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Abstract

People have shown sensitivity to variance in studies in which
variance has been provided separately from other statistical
information, but not in other studies in which variance must
be derived from raw data. However, such studies typically
test people’s sensitivity to variance via probability judgments:
participants are asked to make judgments based on how
confident they are that sample means are representative of a
population. In this study, we instead investigate whether
people are able to use variability when making likelihood
judgments: participants determined from which of two
possible populations a sample was more likely to have been
drawn. Choices were influenced by variance, even when
controlling for sample size, base rate, and the absolute
difference between sample means and population ps.
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In this day and age, statistical information is widely
available to any person with an internet connection.
However, although people do have some statistical
intuitions (e.g. Obrecht, Chapman, & Gelman, 2006), they
do not make use of statistical factors - such as mean, sample
size and variance - in a precisely normative fashion
(Kahneman & Tversky, 1972). It remains in question how
people’s statistical intuitions affect their judgments. In this
paper, we offer evidence that people are not only sensitive
to the effect of variance on probability, but also that they
can use variance information to judge the likelihood that a
sample came from a particular population rather than
another.

Both Obrecht, Chapman, and Gelman (2007) and
Masnick and Morris (2008) examined whether people can
use within group variability in statistical datasets when
making judgments. In Obrecht et al.’s study, participants
considered rating data given to pairs of hypothetical
products. Participants saw not only the raw rating data but
also were told the means and standard deviations of the data
sets. Based on this information, participants judged their
confidence that the product with the higher mean rating was
really better than the product with the lower mean rating.
Within  group variability was manipulated across
comparison pairs. Normatively, one should be more
confident in a difference when within group variability is
low, compared to when it is high. Indeed, they found that
when the within group variability of the product ratings was
low, participants were slightly, but significantly, more

confident in a difference between groups, compared to when
the variability was high. Masnick and Morris’ study was
similar in design to Obrecht et al.’s (2007). Child and adult
participants compared pairs of datasets (e.g. a set of six
throwing distances from two different players) so as to
judge whether they differed from each other. However, in
that study, means and standard deviations were not
explicitly given. Masnick and Morris’ participants failed to
use within group variance in a normative fashion. In fact,
their adult participants were sometimes actually more
confident when within group variability was high.

Other studies have examined use of variability when such
information comes from prior knowledge, rather than from
sample data. Nisbett, Krantz, Jepson, and Kunda (1983)
gave adult participants information about small samples that
all shared some characteristic (i.e. three samples of an
element are all conductive; three members of a tribe are all
obese). Participants were willing to attribute the property
found in the samples (e.g. conductivity, obesity) to a higher
percentage of the general population from which the
samples were drawn for cases referring to properties which
have prototypically low variability (such as conductivity),
rather than properties which are typically quite variable
(such as people’s weight). Jacobs and Narloch (2001) found
that children also have the ability to use their prior
knowledge of category variability to make inferences.
Further, Obrecht, Chapmen, & Suérez, (2010) showed that
people can combine statistical data with their prior
knowledge about category variability to make reasonable
inferences.

In many of the studies discussed, participants were asked
to use statistical data to rate their confidence in an answer
already given (Masnick and Morris, 2008; Obrecht, et al.
2007; Obrecht, et al. 2010) or to make inferences about the
general population from sample data (Nisbett et al., 1983;
Jacobs & Narloch, 2001; Obrecht, under review). Such
contexts supply a great deal of information to the
participants. For instance, participants are told which
populations the samples came from. Additionally, Masnick
and Morris (2008), Obrecht, et al. (2007), and Obrecht, et al.
(2010) all informed participants that samples came from
different populations. Further, which population is more
likely to be “better” (better player, better product, etc.) was
often already implied by the difference between the sample
means and by the phrasing of the questions participants
were asked.
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It might also be noted that in the work described above,
participants only appeared sensitive to variability when such
information was provided separately from the raw data,
whether given explicitly in the tasks (Obrecht et al., 2007,
Obrecht et al. 2010) or implied via prior category
knowledge (Jacobs & Narloch, 2001; Nisbett et al., 1983,
Obrecht et al. 2010). When Masnick and Morris (2008) did
not provide variance information explicitly, but rather left it
to be derived from raw data, their participants did not
respond at all normatively to within group variability.
Similarly, Kahneman and Tversky (1972) found that people
failed to reason normatively about variance in dichotomous
data (e.g. male vs. female), for which variability is not an
independent parameter, but rather is a function of sample
size and the percentage of the group sharing a particular
feature. Participants in their study typically claimed that
large and small hospitals would have about the same
number of days in a year in which more than 60% of the
children born were male. Normatively, a small hospital will
have more days when more than 60% of children are born
male, given a dichotomous population (male vs. female)
with a p of 50% (about half of children born are male).
However, using variance information in Kahneman and
Tversky’s task was not a simple proposition: One must
combine the information that the p of male births is 50%
and that the number of births was higher at the larger than
the smaller hospital and also note that means of smaller
samples typically depart farther from population ps than
means of larger samples before one can use variance to
determine the relative likelthood of a sample with a
particular mean coming from either population. It is likely
that this complexity contributed to people’s non-normative
behavior (e.g. Evans & Dusior, 1977).

