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Abstract

Children are guided by constraints and biases in word
learning. In the case of the shape bias—the tendency to
extend count nouns by similarity in shape—previous findings
have revealed that learning plays an important role in its
development (e.g., Smith et al., 2002). Some have proposed
that children acquire inductive constraints like the shape bias
by making inferences about observed data on multiple levels
of abstraction (e.g., Smith et al. 2002; Kemp et al., 2007). The
current study provides support for this hypothesis by
demonstrating that preschoolers can rapidly and flexibly form
overhypotheses about the role of arbitrary features, not just
shape, in determining how words refer to object categories.
This work suggests that when learning individual words,
children are also learning about words simultaneously.
Children’s ability to “learn to learn” may have implications
for the origins of learning biases in many different cognitive
domains, not just in language learning.
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Introduction

Much of what we know about the world depends on
inductive learning—inferring an underlying general
principle based on limited data. Induction is not a trivial
problem: in principle, there is an infinite set of possible
generalizations that can be made from the same observed
examples (Quine, 1960). For example, in the domain of
word learning, from hearing the word ‘dog’ while observing
a situation involving the presence of a dog, a learner could
hypothesize that the word refers to fur, cute, tail, dog that is
alive, or undetached dog parts, among a potentially infinite
set of possible meanings.

Learning must therefore be constrained by biases of some
sort (Keil, 1981; Markman, 1989). Children rely on
inductive constraints in many cognitive domains, such as
word learning (e.g., Landau, Smith, & Jones, 1998;
Markman, 1989) and physical and psychological reasoning
(Baillargeon, 2008; Carey & Spelke, 1996; Gergely &

Csibra, 2003). Given the early appearance of these
constraints, it seems conceivable that some may be innately
given. It is possible, however, that some of the early
cognitive biases might be learned. For example, 1.5-year-
olds can be trained to exhibit a shape bias in word learning,
extending a newly-learned label to a similarly-shaped object
(e.g., Smith et al., 2002; see also Samuelson, 2002).

The acquisition of inductive biases continues through
childhood and adulthood and takes place not only in the
domain of word learning. Based on only a few examples,
toddlers and preschoolers can learn the dimension used in
classification and apply this knowledge to sort new objects
into new categories (Macario, Shipley, & Billman, 1990;
Mareschal & Tan, 2007). From observing causal relations of
an initial set of objects, preschoolers and adults form
abstract causal schemata and use them to make inferences
about the behaviors of newly-encountered objects (Kemp,
Goodman, & Tenenbaum, 2010; Lucas, Gopnik, &
Griffiths, 2010). In all of these cases, learners rapidly
acquire abstract knowledge of some form that helps them
readily learn about novel items or situations based on sparse
data. How do learners acquire knowledge that guides
subsequent learning? How do they “learn to learn™?

A constraint on learning, whether in the form of
perceptual biases (e.g., shape bias) or principles or systems
of relations (e.g., causal schemata), is a type of abstract
knowledge specifying how things work in general, going
beyond individual instances. Having such a constraint thus
requires learners to represent knowledge on multiple levels;
the constraint itself is a form of higher-level knowledge, or
overhypothesis (Goodman, 1955). In the case of the shape
bias, the learner may have some lower-level knowledge that
objects labeled as ‘ball’ are all spherical, but do not seem to
all be white or plastic; this first-order knowledge is about
each individual category. Having the shape bias means that
the learner also has some higher-level knowledge that
objects that share the same name share the same shape, but
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not color or material; this second-order knowledge is an
overhypothesis about how categories in general are
organized. This higher-level knowledge allows learners to
be able to readily extend a newly learned count noun to new
instances.

Several computational models have been proposed to
explain how the acquisition of higher-level knowledge can
account for the emergence of some inductive constraints
such as shape bias. Some models provide a more
mechanistic account of learning (e.g., Colunga & Smith,
2005), while others focus on the computational principles
underlying the acquisition of multi-level knowledge (e.g.,
Kemp, Perfors, & Tenenbaum, 2007; Perfors & Tenenbaum,
2009).

