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Abstract 

The question of how children learn what words mean is one 
that has long perplexed philosophers and psychologists.  As 
Quine famously pointed out, the problem of accounting for 
word learning is a deep one: simply hearing a word uttered in 
the presence of an object tells a learner next to nothing about 
its meaning. Yet somehow, children learn to understand and 
use words correctly.  How?  Here, we find that learning 
theory offers an elegant solution to this seemingly intractable 
puzzle in language acquisition. To test its predictions, we 
administered an ambiguous word-learning task to toddlers, 
undergraduates and developmental psychologists.  
Intriguingly, while the toddlers’ performance was consistent 
with our hypothesis – and with the workings of general 
learning mechanisms that would facilitate verbal acquisition – 
adult performance differed markedly.  These results have 
implications both for how our adult intutions inform the study 
of early language learning and for problems in second-
language acquisition.  

Keywords: Word Learning, Error-Driven Learning, Learning 
Theory, Discrimination Models, Language Acquisition 

Introduction 
How do children figure out the meanings of the words 

they hear? How does a child learn that homes are “homes” 
and doors are “doors,” and not vice versa? The answer 
cannot simply be that children are more likely to hear 
“door” when doors are present, because people opening 
doors are more likely to say, “Hi Honey, I’m home!” than “I 
am now opening the door.” Given this, it seems unlikely 
that a child could ever learn the meaning of a word simply 
by attending to how often that word is heard in tandem with 
an object or event (Gleitman, 1990).  Indeed, hearing a word 
in the presence of an object tells a learner relatively little 
about its meaning: though “door” could be the name of the 
object, it might equally relate to its color or texture, an 
action that could be taken upon it, or even a characteristic of 
the person knocking on it (Quine, 1953)   

Here we examine a possible solution to this problem 
proposed by the philosopher W.V.O. Quine, who suggested 
that rather than learning word meanings individually, 
children must instead discover how sensory experience 
connects up with systems of words (see also Wittgenstein, 
1953).   In line with this suggestion, we find that in a novel 
word learning task, children judge what is most informative  
about words (Shannon & Weaver, 1949), by attending to the 
signal-to-noise ratio in their environment.  Why then have 
researchers traditionally focused on how children learn 
‘meanings’ in isolation? (see Smith & Yu, 2008 and Akhtar 
& Montague, 1999 for discussion) It may be because that’s  
 

what adults do: faced with the same task, adults adopt a 
logical strategy that treats meanings as determinate, 
individual entities. Gaining a better understanding of the 
way children learn word meanings, and the way their 
approach differs from that of adults, can help us better our 
approaches to teaching the young, while offering insight 
into the struggles many adults encounter with second 
language acquisition.  

 
A Puzzle for Word Learning 

The dilemma a child faces in word learning has often 
been framed as a classic induction problem.  Faced with a 
novel word, the child must select from among multiple – 
perhaps even infinite – competing hypotheses as to what the 
word means, on the basis of relatively little evidence from 
the input (Carey, 1978; Bloom, 2000). This apparent 
philosophical conundrum has long been a source of 
puzzlement for child development researchers, because in 
spite of the presumed difficulty in narrowing the hypothesis 
space, children prove remarkably adept word learners.  

This puzzle – of how children can learn so rapidly and 
so successfully despite the difficulties posed by ‘referential 
uncertainty’ – has led many researchers to posit native 
constraints on word learning.  Proposals in this vein have 
ranged from innate concepts and conceptual primitives 
(Chomsky, 2000; Fodor, 1988), to syntactic bootstrapping 
(Brown, 1957; Landau & Gleitman, 1985; Naigles, 1990) 
and strong representational biases (Carey, 1978; Waxman & 
Gelman, 1986).  

Though there is certainly much to distinguish these 
approaches, they share a common focus on high-level 
constraints, which are meant to meaningfully generalize 
across linguistic development and behavior.  While such 
constraints may be useful in describing how children tend to 
behave as they are learning language, they do little to 
illuminate the underlying learning processes.  Constraints 
still require an explanation involving either innate linguistic 
principles or another underlying mechanism that allows 
humans to learn (or otherwise deduce) these principles 
(Smith, 1995).  Yet many theorists in this tradition have 
been satisfied to speculate that these default assumptions 
exist, without attempting to flesh out how they might be 
computationally or neurobiologically instantiated (for 
critiques, see Nelson, 1988; Rakison & Lupyan, 2008; 
Smith, Colunga & Yoshida, 2010; Ramscar et al., 2010).  

