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Abstract

The question of how children learn what words mean is one
that has long perplexed philosophers and psychologists. As
Quine famously pointed out, the problem of accounting for
word learning is a deep one: simply hearing a word uttered in
the presence of an object tells a learner next to nothing about
its meaning. Yet somehow, children learn to understand and
use words correctly. How? Here, we find that learning
theory offers an elegant solution to this seemingly intractable
puzzle in language acquisition. To test its predictions, we
administered an ambiguous word-learning task to toddlers,
undergraduates and developmental psychologists.
Intriguingly, while the toddlers’ performance was consistent
with our hypothesis — and with the workings of general
learning mechanisms that would facilitate verbal acquisition —
adult performance differed markedly. These results have
implications both for how our adult intutions inform the study
of early language learning and for problems in second-
language acquisition.
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Introduction

How do children figure out the meanings of the words
they hear? How does a child learn that homes are “homes”
and doors are “doors,” and not vice versa? The answer
cannot simply be that children are more likely to hear
“door” when doors are present, because people opening
doors are more likely to say, “Hi Honey, I’'m home!” than “/
am now opening the door.” Given this, it seems unlikely
that a child could ever learn the meaning of a word simply
by attending to how often that word is heard in tandem with
an object or event (Gleitman, 1990). Indeed, hearing a word
in the presence of an object tells a learner relatively little
about its meaning: though “door” could be the name of the
object, it might equally relate to its color or texture, an
action that could be taken upon it, or even a characteristic of
the person knocking on it (Quine, 1953)

Here we examine a possible solution to this problem
proposed by the philosopher W.V.O. Quine, who suggested
that rather than learning word meanings individually,
children must instead discover how sensory experience
connects up with systems of words (see also Wittgenstein,
1953). In line with this suggestion, we find that in a novel
word learning task, children judge what is most informative
about words (Shannon & Weaver, 1949), by attending to the
signal-to-noise ratio in their environment. Why then have
researchers traditionally focused on how children learn
‘meanings’ in isolation? (see Smith & Yu, 2008 and Akhtar
& Montague, 1999 for discussion) It may be because that’s

what adults do: faced with the same task, adults adopt a
logical strategy that treats meanings as determinate,
individual entities. Gaining a better understanding of the
way children learn word meanings, and the way their
approach differs from that of adults, can help us better our
approaches to teaching the young, while offering insight
into the struggles many adults encounter with second
language acquisition.

A Puzzle for Word Learning

The dilemma a child faces in word learning has often
been framed as a classic induction problem. Faced with a
novel word, the child must select from among multiple —
perhaps even infinite — competing hypotheses as to what the
word means, on the basis of relatively little evidence from
the input (Carey, 1978; Bloom, 2000). This apparent
philosophical conundrum has long been a source of
puzzlement for child development researchers, because in
spite of the presumed difficulty in narrowing the hypothesis
space, children prove remarkably adept word learners.

This puzzle — of how children can learn so rapidly and
so successfully despite the difficulties posed by ‘referential
uncertainty’ — has led many researchers to posit native
constraints on word learning. Proposals in this vein have
ranged from innate concepts and conceptual primitives
(Chomsky, 2000; Fodor, 1988), to syntactic bootstrapping
(Brown, 1957; Landau & Gleitman, 1985; Naigles, 1990)
and strong representational biases (Carey, 1978; Waxman &
Gelman, 1986).

Though there is certainly much to distinguish these
approaches, they share a common focus on high-level
constraints, which are meant to meaningfully generalize
across linguistic development and behavior. While such
constraints may be useful in describing how children tend to
behave as they are learning language, they do little to
illuminate the underlying learning processes. Constraints
still require an explanation involving either innate linguistic
principles or another underlying mechanism that allows
humans to learn (or otherwise deduce) these principles
(Smith, 1995). Yet many theorists in this tradition have
been satisfied to speculate that these default assumptions
exist, without attempting to flesh out how they might be
computationally or neurobiologically instantiated (for
critiques, see Nelson, 1988; Rakison & Lupyan, 2008;
Smith, Colunga & Yoshida, 2010; Ramscar et al., 2010).