Here, we further explored the question of whether people
can make use of variance when determining which of two
populations they believe a sample was more likely to have
been drawn from. Like Kahneman and Tversky (1972), we
tested whether people’s choices took variance - as implied
by sample size and the percentage of a group sharing a
dichotomous feature - into account. However, unlike
Kahneman and Tversky, we held sample size constant and
instead manipulated variability via population us and
sample means. Also, we asked participants to consider the
likelihood of a particular sample having come from one
population or another, rather than to reason about a range of
possible samples.

Method

The purpose of this study was to see whether people can use
variance information when determining whether a sample
was more likely drawn from one population or another. As
has been done for a number of prior studies (Kahneman &
Tversky, 1972; Nisbett et al., 1983; Obrecht, under review),
we chose to use a dichotomous feature as the basis of
comparison. This allowed the variance of a sample to be
determined solely from sample size and the proportion of
the sample exhibiting that dichotomous feature:

o’ =np(1l-p)

Participants were given information about two different
populations of trees (i.e. 2% of Aoco trees have white
flowers, 18% of Boco trees have white flowers) and a
sample (i.e. 10% of trees in a grove of 100 trees have white
flowers). They were asked to indicate which population the
sample was more likely to have come from, and how sure
they were of their choice.

Participants

The participants in this study were 266 undergraduate
students at the University of Notre Dame participating for
course credit. Of these, 40 were excluded for failure to
complete the task. An additional 5 were excluded from the
analysis for failure to complete the task within a reasonable
time period (taking either less than five minutes or more
than two hours).

Design

This study used a within subjects design. Every participant
was asked 48 pairs of questions. Every set of questions
involved comparing a sample mean to a pair of population
ps. In each pair of population ps, one was more central
(closer to 50%) and one was more extreme (farther from
50%). Sample means always fell between the population ps.
We manipulated:

a)Centrality: Whether the population ps were Central
or Extreme When comparing conditions where the
absolute difference between the population ps is the same,
the relative likelihood of samples coming from the
population with the more central p as opposed to the more
extreme | was greater when the population ps and sample
means were from a more Extreme range (e.g. 18% vs.
2%) rather than from a more Central range (e.g. 48% vs.
32%). This is because populations from the Central range
have inherently higher variance (o = np(l — p)). This
manipulation allowed us to vary the relative likelihood of
a sample being produced by either population
independently of the difference between the sample
means and the population ps.

b)Spread: Whether the spacing between population ps
was Narrow or Wide Population ps either differed from
each other by 16 percentage points in the Narrow
condition (e.g. 2% vs. 18%) or 29 percentage points in the
Wide condition (e.g. 2% vs. 31%).

c)Parity: Whether the population ps were Low or High
Populations with ps equally distant from 50% (e.g. 25%
& 75%, 10% & 90%) are also equally variable. Thus
when constructing questions sets, the values of population
ps and sample means were reflected under (Low) and
over (High) 50%. For example, if one question referred to
populations ps of 2% and 18%, with a sample mean of
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Table 1: Population ps and sample means used in constructing stimuli, with their absolute and relative probabilities