To summarize, then, there has been considerable debate 
over both how word learning is conceptualized and 
understood, and whether proposed constraints are 
psychologically real constructs that restrict and delimit 
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learning, or underspecified descriptive generalizations that 
may obscure underlying processes.  
 
Quine’s Proposal 

While many theories of word learning seek to explain 
how children learn isolated words, Quine proposed that 
children learn the meanings of words against the 
background of a system, an idea that is consistent with the 
general frameworks of both learning and information 
theory.  Experimental work in animal learning indicates that 
when learning the relationship between a cue and an 
outcome, animals do not simply chart how often cues 
predict certain outcomes (reinforcement), they also track 
how often cues fail to predict potential outcomes (prediction 
error). The predictive value of a cue is assessed against an 
entire system of cue-outcome relationships.   

To give a simple example, if a rat is subjected to 
conditioning in which a series of tones is followed by mild 
shocks, the rat will learn to respond fearfully to the tones.  
However, if tones that do not lead to expected shocks are 
added to the tone-shock pairings, rats’ conditioned 
responses will weaken in direct proportion to the increased 
background rate of tones (Rescorla, 1968).   This is 
because rats’ responses depend on how informative the 
tones are about the shocks (Kamin, 1969; Rescorla & 
Wagner, 1972; Rescorla, 1988).1 

Similarly, if children are sensitive to the value of 
information in word learning, than rather than simply 
tracking how often words and objects are paired together 
(e.g., a door is seen and “door” is heard), children might 
also track how often a potential pairing does not occur (e.g., 
a door is seen and “home” is not heard).  By attending to the 
signal-noise ratio in the surrounding linguistic environment, 
they could home in on which objects, actions and events in 
the world are most informative about which words. 

 
Error-Driven Learning 

Why investigate how children learn words from the 
vantage point of animal learning?  First, there is a wealth of 
evidence to support the idea that the neural mechanisms that 
underpin error-driven learning in animals are present in 
humans, and that they provide us with the same functional 
capabilities that are seen and predicted by animal models 
(Schultz, Dayan & Montague, 1997; Waelti, Dickinson & 
Schultz, 2001; Montague, Hyman & Cohen, 2004; 
Samejima et al., 2005; Colunga & Smith, 2005; Ramscar & 
Yarlett, 2007; Ramscar et al., 2010).  Second, and perhaps 
more critically, prior research has made clear that adults’ 
executive function differs markedly from that of children, 
and as a result, adult learning is typically far more strategic 
and less information-sensitive (Derks & Paclisanu, 1967; 

                                                             
1 “By itself contiguity between a CS and US is insufficient for 

Pavlovian conditioning.  Rather, for a CS to become conditioned, it 
must in some sense provide information about the coming of the 
US; the CS must not only be paired with the US, it must predict its 
coming.” (Rescorla, 1972) 

Ramscar & Gitcho, 2007; Thompson-Schill, Ramscar & 
Chrysikou, 2009).  Thus, while simple error-driven models 
of learning might not accurately capture adult behavior in all 
instances, they could well provide key insights into how 
children learn words. 

Assuming an error-driven process, word learning 
should proceed smoothly so long as the words of a language 
are systematically informative.  For example, provided that 
doors have a higher co-occurrence rate with the word 
“doors” (positive evidence) and a lower background rate 
(negative evidence), compared to other less reliable 
possibilities (such as homes, Honeys or mailmen), then an 
error-driven model will learn that doors are most 
informative about “doors” (for a review, see Ramscar et al., 
2010). If children co-opt error-driven learning mechanisms 
for the purposes of learning words, it would offer a potential 
solution to the word-learning puzzle posed at the outset.  At 
the same time, assuming that adults don’t do this, it would 
help explain why Quine’s proposal is at odds with many of 
the standard approaches adult researchers have devised to 
study language acquisition (Carey, 1978; Markman, 1989; 
Bloom, 1994), and with common adult intuitions about the 
nature of word meanings.  