To summarize, then, there has been considerable debate
over both how word learning is conceptualized and
understood, and whether proposed constraints are
psychologically real constructs that restrict and delimit
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learning, or underspecified descriptive generalizations that
may obscure underlying processes.

Quine’s Proposal

While many theories of word learning seek to explain
how children learn isolated words, Quine proposed that
children learn the meanings of words against the
background of a system, an idea that is consistent with the
general frameworks of both learning and information
theory. Experimental work in animal learning indicates that
when learning the relationship between a cue and an
outcome, animals do not simply chart how often cues
predict certain outcomes (reinforcement), they also track
how often cues fail to predict potential outcomes (prediction
error). The predictive value of a cue is assessed against an
entire system of cue-outcome relationships.

To give a simple example, if a rat is subjected to
conditioning in which a series of tones is followed by mild
shocks, the rat will learn to respond fearfully to the tones.
However, if tones that do not lead to expected shocks are
added to the tone-shock pairings, rats’ conditioned
responses will weaken in direct proportion to the increased
background rate of tones (Rescorla, 1968). This is
because rats’ responses depend on how informative the
tones are about the shocks (Kamin, 1969; Rescorla &
Wagner, 1972; Rescorla, 1988).I

Similarly, if children are sensitive to the value of
information in word learning, than rather than simply
tracking how often words and objects are paired together
(e.g., a door is seen and “door” is heard), children might
also track how often a potential pairing does not occur (e.g.,
a door is seen and “home” is not heard). By attending to the
signal-noise ratio in the surrounding linguistic environment,
they could home in on which objects, actions and events in
the world are most informative about which words.

Error-Driven Learning

Why investigate how children learn words from the
vantage point of animal learning? First, there is a wealth of
evidence to support the idea that the neural mechanisms that
underpin error-driven learning in animals are present in
humans, and that they provide us with the same functional
capabilities that are seen and predicted by animal models
(Schultz, Dayan & Montague, 1997; Waelti, Dickinson &
Schultz, 2001; Montague, Hyman & Cohen, 2004;
Samejima et al., 2005; Colunga & Smith, 2005; Ramscar &
Yarlett, 2007; Ramscar et al., 2010). Second, and perhaps
more critically, prior research has made clear that adults’
executive function differs markedly from that of children,
and as a result, adult learning is typically far more strategic
and less information-sensitive (Derks & Paclisanu, 1967;

! «“By itself contiguity between a CS and US is insufficient for
Pavlovian conditioning. Rather, for a CS to become conditioned, it
must in some sense provide information about the coming of the
US; the CS must not only be paired with the US, it must predict its
coming.” (Rescorla, 1972)

Ramscar & Gitcho, 2007; Thompson-Schill, Ramscar &
Chrysikou, 2009). Thus, while simple error-driven models
of learning might not accurately capture adult behavior in all
instances, they could well provide key insights into how
children learn words.

Assuming an error-driven process, word learning
should proceed smoothly so long as the words of a language
are systematically informative. For example, provided that
doors have a higher co-occurrence rate with the word
“doors” (positive evidence) and a lower background rate
(negative evidence), compared to other less reliable
possibilities (such as homes, Honeys or mailmen), then an
error-driven model will learn that doors are most
informative about “doors” (for a review, see Ramscar et al.,
2010). If children co-opt error-driven learning mechanisms
for the purposes of learning words, it would offer a potential
solution to the word-learning puzzle posed at the outset. At
the same time, assuming that adults don’t do this, it would
help explain why Quine’s proposal is at odds with many of
the standard approaches adult researchers have devised to
study language acquisition (Carey, 1978; Markman, 1989;
Bloom, 1994), and with common adult intuitions about the
nature of word meanings.