Pofsample P ofsample
Population Centrality, Centralp Extreme p  Sample %s %s given %s given Ratio of Ps of sample
Spread, and Parity (SD)* (SD)* (Location) Central p Extreme p %8 (Pcentral/ PExtreme)
Extreme/Narrow/Low  18% 2% 8% (Extreme) 24x107 7.4x10™ 3.3
(14.76)  (1.96) 10% (Mid) 1.1x 107 29x10° 3.8x10°
12% (Central) 32x107 73x107 44x10*
Extreme/Wide/Low 31% 2% 16% (Extreme) 2.8x10™ 1.6x 107" 1.8x10°
(21.39)  (1.96) 20% (Mid) 4.6x 107 1.1x10™ 4.1x10"
24% (Central) 2.8x 107 29x10™" 9.7x 10"
Central/Narrow/Low  48% 32% 38% (Extreme) 1.1x 102 3.7x 107 29x 10"
(24.96)  (21.76) 40% (Mid) 22x107 2.0x 107 1.1
42% (Central) 3.9x 107 9.0x 107 4.4
Central/Wide/Low 51% 22% 36% (Extreme) 8.7x10™ 52x10™ 1.7
(24.99)  (17.16) 40% (Mid) 7.1x 107 23x10° 3.1x10°
44% (Central) 3.0x 107 52x 107 52x10*
Extreme/Narrow/High  82% 98% 92% (Extreme) 24x107 7.4x10™ 3.3
(14.76)  (1.96) 90% (Mid) 1.1x 107 29x10° 3.8x10°
88% (Central) 3.2x 107 73x 107 4.4x10*
Extreme/Wide/High  69% 98% 84% (Extreme) 2.8x10™ 1.6x 107" 1.8x10°
(21.39)  (1.96) 80% (Mid) 4.6x 107 1.1x10™ 4.1x10"
76% (Central) 2.8x107 29x10" 9.7x 10"
Central/Narrow/High ~ 52% 68% 62% (Extreme) 1.1x 107 3.7x 107 29x 10"
(24.96)  (21.76) 60% (Mid) 22x107 2.0x 107 1.1
58% (Central) 3.9x 107 9.0x 107 4.4
Central/Wide/High 49% 78% 64% (Extreme) 8.7x10* 52x10* 1.7
(24.99)  (17.16) 60% (Mid) 7.1x 107 23x10° 3.1x 10
56% (Central) 3.0x 107 52x 107 52x10*

*Standard deviation of the sampling distribution from a dichotomous population with the given pn where N = 100.
Note: P refers to probability of drawing a sample (N=100) with a given % from a population with a given p: P(sample % | p).

10% (a low population parity question), another question
referred to population ps of 98% and 82% with a sample
mean of 90%. This allowed us to balance whether the p of
the population that the sample was more likely to have
been drawn from was greater or less than the mean of the
sample (see Table 1.) High Parity conditions might be
thought of as negative parity versions of Low Parity
conditions: “98% of Doco mango trees have white
flowers” is logically equivalent to “2% of Doco mango
trees do not have white flowers.”

Control: Sample % locations Three different sample
percentages were presented with each of the eight pairs of
ps: one closer to the extreme p (Extreme), one closer to the
central u (Central), and one half way between the other two
sample means (Mid). (See Table 1.)

Additional controls For half of the trials the population
with the more central p was described first, while for the
other half the population with the more extreme p was
described first. This yielded 6 questions sets per pair of us
(see Table 1). The question sets were presented in random
order. Sample size and base rate were also controlled.
Participants were always told that there were 100 trees in
the grove and that groves of either population occurred with

equal frequency. Additionally, the relative and absolute
likelihoods of ps in the Wide & Central conditions were
matched as closely as possible using ps described by whole
number percentages to the relative and absolute likelihoods
of us in the Narrow & Extreme conditions (see Table 1).
This allowed us to manipulate both variance and the
absolute difference between population pus while controlling
the relative and absolute probability of a sample being
produced by either population.

Procedure

This study was conducted online. Participants signed up via
a university system, and followed a link to a web page that
included the following text:
“In this study you will be given information about
different types of trees. For example, Ukon cherry trees
tend to have yellow blossoms. In contrast, Kanzan
cherry trees tend to have pink blossoms. Suppose you
see a grove where someone planted either all Ukon or
all Kanzan trees. If you did not know which kind of tree
was planted, you could use the color of the blossoms in
the grove to make an inference. For example, if the
blossoms were mostly yellow, you might guess that
Ukon, rather than Kanzan, trees were planted.
In this study you will be asked to make inferences
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about which of two types of trees seems more likely to
have been planted in a grove based on the percent of
blossoms that are a certain color.”