 
Experiment 

To test the merits of this proposal – and examine the 
different ways in which informativity might ‘inform’ word 
learning – we trained children and adults on novel word 
meanings while manipulating the background rates of the 
objects paired with the labels that they learned. Our 
participants first saw two different novel objects together (A 
and B) and heard them labeled ambiguously as a “DAX” 
(Figure 1). Subsequently, B was presented with a new 
object, C, and another ambiguous label, “PID.” This training 
was repeated, and the participants were then presented with 
all three objects, and asked to identify either the “DAX,” the 
“PID,” or the “WUG,” which they hadn’t heard before.  

Because B occurs with both “DAX” and “PID,” it has 
a higher background rate than either A or C, which makes A 
more informative about “DAX,” and C more informative 
about “PID.”  Critically, B’s higher background rate also 
makes it less informative about the novel word “WUG” than 
A or C, which are both equally informative about “WUG.” 
From a purely informational perspective, then, A is a DAX, 
C is a PID, and A or C are WUGs (Rescorla, 1968). 

Here, we tested whether our participants were sensitive to 
information in learning, or whether they adopted a more 
‘logical’ approach, and paired B with the novel word 
“WUG.” (Which would be consistent with the proposed 
‘mutual exclusivity’ constraint on word learning, which 
holds that objects that don’t have names will be the most 
likely candidates for mapping to a new label; Markman, 
1989). 

To assess the nature of our subjects’ approaches to word 
learning, each participant received training on 3 different 
sets of objects and words, and was tested at the end of each 
training session, and again at the end of the experiment.   
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Figure 1. Sample objects used in Training. The objects were 
varied in shape, color, and texture to allow discrimination, and 
counterbalanced across our participants to control for 
attractiveness. 
 
Participants 

21 English-speaking children between 2- and 3- years 
(M age = 28 months old) participated in this study, with a 
near even balance between genders (12 girls, 9 boys). All 
children participants were recruited from Stanford and the 
surrounding community.  In addition, there were two groups 
of adult participants: 14 Stanford undergraduates and 20 
Developmental Psychologists.  The Developmental 
Psychologists surveyed were faculty and advanced doctoral 
students at leading research universities specializing in the 
study of children’s language learning. 
 
Materials 

3 sets of objects, with 3 toys per set, were created from 
craft materials. The objects were designed to look like 
possible toys, without appearing too much like any common 
objects.  Within each set, the objects varied in size, color, 
and texture, allowing for easy discrimination between each 
object.  Pilot testing indicated that within each set, no 
particular object was consistently preferred to the other 
objects.   

A set of syllable-matched novel words was paired with 
each set of objects, and matches were counterbalanced 
across subjects.   

 
Procedure 

The experimental design was modeled on classic word 
learning studies in young children (Merriman, 1986; 
Woodward et al, 1994), and consisted of: familiarization, 
training, short distraction, and a recall test. Training, testing 
and coding was conducted by hypothesis-blind 
experimenters. 

Notably, pilot testing indicated that when children were 
presented with physical objects, they would sometimes 
reach for the objects or attempt to play with one or more 
during the training session.  To avoid biased attention 
towards any particular object during training, the training 

was conducted using a narrated video.  Using video training 
also allowed for consistency of length and presentation, and 
controlled for unintentional social cues (such as eye gaze). 

 
Familiarization 

Children were pre-trained on the task using familiar 
objects.  The first video clip presented two common 
household objects (a cup and a pair of sunglasses).  While 
both objects were onscreen, the narrator talked about the 
cup, and then told the child that “my friend” (meaning the 
researcher) had some similar objects, and that they would 
now play with those objects.  The researcher paused the 
video and placed the cup and sunglasses on the table in front 
of the child.  The researcher then asked the child to show 
her the cup.  Once the child made a choice, the child was 
allowed to play with both objects briefly.  This 
familiarization period was designed to make the participants 
feel comfortable choosing between physical objects after 
first seeing them in the video. 

All the participants tested answered the familiarization 
question correctly and readily, suggesting that the children 
understood the nature of the task, and that switching from 
video to real objects was not a barrier to performance. 