Experiment

To test the merits of this proposal — and examine the
different ways in which informativity might ‘inform” word
learning — we trained children and adults on novel word
meanings while manipulating the background rates of the
objects paired with the labels that they learned. Our
participants first saw two different novel objects together (A
and B) and heard them labeled ambiguously as a “DAX”
(Figure 1). Subsequently, B was presented with a new
object, C, and another ambiguous label, “PID.” This training
was repeated, and the participants were then presented with
all three objects, and asked to identify either the “DAX,” the
“PID,” or the “WUG,” which they hadn’t heard before.

Because B occurs with both “DAX” and “PID,” it has
a higher background rate than either A or C, which makes A
more informative about “DAX,” and C more informative
about “PID.” Critically, B’s higher background rate also
makes it less informative about the novel word “WUG” than
A or C, which are both equally informative about “WUG.”
From a purely informational perspective, then, A is a DAX,
Cis a PID, and A or C are WUGs (Rescorla, 1968).

Here, we tested whether our participants were sensitive to
information in learning, or whether they adopted a more
‘logical’ approach, and paired B with the novel word
“WUG.” (Which would be consistent with the proposed
‘mutual exclusivity’ constraint on word learning, which
holds that objects that don’t have names will be the most
likely candidates for mapping to a new label; Markman,
1989).

To assess the nature of our subjects’ approaches to word
learning, each participant received training on 3 different
sets of objects and words, and was tested at the end of each
training session, and again at the end of the experiment.
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Figure 1. Sample objects used in Training. The objects were
varied in shape, color, and texture to allow discrimination, and
counterbalanced across our participants to control for
attractiveness.

Participants

21 English-speaking children between 2- and 3- years
(M age = 28 months old) participated in this study, with a
near even balance between genders (12 girls, 9 boys). All
children participants were recruited from Stanford and the
surrounding community. In addition, there were two groups
of adult participants: 14 Stanford undergraduates and 20
Developmental  Psychologists. The Developmental
Psychologists surveyed were faculty and advanced doctoral
students at leading research universities specializing in the
study of children’s language learning.

Materials

3 sets of objects, with 3 toys per set, were created from
craft materials. The objects were designed to look like
possible toys, without appearing too much like any common
objects. Within each set, the objects varied in size, color,
and texture, allowing for easy discrimination between each
object. Pilot testing indicated that within each set, no
particular object was consistently preferred to the other
objects.

A set of syllable-matched novel words was paired with
each set of objects, and matches were counterbalanced
across subjects.

Procedure

The experimental design was modeled on classic word
learning studies in young children (Merriman, 1986;
Woodward et al, 1994), and consisted of: familiarization,
training, short distraction, and a recall test. Training, testing
and coding was conducted Dby hypothesis-blind
experimenters.

Notably, pilot testing indicated that when children were
presented with physical objects, they would sometimes
reach for the objects or attempt to play with one or more
during the training session. To avoid biased attention
towards any particular object during training, the training

was conducted using a narrated video. Using video training
also allowed for consistency of length and presentation, and
controlled for unintentional social cues (such as eye gaze).

Familiarization

Children were pre-trained on the task using familiar
objects. The first video clip presented two common
household objects (a cup and a pair of sunglasses). While
both objects were onscreen, the narrator talked about the
cup, and then told the child that “my friend” (meaning the
researcher) had some similar objects, and that they would
now play with those objects. The researcher paused the
video and placed the cup and sunglasses on the table in front
of the child. The researcher then asked the child to show
her the cup. Once the child made a choice, the child was
allowed to play with both objects briefly. This
familiarization period was designed to make the participants
feel comfortable choosing between physical objects after
first seeing them in the video.

All the participants tested answered the familiarization
question correctly and readily, suggesting that the children
understood the nature of the task, and that switching from
video to real objects was not a barrier to performance.