The primary focus of this paper is to examine what factors
influence children’s acquisition of higher-order abstractions,
and to what extent they are able to use such abstractions to
guide subsequent learning. Previous work indicates that
toddlers and preschoolers can rapidly achieve higher-order
generalizations about object dimensions (e.g., shape) in
word extension and in object categorization, based on very
little input (e.g., Smith et al. 2002; Macario, et al., 1990).
Here, we aim to explore the flexibility and limits of such
rapid higher-order learning in children—in particular,
whether children are capable of learning higher-level
knowledge about arbitrary features. Our goal is to shed light
on the kinds of mechanisms children engage in for acquiring
higher-level abstractions and the experimental paradigm we
develop may be helpful in the future to discriminate among
different models of higher-level learning.

This study explores whether children’s rapid acquisition
of overhypotheses requires the target feature to be already
salient (like shape or color). If inductive constraints such as
the shape bias emerge as a general mechanism of acquiring
higher-level knowledge, then we would expect children to
be able to form higher-level abstractions over dimensions
that are not shape. That is, given appropriate statistical
regularities in the input, children should be able to acquire
overhypotheses over dimensions that are less salient than
shape and perhaps even arbitrary dimensions they have
never been exposed to. Recent findings suggest that adults
can do so, forming overhypotheses rapidly over arbitrary
dimensions in learning artificial object categories (Perfors &
Tenenbaum, 2009). It is unclear whether children can do so
quickly with arbitrary and completely novel features.

To test this, we asked two questions. First, can children
form higher-level generalizations about the relevance of
arbitrary dimensions in a word-extension task? Second, can
they do so rapidly, on the basis of small amounts of data —
as quickly as they form first-order generalizations? The task
was modeled after a similar task with adults (Perfors and
Tenenbaum, 2009). Children were shown categories of
animals with novel labels for each category, where the
animals were organized according to symbols on some body
parts. Afterwards, they were asked to extend a trained name
(first-order generalization) and a novel name (second-order
generalization).

A secondary goal of the current study is to examine the
kinds of input that affect children’s ability to form higher-
level generalizations in word learning. While Smith et al.
(2002) provided evidence that toddlers can achieve higher-
level generalizations about the role of shape in word-to-
object mapping, it is unclear what aspects of the input most
influenced this. Did the rapid higher-order learning occur
because shape was such a highly coherent feature in the
object categories children were exposed to? In the real
world, there is certainly noise in the input—e.g., chairs are
not always shaped in the same way. As a result, we would
expect children to be able to achieve higher-level
abstractions when the relevant feature is not 100% coherent.
Can they indeed do this? We are also interested in exploring
how category structure—in terms of the number of
categories and the number of total items—might influence
higher-level learning. We addressed these questions in this
study by varying children’s input in terms of feature
coherence and category structure.

Method

Participants

Sixty 4- to 6-year-olds (Mean 58.5 months; range 48.3-79.8;
37 boys, 23 girls), all native speakers of English,
participated. Twelve additional children were eliminated
due to refusal to participate (2), inattentiveness (3), or side
bias (7, see Procedure below). Families were recruited from
the Berkeley area and surrounding communities.

Materials

The stimulus materials consisted of images of artificially
constructed animal categories, presented on a computer
laptop. Within each trial, all instances of the animals in the
training and test phases were of the same overall geometric
shape (see Figure 1). For each instance of animal, each of
four particular body parts (e.g., hump, tail, front leg, and
hind leg) contained a different symbol. Two of these body
parts each contained a symbol that was shared among
animals of the same training category (e.g., ‘0’ on the hump
and ‘V’ on the hind leg, in the trial displayed in Figure 1);
these were the relevant features for categorization. The
other two body parts (e.g., tail and front leg) each contained
a symbol that varied among animals of the same training
category; they were the irrelevant features.

The animals from different trials (see Design below)
differed considerably in their appearances in terms of color
scheme and morphology. Moreover, the relative locations of
the relevant and irrelevant features also varied across trials.
For example, in a different trial, the animals were gray and
looked bear-like standing upright, with the front left paw
and right ear as the relevant features, and the tummy and the
right hind paw as the irrelevant features. This was done to
increase stimulus diversity and thus to minimize
perseveration by children across trials. A different set of
novel names was used to label the training categories of
animals in each trial.
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Design
All children received 2 orientation trials and 6 critical trials.
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Figure 1: Example stimuli for a critical trial

Trial structure Each critical trial consisted of 3 phases:
training, the first-order generalization test, and the second-
order generalization test. In the training phase, children
were shown a number of categories of animals and told their
names (Figure la). After the training phase, each child was
tested on first-order and second-order generalization

questions. In the first-order generalization test, children
were shown an animal instance they had already seen in the
training phase (familiar-target), and were asked which of
two other novel animal instances was of the same name
(Figure 1b). One choice item shared the same marks on the
relevant features (relevant match), and the other choice item
shared the same marks on the irrelevant features (irrelevant
match). The second-order generalization test was structured
similarly, except that the target was a novel animal instance,
with feature values children had not seen before (novel-
target; Figure lc). Half of the children received the first-
order generalization test before the second-order
generalization test for all trials, whereas the other half
received the tests in the reverse order.