After viewing this text, participants followed a link to a
survey made up of 48 pairs of questions, presented in
random order, constructed using the sets of population us
and sample percentages described in Table 1. Each pair of
questions was preceded by an information block, like the
one below:

“Mango trees can have either white or yellow flowers.
2% of Aoco mango trees have white flowers.

18% of Boco mango trees have white flowers.

There are equal numbers of Aoco and Boco groves.
You see a grove of 100 mango trees. This grove
consists of either all Aoco trees or all Boco trees. You
see that 8% of the trees have white flowers.”

Participants were then asked to indicate which kind of
grove this was more likely to be. For example, “Is this more
likely to be an Aoco mango grove or Boco mango grove?”
They are also asked to rate on a scale of 1-7 how sure they
were of their answer, where 1 means “no idea” and 7
indicated one was “completely sure.”

After completing these 48 sets of questions, participants
completed a 10 question multiple choice numeracy
evaluation similar to that used by Obrecht et al. (2007) that
required conversions between percentages, proportions and
frequencies. They were also asked their math and verbal
SAT scores, as well as what math and/or statistics classes
they had taken or were currently taking.

Analysis and Results

For dichotomous features, the variance of a population (0” =
np(l — p)) becomes smaller as the proportion of the
population exhibiting that feature becomes increasingly
distant from 50%. There is 0 variance in populations where
the percent of the population exhibiting a feature is 0% or
100% and maximal variance in populations where that
percentage is 50%. As a result, it is more likely that, for
example, a population for which 82% of trees have white
flowers would produce a sample of 100 trees where 90%
have white flowers, than that a population for which 98% of
trees have white flowers would do so. Similarly, it is more
likely that a population for which 18% of trees have white
flowers would produce a sample of 100 trees where 10%
have white flowers, than that a population for which 2% of
trees have white flowers would do so. Thus, in our analysis,
we coded participants’ responses by whether or not they
indicated that the grove was more likely to have come from
the population with the more central population p (close to
50%), as this allowed us to most directly compare
participants’ behavior across Low and High Parity
conditions.

As can be seen in Table 1, samples were more likely to
have come from populations with more central ps when us
were Extreme rather than Central, due to differences in
variance. However, samples were more likely to have come
from populations with more central pus when p Spread was

Wide rather than Narrow, due to the differences in means as
well as the variance. Further, Parity has no effect on
likelihood. Thus, effects of Centrality can be attributed to
the normative influence of variance, effects of Spread can
be attributed to the normative influence of both variance and
mean difference, and effects of Parity are not normative.

We ran a 2 x 2 x 2 repeated measures ANOVA where the
factors were a) Centrality, b) Spread, and c) Parity.
Participants were asked 6 forced choice questions (3 sample
% locations x 2 presentation orders) regarding each of the 8
pairs of population us. Thus, they were given scores
corresponding to the proportion of these 6 questions for
which they responded that the sample was more likely to
have been drawn from the population with the more central
p for each of these 8 population conditions.

Variance influenced likelihood judgments

We found that individuals were more likely to choose the
population with the more central p in the Extreme than the
Central conditions (F(j205) = 48.4, p < .0005, 1712, = .18),
indicating that indeed, variance influenced participants’
likelihood judgments. Results are displayed in Figure 1. A
non-parametric test further supports this conclusion. Each
participant was asked 24 pairs of questions that only
differed in centrality (Spread, Parity, sample % location, and
presentation order being otherwise matched). Of the 221
participants that answered all the forced choice questions,
137 gave more central answers when ps were extreme,
while 42 gave more central answers when ps were central,
and 42 showed no difference. This is significant by a
binomial test (p<.0005).

Non-normative influence of Parity

The more central p was chosen more often in the Low than
the High Parity conditions (F{; 205y = 159.106, p < .0005, 1712,
= 42) Participants were also more strongly affected by
Centrality when Parity was Low (F220 = 13.777, p <
0005, 17, = .06).