Training

At the start of the training session for each set, the puppet
welcomed the child and announced that she would be
showing the child some of her toys. First, Objects A and B
would appear on screen while the narrator used Label 1
(e.g., DAX); then, Objects B and C would appear while the
narrator used Label 2 (e.g., PID). In both cases, the narrator
would use the Labels conversationally, saying things like
“Do you see the Dax? I really like the Dax.” To keep the
child engaged, the puppet also played a game with the toys
on screen, hiding them and then bringing them back out for
the child to see again. In total, the puppet said the Label
nine times while the objects were visible. Additionally, the
puppet asked the child to repeat the Label; the researcher
paused the video at this point to allow the child to respond.
If the child didn’t immediately respond, the researcher asked
once more, and then resumed the video.

At the end of each training session, the researcher stopped
the video, moved the screen off of the table, and brought out
all three objects. The researcher then asked the child to
“show me the [target label],” and repeated the question
again if the child was hesitant. Once the child chose an
object, the researcher recorded it and encouraged the child
to play with each of the objects briefly, before moving on to
the next training session. This was done for 3 sets of objects
(3 training and testing sessions), such that the child learned
about 6 labels and 9 objects.

Conditions

There were three test conditions: asking for Label 1 (e.g.,
DAX), asking for Label 2 (e.g., PID), or asking for a novel
label, not heard in training, Label 3 (e.g., WUG). Each
child participated in all three conditions, with one condition
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per object set. The order of the conditions was
counterbalanced across subjects, and all subjects were tested
on each type of label only once. To conclude the
experiment, the researcher repeated the three tests again,
providing a second measure of learning.

Results

From a purely informational perspective, A is a DAX,
Cis a PID, and A or C are WUGs. The 21 children (12 girls,
9 boys, M age =28 months) we tested agreed: their pattern
of matching objects to labels matched exactly with the
informativity of each object. ANOVA (Question x Object) =
F(1,12)=2.136, p<0.025); P(DAX=A > chance, M=.67),

t(41)=4.532, p<0.001; P(PID=C > chance, M=.62),
t(41)=3.421, p<0.001; P(WUG=B < chance, M=.17),
t(41)=2.858, p<0.01).
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Notably, while the children we tested matched objects
to labels on the basis of informativity (Figure 2A), 14
Stanford undergraduates we tested in exactly the same way
did not. They agreed with the children about A and C
(P(DAX=A > chance, M=.86) t(13)=5.401, p<0.001;
P(PID=C > chance, M=.79), t(13)=3.421, p<0.01), but
chose B as the WUG (P(WUG=B > chance, M=.64),
t(13)=2.332, p<0.05; Figure 2B), which is the opposite of
what the children did. Further, when we surveyed a group
of Developmental Psychologists and asked them to predict
children’s behavior in our task, they too thought B was the
WUG (P(WUG=B > chance, M=.80), t(19)=5.089, p<0.001;
P(DAX=A > chance, M=.85) t(19)=6.311, p<0.001;
P(PID=C > chance, M=.95), t(19)=12.34, p<0.001; Figure
2C): meaning they correctly predicted the behavior of the
undergraduates, but not the children.
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Figure 2. Responses from 21 children. Object B, which had the highest background rate, was chosen at below chance levels across all of
the trails, including the critical “wug” trial. 2A shows average responses over all of the tests, while 2B shows the rate of consistent

responses across the duplicate test trials.
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Figure 3: Data from 14 Stanford Undergraduates (3A), tested in exactly the same way as the children, and 20 Developmental Psychologists
who we asked to predict the behavior of the children. As can be seen, while the psychologists were excellent at predicting the behavior of
the undergraduates, they failed to predict the behavior of the children on the critical “wug” trial.
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Cross-situational Learning: Statistical or Predictive?