Trial type The trials varied in the coherence of category
features (75% or 100%) and in category structure (16-4, 16-
2, and 8-2). In the 100%-coherence trials, all animals of
each training category shared the same feature value on each
of the relevant features; in the 75%-coherence trials, only
three quarters of the animals did. The 3 types of category-
structure trials varied in the number of training total items in
training and the number of training categories: the 16-4
trials presented 16 total items in 4 categories; the 16-2 trials
with 16 total items in 2 categories; the 8-2 trials with 8 total
items in 2 categories. Each child received a total of 6 critical
trials, from crossing category features (2) and category
structure (3). Figure 1 provides an example of a 100%-
coherence and 16-2-category-structure trial.

Procedure

The children were told that they would be playing a sticker
game involving the computer. Each child was seated in front
of a laptop computer, with the experimenter sitting next to
the child and using a mouse to advance the slides on the
computer. The experimenter explained to the child that the
child would see some animals that had marks on their body
parts, be told what the different animals were called, be
asked to point to some animal every once in a while, and
receive a sticker each time they responded.

The experiment then proceeded with 2 orientation trials
and 6 critical trials. The orientation trials were designed to
familiarize the children with the task. They were similar to
the critical trials in structure, consisting of a training phase
and a single test.

In the training phase of the first orientation trial, the child
saw 2 novel categories of animals, on separate slides. The
animals looked identical, except that animals of the first
category had the symbol ‘#’ on their tummy while animals
of the second category had the symbol ‘@’ on their tummy.
While each category of animals was displayed, children
were told a novel name for the animals (e.g., “Look! These
are tomints”) and then saw red circles appear around the
marks (“And they have a mark right there”). Each category
of animals was accompanied by a different novel name
(tomints, lampiles).
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In the test of the first orientation trial, the child saw
shrunk images of the training categories of animals on the
top of a slide and were reminded of what they were (e.g.,
“So, we have the tomints and the lampiles”). The child then
was presented with the target item in test—one example
animal of the first category—accompanied by its name
(“Remember this one? This is a tomint”). Next, the child
saw two animals side by side, one identical to the target
(match) and one identical to the target but without the mark
on the tummy (mismatch). The child was asked to choose
one that had the same name as the target animal (e.g., “Can
you point to another tomint?”). The child was given positive
feedback for her correct choice and received a sticker. In the
rare case that a child chose the mismatch in an orientation
trial, the experimenter would repeat the trial until the child
correctly chose the match. The second orientation trial
proceeded in the same manner, but with a different set of
animals, different marks on a different body part, and
different novel names.

Each of the critical trials proceeded in the same manner as
with orientation trials, except that each critical trial included
two tests (first- and second-order generalization), and that
children received positive feedback regardless of which
choice item they chose on tests. In the first-order
generalization test, children saw the familiar-target and were
reminded of its name (e.g., “Remember this one? This is a
bilark”), then were asked to choose between the relevant
match and the irrelevant match as another instance of the
same category (“Can you point to another bilark?”). In the
second-order generalization test, the children were
introduced to the new target paired with a new novel name
(e.g., “Look at this new one. This is a morple”), then were
asked to choose between the relevant match and irrelevant
match as another example of the same name (“Can you
point to another morple?”).

The 6 critical trials were presented in pseudo-randomized
order, with no more than 2 trials of the same coherence level
in a row. Across the trials, children were presented with a
total of 12 generalization tests. The side of the relevant
match was never the same for more than 3 times in a row.
Children who pointed to the same side 11 or more times out
of the 12 tests were eliminated as exhibiting side bias.

Coding

The percent generalization was calculated as the number of
times the child chose a relevant match out of the total times
the child chose either a relevant or an irrelevant match.

Preliminary analyses of overall percent generalization
revealed no effects of sex, age group (younger versus older
half), or whether children received the first-order or second-
order generalization first. The data were therefore collapsed
across sex, age group, and test order.