 
Training 

At the start of the training session for each set, the puppet 
welcomed the child and announced that she would be 
showing the child some of her toys.  First, Objects A and B 
would appear on screen while the narrator used Label 1 
(e.g., DAX); then, Objects B and C would appear while the 
narrator used Label 2 (e.g., PID).  In both cases, the narrator 
would use the Labels conversationally, saying things like 
“Do you see the Dax? I really like the Dax.”  To keep the 
child engaged, the puppet also played a game with the toys 
on screen, hiding them and then bringing them back out for 
the child to see again. In total, the puppet said the Label 
nine times while the objects were visible.  Additionally, the 
puppet asked the child to repeat the Label; the researcher 
paused the video at this point to allow the child to respond.  
If the child didn’t immediately respond, the researcher asked 
once more, and then resumed the video. 

At the end of each training session, the researcher stopped 
the video, moved the screen off of the table, and brought out 
all three objects. The researcher then asked the child to 
“show me the [target label],” and repeated the question 
again if the child was hesitant.  Once the child chose an 
object, the researcher recorded it and encouraged the child 
to play with each of the objects briefly, before moving on to 
the next training session. This was done for 3 sets of objects 
(3 training and testing sessions), such that the child learned 
about 6 labels and 9 objects. 
 
Conditions 

There were three test conditions: asking for Label 1 (e.g., 
DAX), asking for Label 2 (e.g., PID), or asking for a novel 
label, not heard in training, Label 3 (e.g., WUG).  Each 
child participated in all three conditions, with one condition 
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per object set.  The order of the conditions was 
counterbalanced across subjects, and all subjects were tested 
on each type of label only once. To conclude the 
experiment, the researcher repeated the three tests again, 
providing a second measure of learning. 
 
Results 

From a purely informational perspective, A is a DAX, 
C is a PID, and A or C are WUGs. The 21 children (12 girls, 
9 boys, M age =28 months) we tested agreed: their pattern 
of matching objects to labels matched exactly with the 
informativity of each object. ANOVA (Question x Object) = 
F(1,12)=2.136, p<0.025);  P(DAX=A > chance, M=.67), 
t(41)=4.532, p<0.001; P(PID=C > chance, M=.62), 
t(41)=3.421, p<0.001; P(WUG=B < chance, M=.17), 
t(41)=2.858, p<0.01). 

Notably, while the children we tested matched objects 
to labels on the basis of informativity (Figure 2A), 14 
Stanford undergraduates we tested in exactly the same way 
did not. They agreed with the children about A and C 
(P(DAX=A > chance, M=.86) t(13)=5.401, p<0.001; 
P(PID=C > chance, M=.79), t(13)=3.421, p<0.01), but 
chose B as the WUG (P(WUG=B > chance, M=.64), 
t(13)=2.332, p<0.05; Figure 2B), which is the opposite of 
what the children did.  Further, when we surveyed a group 
of Developmental Psychologists and asked them to predict 
children’s behavior in our task, they too thought B was the 
WUG (P(WUG=B > chance, M=.80), t(19)=5.089, p<0.001; 
P(DAX=A > chance, M=.85) t(19)=6.311, p<0.001; 
P(PID=C > chance, M=.95), t(19)=12.34, p<0.001; Figure 
2C): meaning they correctly predicted the behavior of the 
undergraduates, but not the children. 

 

A               B  
 
 
Figure 2.  Responses from 21 children. Object B, which had the highest background rate, was chosen at below chance levels across all of 
the trails, including the critical “wug” trial. 2A shows average responses over all of the tests, while 2B shows the rate of consistent 
responses across the duplicate test trials. 

 
 

A                 B  
 
 
Figure 3: Data from 14 Stanford Undergraduates (3A), tested in exactly the same way as the children, and 20 Developmental Psychologists 
who we asked to predict the behavior of the children.  As can be seen, while the psychologists were excellent at predicting the behavior of 
the undergraduates, they failed to predict the behavior of the children on the critical “wug” trial. 
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Cross-situational Learning: Statistical or Predictive? 
These  findings have much in common with and are 

consistent with other cross-situational approaches to word 
learning (Yu & Smith, 2007; Smith & Yu, 2008), which 
have established that in word learning tasks, both children 
and adults can “rapidly learn multiple word-referent pairs by 
accruing statistical evidence across multiple and 
individually ambiguous word-scene pairings” (p. 1559). 
However, in this experiment, we explicitly tested for 
children’s sensitivity to the information provided by cues, 
rather than their co-occurrence rates.  This choice was made 
for two reasons.   