Mean difference influenced likelihood judgments more
strongly than variance

The more central p was chosen more often in the Wide than
the Narrow Spread conditions (F; 220, = 259.3, p < .0005, 1,
= .54), an effect that can be attributed to a sensitivity to
mean difference as well as variance. Results are displayed in
Figure 1. The initial analysis was followed up with a test to
see whether relative influence of a) variance and b) absolute
differences between population us and sample means on
people’s choices was normative. We ran a 2 (Narrow &
Extreme vs. Wide & Central) x 2 (Parity) repeated measures
ANOVA that compared data compiled from cases where the
population ps were both Central and Wide to data compiled
from cases where the population ps were both Extreme and
Narrow. As previously mentioned, absolute and relative
probabilities were closely matched in these conditions.
Thus, normatively, no effect of the Narrow & Extreme vs.
Wide & Central condition should be expected. However,
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though in Narrow conditions sample percentages were, on
average, equidistant from the more central and the more
extreme population ps, in Wide conditions sample
percentages were, on average, closer to the more central
population p. Thus, if the participants were being more
strongly influenced by these mean differences than by
variance, they would tend to give more central answers in
the Wide & Central than the Narrow & Extreme conditions.
Indeed, this effect was observed (F(; 220y = 79.8, p <.0005 1712,
=.27). The effect of Parity also remained significant (F(; 220
= 132.9, p < .0005, 1, = .38). Further, the effect of Narrow
& Extreme vs. Wide & Central populations was stronger in
the High Parity conditions (1220 = 10.0, p < .005, 1712, =
.04). These findings are in line with previous research
(Obrecht et al., 2007; Obrecht, under review) indicating that
differences in means have a stronger influence on people’s
decisions than differences in variance.

Individual differences

There is literature (e.g. Nisbett et al. 1983, Obrecht et al.,
2007) suggesting that individual differences in statistical
training and numerical knowledge influence how people
make use of statistical information. Thus, we performed a
subsequent 2 x 2 x 2 repeated measures ANCOVA
including as a covariate whether or not participants had a
perfect score on the numeracy evaluation (40% had a perfect
score). Participants who had perfect scores on the numeracy
scale were more likely to respond that a sample was drawn
from the population with the more central p; that is, these
participants gave more normative responses compared to
those who scored lower on the numeracy measure (F(219) =
44, p < .05, 1712, = .02). Further, such participants were more
strongly influenced by numerical factors that affected
likelihood (interaction between Numeracy and Spread:
Fao9) = 83, p < .005, 1712, = .04; interaction between
Numeracy and Centrality: F(; 219y = 3.4, p < .07, 1712, =.015,
marginally significant), and less strongly influenced by
factors that did not affect likelihood (interaction between
Numeracy and Parity: F(j219) = 7.6, p < .01, 1712, =.03). It
should be noted that effects of Centrality, Parity, and
Spread, as well as the interaction between Centrality and
Parity remained significant when having a perfect score on
the numeracy evaluation was included as a covariate (all ps
<.0005). Results are displayed in Figure 1.

These findings may be taken as evidence that, as
suggested by Obrecht et al. (2007), more numerate
individuals are more strongly influenced by numerical
factors that affect probability than less numerate individuals.
Individuals who scored perfectly on the numeracy
evaluation had slightly higher mean SAT scores compared
to those who made errors (727 (SD = 45) vs. 689 (SD = 70);
t = 425, p < .005; 31 participants did not report SAT
scores.) One point of note however is that a second
ANCOVA found no effect of having taken a statistics
course when this factor, rather than numeracy, was included
as a covariate (F(1215)= .01, p > .9). It appears that statistical
training did not boost performance on this task.

® Narrow/ Perfect Numeracy

NNarrow/ Imperfect Numeracy
453 @Wide/ Perfect Numeracy
0.9 - @Wide/ Imperfect Numeracy

53

Proportion Central Choices
[
wn

Low High Low High

—Extreme-—- = — Central—--—

Figure 1: Mean proportion of central responses from
participants with perfect and imperfect numeracy scores for
questions referring to the eight different population pairs
(see Table 1). Error bars represent standard error.