Results

As predicted, children’s first-order and second-order
generalization did not differ significantly ((59) < 1). In the
first-order generalization tests, children generalized the

trained name to new instances by the relevant features 63%
of the time (SD = 19), reliably different from chance
(chance = .5; #(59) = 5.34, p < .001). Similarly, in the
second-order generalization tests, children generalized the
novel name to new instances by the relevant features 61% of
the time (SD = 18), also reliably different from chance
(#(59) = 490, p < .001). Thus, children were able to
generalize a new novel name to new instances as soon as
they were able to generalize a trained name.
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Figure 2: Children’s generalization performance by
coherence (2a) and category structure (2b). Error bars
represent standard errors. Generalization was above chance
(50%), but did not differ significantly by coherence,
category structure, or level (first vs second-order).

Children’s generalization did not appear to differ with
coherence level or with category structure. A 2 (coherence:
75%, 100%) by 2 (order-of-generalization: first-order,
second-order) repeated-measures ANOVA revealed no
effects of coherence, order of generalization, or interaction
of the two factors (F’s < 1.03). Similarly, a 3 (category
structure: 16-4, 16-2, 8-2) by 2 (order-of-generalization:
first-order, second-order) repeated-measures ANOVA
revealed no effects of category structure, order of
generalization, or interaction of the two (F’s < 1). As Figure
2 indicates, children performed reliably above chance on
first-order and second-order generalization tests for both
75%- and 100%-coherence trials (Figure 2a; s > 2.37, p’s
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<.03), and for all three category-structure trials (Figure 2b;
r's>2.00, p’s <.05).!

Discussion

These findings show that 4- to 6-year-olds were able to
rapidly acquire an overhypothesis about the role of arbitrary
features (not just shape) governing how words are used to
refer to object categories. With as few as two categories and
eight items in the training input, children in word-extension
tests were able to make abstract (second-order)
generalization as soon as they were able to make first-order
generalizations. That is, in a matter of one to two minutes of
experience with a small set of novel object categories and
novel names, children could quickly learn an abstract
commonality across the categories and the names, and
immediately apply this abstract knowledge to guide
subsequent learning. Moreover, they could do so even when
there was noise in the input in terms of how coherently the
training categories were organized by the relevant feature.

Although this study was somewhat limited in its power
due to the fact that our children were presented with
relatively few ftrials each, our results do suggest that
children can flexibly and rapidly acquire overhypotheses.
These findings imply that as children learn individual
words, they are simultaneously learning abstract knowledge
about words in general as well.

Yet how is such higher-order knowledge acquired? There
are different proposals with regards to overhypothesis
learning. In what is known as the Attentional Learning
Account, Colunga and Smith (2005) have proposed that
children acquire the shape bias by detecting regularities in
the input. In particular, children first detect associations
among solid objects, count noun syntax, and objects
categories organized by shape. These associations form the
basis for learning about the relations between specific words
and specific categories (first-order knowledge), and are
eventually followed by the emergence of abstract
knowledge about relations between words and categories in
the abstract (second-order knowledge).

Recently, others have proposed that overhypotheses can
be learned via a rational inferential mechanism, as captured
by a hierarchical Bayesian model (Kemp et al., 2007;
Perfors, Tenenbaum, Griffiths, & Xu, in press; Xu, Dewar,
& Perfors, 2009). The idea is that as a learner receives data,
she makes inferences and updates hypotheses on multiple
levels of abstraction simultaneously. For example, given
each additional example of a ball labeled as ‘ball,” the
learner may, at the first-order level, value more the
hypothesis that objects named ‘ball’ are round and value
less the hypothesis that they are white. At the same time,
each instance of a ‘ball’ also contributes to inferences on the

! When the 7 children with the side bias were included, all analyses
gave the same result except for one that was no longer significant
(comparing 1st-order generalization on 8-2 trials against chance).

second-order level, allowing the learner to give increasing
weight to the hypothesis that objects given the same name
share the same shape, and less weight to the hypothesis that
objects of the same name share the same color.