First, in many instances, a simple statistical account of 
word learning cannot effectively rule out the contribution of 
either innate constraints or other learning strategies, because 
its predictions overlap to a sufficient degree with markedly 
different explanations of the same phenomena, such as  
‘hypothesis testing’ (Yu & Smith, 2007 acknowledge this 
difficulty). While the predictions of a learning theoretic 
account also overlap with those of high-level constraints 
such as mutual exclusivity across a wide range of instances, 
they diverge in certain, critical aspects.  Because of this, we 
were able to test the theories against each other with a 
highly counterintuitive prediction: that children would 
choose informativity over mutual exclusivity (or another 
‘logical’ form of inference), even when adults do not.        

A second, perhaps more important motivation, was 
theoretical: we wanted to assess whether children’s learning 
was sensitive to the informativity of cues, and not just 
simple cumulative statistics.  While it is clear that children 
can and do track conditional probabilities across an array of 
language learning tasks (Saffran, 2001; Saffran, Aslin, & 
Newport, 1996; Saffran, Johnson, Aslin, & Newport, 1999; 
Kirkham, Slemmer & Johnson, 2002), if this were the extent 
of their learning capabilities, they would not be able to 
master overlapping or context-dependent categories (see 
Murphy, 2002; Wittgenstein, 1953 for some of the problems 
inherent to ‘real-world’ category learning). Our results 
suggest that children’s category learning is informed by 
competitive, discriminatory processes, which yield 
markedly different category representations than do non-
competitive ‘statistical’ ones (for reviews, see Smith, 
Colunga & Yoshida, 2010; Ramscar et al., 2010).   

 
Discussion 

The pattern of children’s responses indicates that they 
can and do use informativity in learning to use words. It 
appears that, as Quine suggested, the words children learn 
“face the tribunal of sense experience not individually but… 
as a corporate body.” This would suggest that word learning 
is a systematic, rather than isolated process: what a child 
learns about any given word is dependent on the information 
it provides about the environment, in relation to other words  
(Ramscar et al., 2010). In contrast, it is quite clear that the 
adults we tested did not place the same value on 
informativity in their learning that the children did. The 
adults appeared to reason that if B is not a “DAX” or a 

“PID,” it must logically be a “WUG.” Unlike children, it 
would seem that adults care more about logic than 
informativity.  We should note, however, that while the 
adult strategy might appear logical in the restricted world 
provided by our experiment, in the real world, the same 
object might be “Fido,” “a dog,” “a dumb mutt” or “pooch” 
depending upon the context. In this case, the logic of 
exclusion (Markman, 1990) might not prove to be so 
helpful, and the strategy adopted by the children may well 
prove to be a wiser one. 

The pattern of data we observed in this experiment 
further supports the suggestion that young children process 
information in ways that are qualitatively different to adults 
(Hudsom Kam & Newport, 2005; Hudson Kam & Newport, 
2009), and that this benefits their learning of language 
(Thompson-Schill, Ramscar & Chrysikou, 2009).  The data 
we report are also consistent with, and may help to 
illuminate, the many struggles that adult learners of new 
languages are known to endure (Arnon & Ramscar, 2009). 
Both of these insights are derived from models of animal 
learning, in which informativity is a key principle.  

Animal models are usually considered irrelevant to 
language research, and suggesting otherwise can even be 
seen as undermining human dignity. We demur: although 
human learning is clearly not identical to animal learning 
(other animals don’t speak), similar objections could be 
raised in many other areas in which animal models have 
made valuable contributions to our knowledge. Given that 
every speaker of every human language on the planet 
learned the vocabulary that he or she uses, and given that 
animal models provide our best, most detailed window into 
the mechanisms that allowed them to do so, there may much 
insight to be gained by applying animal models to language 
learning. 
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