Discussion

These results indicate that participants’ decisions were
influenced by both normatively relevant and irrelevant
numerical factors. As would be normatively correct,
participants tended to indicate that the samples came from
the population with the more central u more often when the
spacing between the populations was wide, rather then
narrow, and when the populations were from a more
extreme, rather than more central range. This offers
evidence that a) people have some sensitivity to the
likelihood of a sample being drawn from a given population
and b) people can use variance when making such
determinations. Although variance shifts people’s behavior
in the normative direction, one cannot call their behavior
precisely normative. An ideal observer would have selected
the central population in all of the extreme population range
trials and 80% of the central population range trials. This
was not the case (see Figure 1).

Further, even though Parity manipulation, normatively,
should not have affected participants’ judgments,
participants were less likely to choose the population with
the more central p when the population ps were in the High
Parity condition. There are different possible interpretations
for this effect. First, people have more difficulty performing
categorical reasoning about information with negative parity
(e.g. not red) than with positive parity (e.g. red) (see
Feldman, 2000). Second, while the absolute differences
between the sample means and population pus were matched
across conditions with values from the High and Low
Parities, the relative differences were not: 2 is 16 away from
18, and 82 is 16 away from 98, but 2/18 is not equal to
82/98. People’s ability to discriminate between numerical
magnitudes is based on the relative, not the absolute,
difference between them (Gallistel & Gelman, 2005). It is
possible that performance was less normative for High vs.
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Low Parity trials because the smaller relative differences
between values used in High Parity trials made it more
difficult for participants to discriminate between them and,
subsequently, the probabilities they conveyed.

Regardless of whether their use of variance information is
precisely normative, these data show that people have some
sensitivity to the probability that a sample with a particular
mean might be drawn from a given population. This has
implications for the interpretation of results from prior
studies on normative use of statistical information. In a
natural context, an observer is not in a position to assume
that the samples they have information about are necessarily
representative of the general population. Further, difference
between means, standard deviations, and sample sizes can
themselves convey information about the likelihood that
sets were sampled from the same general population. Thus it
is possible that some departures from “normative behavior”
can be attributed, at least in part, to a sensitivity to the
likelihood of the samples being randomly representative of
the same general population.

Consider, for example, the results of Obrecht, Chapman,
and Gelman (2009). In this study participants were asked to
make judgments about whether a particular kind of radio
would break. They were told that a study found that 30 out
of 1000 radios tested (3%) broke within a year. Some
participants were also given sets of reports from individuals
who owned that kind of radio of whom 2 out of 4, 3 out of
4, 8 out of 16, or 12 out of 16 reported that the product
broke. This study, like others before it (see Kahneman &
Tversky, 1972), found that people did not use sample size in
a normative fashion: participants gave more credence to the
individual reports than they should have, given the much
larger sample size of the radio study. In other words,
participants did not weigh means by sample size, as the
authors considered to be normatively correct. However,
while it is typically considered normative to weight set
means by sample size, this assumes that these data represent
a random sampling of the population. Consider if, for
example, the 1000 tested radios were made at a factory in
Manbhattan, but individuals’ reports were from owners of
radios made in Nebraska. Lacking further information about
the proportion of Manhattan and Nebraskan made radios in
the general population, it may be reasonable to simply
average these sample means without regard to sample size.
The savvy statistician may determine that the randomness of
the sampling was in question just from looking at the
numbers: With a population u of 3%, there would be less
than a 1% chance of even 2 out of 4 sampled radios
breaking, and less than a .0000001% chance that 12 out of
16 would break. It would be quite legitimate for participants
to conclude that the radios tested in the study were different
then those that the customers were buying.

Individuals may similarly be able to use statistical
information to determine how likely it is that samples are
drawn randomly from the same population (in which case
weighting means by sample size is normative) or instead
discretely sampled unknown subpopulations (in which case

it is reasonable to average sample means without regard to
sample size). A prerequisite to this ability is that people be
sensitive to the likelihood that a sample is representative of
a particular population. Our results indicate that people are
indeed sensitive to such likelihoods. This interpretation is
supported by the results from Obrecht (under review).
Obrecht found that participants are more likely to weight
means by their sample sizes when the sample sizes are
smaller, rather than larger: The probability of a population
producing samples with divergent means is lower when the
sample sizes are larger, thus averaging means without
weighting by sample size would be more normative in the
higher than the lower sample size conditions. We are
currently conducting a series of studies to further determine
if people’s judgments about statistical information are
influenced by likelihood in such a fashion.
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