These two proposals — the Attentional Learning Account
and the Rational Hierarchical-inferential Approach — are
similar in some respects. First, both proposals consider the
role of statistical regularities in the input in shaping the kind
of bias that emerges; the shape bias emerges not because it
is a privileged perceptual dimension in the first place, but
because of the correlations between shape-based categories
and word usage. Second, both proposals construe the
acquisition of bias as children arriving at some higher-order
abstraction. The proposals differ with respect to the kinds of
mechanisms and principles that allow the learner to make
the leap from statistical regularities in the input to higher-
order knowledge. While the Attentional Learning Account
focuses on bottom-up associative processes, the Rational
Hierarchical-inferential Approach focuses on the principles
of multi-level inferences and evaluation of hypotheses.
Given that each instance of data contributes to both lower
and higher-order knowledge, the Rational Hierarchical-
Inferential approach thus predicts that the learner can
rapidly arrive at second-order knowledge as soon as (or
even before) they obtain first-order knowledge (Kemp et al.,
2007), without first needing to learn about many instances
and categories on the lower level.

Our findings are consistent with the Rational
Hierarchical-Inferential approach, which predicts that
abstract inductive biases may be acquired quite rapidly, on
the basis of relatively sparse data. The simultaneous
inference-making on multiple levels allows the learner to
quickly acquire abstract knowledge that goes beyond that
given input and, importantly, guides subsequent learning. It
is theoretically possible that first- and second-order
knowledge are not acquired simultaneously, but are
acquired so rapidly successively (i.e., after only 8 to 16
objects) that they appeared simultaneous in our data. Still,
this is unlikely: performance, though better than chance,
was not close to ceiling, implying that if learning is not
simultaneous, it is only distinguishably different at the very
earliest stages.

Aspects of the current results are also consistent with the
Attentional Learning Account. While the rapidity of
learning and the simultaneous first- and second-order
generalizations might be unexpected, the ability to learn an
overhypothesis involving arbitrary features, given the
statistical regularities in the input, is indeed predicted by the
attentional learning approach. One possible way to examine
the differences in the learning mechanisms is to examine
how learners might be sensitive to not just the input data,
but to how the data is generated (e.g., Xu & Tenenbaum,
2007)—one key feature of rational learners.

While the children demonstrated their ability to acquire
overhypotheses despite noise in the input (as evident in their
performance on the 75%-coherence trials), it was somewhat
surprising that they did not perform reliably worse on the
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75%-coherence trials, compared to the 100%-coherence
trials. This lack of a coherence effect contrasts with a
previous finding with adults, who are influenced by feature
coherence in their overhypothesis learning in a category-
learning task (Perfors & Tenenbaum, 2009). It is possible
that there was not enough power in the current dataset,
given that the children received many fewer trials compared
to the adults in Perfors and Tenenbaum’s study (6 for
children, 30 for adults). It is also possible that coherence
would affect learning more when the learner does not have
precise information about category membership of the
training instances, as with adults. Future work will explore
this possibility with children.

The lack of an effect of category structure in our results is
also interesting. Given the same amount of input, children’s
generalization in the 16-4 trials did not differ from that in
the 16-2 trials. This contrasts with predictions from the
hierarchical Bayesian model’s instantiation of the Rational
Hierarchical-inferential Approach (Kemp et al., 2007) that
overhypothesis learning is more effective based on input
consisting of more categories and fewer members per
category, as opposed to the same amount of input consisting
of fewer categories and more members per category. This
proposed advantage is due to more categories providing
more data for making higher-level inferences. It is likely
that in our task, the difference between the 4-category (16-4
trials) and 2-category set (16-2 trials) was too subtle in
influencing children’s generalization. Future studies will
explore a greater difference in category structure.

Questions remain as to the limits of children’s
overhypothesis learning, with respect to how domain- and
modality-general it is, and how early in development it
begins to emerge. Recently, Dewar and Xu (2010) show that
9-month-old infants can acquire second-order knowledge
about how objects in a setting are organized into groups (by
shape or color). This finding that even pre-verbal infants are
capable of creating overhypotheses suggests that the
mechanisms for overhypothesis learning are in place early
on, and are domain-general, not limited to language
learning. Future research can explore how overhypothesis
formation goes beyond perceptual dimensions, and how it
may be applied by children in learning in other domains.

This paper presents findings of how children can quickly
and flexibly “learn to learn” in a linguistic task. These
results are consistent with the idea that learners approach
learning about something in the world on multiple levels.
They hold implications for the origins of learning biases, in
perhaps different cognitive domains, not just in language
learning. Testing the generality and developmental origins
of the ability exhibited in the current study is an important
next step.
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