical notes or contain intervals of any standard 

musical scale.  In addition, five nonsense syllables were 

used for the second stimulus type: “vot,” “pel,” “dak,” “jic,” 

and “rud” (from Gómez, 2002). For each participant, three 

of the tones and three nonsense syllables were randomly 

selected and mapped onto the sequences. Thus, each 

participant received the same sequences (generated from the 

grammar in Table 1), but the actual tones and syllables used 

differed across participants. 

The grammar used for constructing the learning and test 

items was the same as in Experiment 1. The learning 

sequence and test items used were nearly identical, except 

that two items from the list containing within-categorical 

violations and two containing cross-categorical violations 

were modified slightly. The test phase again consisted of 

three types of items: grammatical, ungrammatical within-
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category violations, and ungrammatical cross-category 

violations. 

 

Procedure The procedure was identical to the one 

undergone by the participants in Experiment 1. 

 

Results and Discussion 
If cross-categorical violations are easier to identify when 

presented within a single sensory modality, we would 

expect to see improved performance on the cross-categorical 

violations in Experiment 2, because the violations span 

perceptual categories but are within the same sensory 

modality (e.g., tone-syllable or syllable-tone).  This finding 

would provide evidence in support of the shallow 

integration model.  On the other hand, if cross-categorical 

violations are equally difficult to identify regardless of 

whether they are presented in a single or multiple sensory 

modality, we should see no evidence of learning for the 

cross-categorical items. This scenario would provide further 

support for domain-specific processing in statistical 

learning.   

To test these possible outcomes, a series of t-tests were 

run on the data to ascertain if learning was greater than 

chance levels for the three types of test items. The means for 

each item type can be seen in Table 2. As is evident, 

learning was observed for the grammatical items (t = 4.384, 

p < .001) and for the within-categorical violation items (t = 

7.618, p < .001) but not for the cross-categorical violation 

items (t = 0.23, p > .8).  

 The data from Experiment 2 replicate and extend the 

results seen in the previous experiment. Once again, 

learning was robust for grammatical items and 

ungrammatical items when the grammatical violation was 

present between two units of the same feature type (i.e., two 

tones or two syllables).  However, when the violation 

appeared between a tone and a syllable, participants were 

unable to identify it as ungrammatical at levels above 

chance. Thus, the difficulty seen in Experiment 1 for 

individuals identifying grammatical violations in cross-

modal situations extends to instances where the grammatical 

elements are in the same sensory modality, but in different 

perceptual categories.   

 

General Discussion 
The present studies investigated categorical integration in a 

statistical learning paradigm.  Experiment 1 used visual and 

auditory elements in a single artificial grammar to 

investigate within-modal and cross-modal processing.  

Experiment 2 investigated how learning takes place when 

two distinct features within a single modality are employed.  

The findings were used to evaluate four models of 

multisensory integration, based on those recently applied to 

linguistic processing (McNorgan, Reid & McRae, 2011). 

Taken together, the studies demonstrate that participants 

are capable of learning grammatical and within-categorical 

violations, but have difficulty with cross-categorical 

violations. The discrepancy in performance between within- 

and cross-category violations may be due to a tendency to 

focus first on within-category patterns, which may be 

adaptive.  That is, it may be more useful to learn within-

category associations at the expense of cross-category ones, 

assuming that only a limited amount of cognitive resources 

are available to detect violations. The reasons for this are 

currently unexplored, though several possible explanations 

exist.  It is a possible that it is more cognitively efficient to 

look for patterns in stimuli that are more similar before 

trying to find rules in patterns that exist across domains.  

Perhaps participants would have shown learning if they had 

greater exposure to the cross-categorical patterns in the 

learning phase, which would support this claim. It is also 

possible that within-category associations are encountered 

more frequently or are more informative, though this 

possibility seems less likely given the infant literature 

showing that learning is enhanced when infants are given 

stimuli in multiple modalities (Lewkowitcz, 2004). 

The two studies presented here provide initial evidence in 

support of a domain-specific model of multisensory 

integration, suggesting that people have difficulty 

integrating sensory input across perceptual domains. 

However, this finding is preliminary. Interestingly, this 

conclusion does not correspond to the conclusions in 

McNorgan et al.’s (2011) initial test of their linguistic 

model, in which they determined that the deep model of 

processing best accounts for linguistic categorization. 

Several reasons for this discrepancy may exist.  First, it is 

possible that statistical learning is a functionally different 

process than linguistic processing, at least as assessed by the 

two different tasks used in our study and theirs. One major 

difference between our statistical learning task and their 

linguistic task is that in the McNogran et al. (2011) study, 

participants did not actually perceive stimuli in different 

modalities.  Instead, they were presented with words that 

theoretically appealed to different sensory modalities. If 

processing operates differently in these two domains 

(linguistic and statistical learning), it is not unreasonable to 

assume that a test of linguistic categorization would yield a 

different pattern of results than a test of statistical learning.  

A second explanation deals with the previously 

mentioned issue of exposure time.  It is possible that 

learning would have occurred if participants had been given 

more exposure to the cross-categorical dependencies in the 

learning phase.  If this were the case, then the shallow and 

deep integration models could be directly tested against 

each other by integrating multiple features of each sensory 

modality into a single grammar. By varying the amount of 

exposure time with such a grammar, it could be possible to 

determine whether learning associations across different 

sensory modalities differs in comparison to learning 

associations across different perceptual categories within the 

same modality.   

An important issue for further study is how these 

processes work in infants and children, as it has implications 

for multisensory aspects of cognitive processing such as 

speech perception. Since speech processing is one of many 
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cognitive skills that is considered multisensory, especially 

for young infants (Rosenblum, 2008), it is necessary to 

determine if they are capable of detecting cross-category 

violations. Little is currently known about the 

developmental trajectory of multisensory learning in 

children. Other cognitive processes not systematically 

studied in these experiments may also be involved, such as 

to what extent attention is specifically deployed in the 

learning phase toward learning the within-modal versus the 

cross-modal associations. These are important issues for 

future study. 

In summary, the present experiments indicate that 

statistical learning is a complex process with constraints 

present in categorization.  Though people are capable of 

correctly identifying grammatical information and within-

categorical violations, they have difficulty learning 

grammatical violations when the violation appears between 

elements from two different categories of information. 

These categories may be different sense modalities, or 

different features within the same modality. On the other 

hand, people are very skilled at identifying violations that 

occur within a single perceptual category. On the one hand 

these findings would appear to suggest a purely domain-

specific view of multisensory statistical learning, in which 

sensory integration does not occur at all. On the other hand, 

there may be other factors not explicitly explored in the 

current experiment (e.g., exposure time, attention) that could 

instead make cross-modal statistical learning more 

amenable. 
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