These findings have much in common with and are
consistent with other cross-situational approaches to word
learning (Yu & Smith, 2007; Smith & Yu, 2008), which
have established that in word learning tasks, both children
and adults can “rapidly learn multiple word-referent pairs by
accruing  statistical evidence across multiple and
individually ambiguous word-scene pairings” (p. 1559).
However, in this experiment, we explicitly tested for
children’s sensitivity to the information provided by cues,
rather than their co-occurrence rates. This choice was made
for two reasons.

First, in many instances, a simple statistical account of
word learning cannot effectively rule out the contribution of
either innate constraints or other learning strategies, because
its predictions overlap to a sufficient degree with markedly
different explanations of the same phenomena, such as
‘hypothesis testing” (Yu & Smith, 2007 acknowledge this
difficulty). While the predictions of a learning theoretic
account also overlap with those of high-level constraints
such as mutual exclusivity across a wide range of instances,
they diverge in certain, critical aspects. Because of this, we
were able to test the theories against each other with a
highly counterintuitive prediction: that children would
choose informativity over mutual exclusivity (or another
‘logical’ form of inference), even when adults do not.

A second, perhaps more important motivation, was
theoretical: we wanted to assess whether children’s learning
was sensitive to the informativity of cues, and not just
simple cumulative statistics. While it is clear that children
can and do track conditional probabilities across an array of
language learning tasks (Saffran, 2001; Saffran, Aslin, &
Newport, 1996; Saffran, Johnson, Aslin, & Newport, 1999;
Kirkham, Slemmer & Johnson, 2002), if this were the extent
of their learning capabilities, they would not be able to
master overlapping or context-dependent categories (see
Murphy, 2002; Wittgenstein, 1953 for some of the problems
inherent to ‘real-world’ category learning). Our results
suggest that children’s category learning is informed by
competitive, discriminatory  processes, which yield
markedly different category representations than do non-
competitive ‘statistical’ ones (for reviews, see Smith,
Colunga & Yoshida, 2010; Ramscar et al., 2010).

Discussion

The pattern of children’s responses indicates that they
can and do use informativity in learning to use words. It
appears that, as Quine suggested, the words children learn
“face the tribunal of sense experience not individually but...
as a corporate body.” This would suggest that word learning
is a systematic, rather than isolated process: what a child
learns about any given word is dependent on the information
it provides about the environment, in relation to other words
(Ramscar et al., 2010). In contrast, it is quite clear that the
adults we tested did not place the same value on
informativity in their learning that the children did. The
adults appeared to reason that if B is not a “DAX” or a

“PID,” it must logically be a “WUG.” Unlike children, it
would seem that adults care more about logic than
informativity. We should note, however, that while the
adult strategy might appear logical in the restricted world
provided by our experiment, in the real world, the same
object might be “Fido,” “a dog,” “a dumb mutt” or “pooch”
depending upon the context. In this case, the logic of
exclusion (Markman, 1990) might not prove to be so
helpful, and the strategy adopted by the children may well
prove to be a wiser one.

The pattern of data we observed in this experiment
further supports the suggestion that young children process
information in ways that are qualitatively different to adults
(Hudsom Kam & Newport, 2005; Hudson Kam & Newport,
2009), and that this benefits their learning of language
(Thompson-Schill, Ramscar & Chrysikou, 2009). The data
we report are also consistent with, and may help to
illuminate, the many struggles that adult learners of new
languages are known to endure (Arnon & Ramscar, 2009).
Both of these insights are derived from models of animal
learning, in which informativity is a key principle.

Animal models are usually considered irrelevant to
language research, and suggesting otherwise can even be
seen as undermining human dignity. We demur: although
human learning is clearly not identical to animal learning
(other animals don’t speak), similar objections could be
raised in many other areas in which animal models have
made valuable contributions to our knowledge. Given that
every speaker of every human language on the planet
learned the vocabulary that he or she uses, and given that
animal models provide our best, most detailed window into
the mechanisms that allowed them to do so, there may much
insight to be gained by applying animal models to language
learning.
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