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Abstract

Most models of causal reasoning estimate the strength of a
causal relation using a function of the proportion of successes
and failures: the number of trials on which the cause produced
the effect, divided by the total number of trials. Alternatively,
people may represent failures as due to a hidden inhibitor that
has a specific location and extent in time. We model these pos-
sibilities, and empirically test a case on which the two mod-
els make opposite predictions. We find that children as young
as four years old generate responses inconsistent with propor-
tional models, but consistent with an inhibitor-based model.
Incorporating a recency component does not help proportional
models fit the data.
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Introduction
Causal relations do not always hold. For instance, turning
your key starts your car, but most of us have had an experi-
ence with a car that did not start when we turned the key in
the ignition. Some of us own reliable cars, where this hap-
pens infrequently, whereas others of us own cars where this
happens often. How do people represent such differences in
variability?

One approach is to see variable causal relations as essen-
tially probabilistic: causal relations sometimes randomly fail.
In this case, it is natural to estimate the strength of the re-
lation using some function of the proportion of successes to
total trials. For instance, if your car started 6 days out of 10 in
the past, you might estimate that the probability of it starting
the next day, was 0.6. Most models from the causal reasoning
literature either directly use, or converge to, such a propor-
tion or a function of such a proportion. These include most
associative (e.g., Rescorla & Wagner, 1972), causal power
(e.g., Cheng, 1997) and neural network (e.g., McClelland &
Thompson, 2007) models of causal reasoning. Not all of
these models are deeply committed to using simple propor-
tions, but most currently do. We will refer to such models as
proportional models.

There is an alternative to the proportional approach: it
could be that variability is the result not of intrinsic random-
ness, but rather the result of changing hidden inhibitors that
tend to persist in time. For instance, it is possible that cold
weather prevented the engine from turning over, or your bat-
tery needed to be replaced, or some other unknown problem
existed. Under such an inhibitor-based model, judging the
probability of success involves judging whether the causes
responsible for past failures, might be active on the next trial.
For instance, if your car usually starts six days out of ten, then
you can reason that whatever hidden causes are responsible
for the four failures out of ten, are 40 percent likely to occur

tomorrow. As this example illustrates, there are many cases in
which proportional and inhibitor-based approaches make the
same predictions. Given that inhibitor-based approaches in-
troduce new complexity, it is understandable that researchers
have focused on proportional models.

There are, however, some cases in which the two classes
of models make different predictions. One of these cases oc-
curs when we must reason about a novel intervention. For in-
stance, imagine you own a new car that has never had a prob-
lem starting. On Monday, your friend, an amateur mechanic,
opens the hood and makes some “improvements.” On Tues-
day, your car fails to start. Without further repairs, it seems
unlikely your car would start on Wednesday. On the other
hand, imagine if the car was old junker, that normally only
started half the time – it had failed on Thursday and Saturday,
but started on Friday and Sunday. As above, your mechanic
friend fiddles under the hood on Monday, and on Tuesday it
fails to start. In this case, it seems less likely that the car
will fail again on Wednesday. The fact that the car sometimes
failed before, then recovered, makes you more confident that
it will recover again.

Some experimental data suggests that children represent
hidden inhibitors, when shown a novel, variable causal re-
lation. Schulz and Sommerville (2006) showed 4.5 year-old
children a machine that lit up and played music when a but-
ton was pressed. They also showed children a ring that when
placed on the machine, appeared to prevent the machine from
working. In the probabilistic condition, children then saw a
period in which the machine activated on only a few trials, in
the following pattern: [0 1 0 0 0 0 1 0] 1In the deterministic
condition, children saw eight successes: [1 1 1 1 1 1 1 1]. At
test, children in both conditions were presented with a choice:
they could disable the machine using the ring (which they
had seen work as a disabler before), or they could disable the
machine using a candidate cause (a small flashlight) that had
been hidden during the rest of the procedure. Children were
significantly more likely to choose the flashlight in the prob-
abilistic than in the deterministic condition. This result sug-
gests that the probabilistic activation implied, to the children,
the existence of a hidden inhibitor. A proportional model can-
not explain this effect, since the calculation of causal strength
in both conditions should be qualitatively the same.

Schulz and Sommerville (2006)’s data provide support for
a model that explicitly incorporates hidden inhibitors. To our
knowledge, no experiment exists that directly compares the
predictions of inhibitor-based, and proportional approaches.

1This notation means: one failure, one success, then four fail-
ures, followed by one success, followed by one failure. This notation
will be used throughout the paper.
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We sought to create such a scenario. Specifically, inhibitor-
based models predict that in some cases (such as the car ex-
ample above) adding failures to a string of instances, should
make it judged more likely that a success will occur subse-
quently. This is because the consistency of successes can al-
low us to infer the likely consistency of failures. Proportional
models, as we will see below, cannot match these predictions.
We will begin by describing the methods and results of the
experiment, before describing the models and model predic-
tions. We will then discuss the implications of these results
for models of causal reasoning.

Methods
Participants
Participants included 32 three-year-olds (M = 41.50 months,
Range: 36-47 months,12 girls), and 32 four-year olds (M =
53.3 months, Range: 48-59 months, 18 girls). Four additional
children (all three-year-olds, two in each condition) were
tested, but excluded because they failed controls (described
below). Half the included children in each age group were
randomly assigned to the deterministic condition, while the
other half were assigned to the probabilistic condition. About
half of the children were tested in a laboratory at Brown Uni-
versity, while the remaining children were tested in a quiet
room at the Providence Children’s Museum.

Materials
Materials included a set of six commercially available closet
lights. Each resembled a large button that illuminated when
pressed. (See Figure 1.) One of the lights, which we will
call the “effect light”, measured 14 cm in diameter. It was
modified such that it could be activated surreptitiously using
a remote. Inside of the battery compartment, we installed a
dummy switch that was not connected to the wiring of the
light. A second light (the “decoy light”) had the same appear-
ance, but never activated when pressed. Four more lights (the
“cause lights”) were smaller, each measuring 10 cm in diame-
ter, and were each painted a different color. These lights were
modified such that they always illuminated when the button
was actively depressed, and stopped illuminating when the
button was released. The lights were mounted together on a
piece of cardboard, apparently connected with black wires, as
shown in Figure 1.

This setup allowed the experimenter to create the illusion,
using the remote, that the cause lights actually caused the ef-
fect light to illuminate. The experimenter, a trained magician,
practiced this effect until a convincing causal impression was
achieved. In addition, a set of colored pipe cleaners that could
be wrapped around the effect light, allowed the experimenter
to change the apparent identity of the effect light, without
needing to create multiple remote-controlled lights. No chil-
dren noticed either of these deceptions during the experiment.

Procedure
Training Phase The experimenter first brought out the ef-
fect light, and demonstrated that pressing on the effect light

Figure 1: The lights used in the present experiment, as they
were shown to children in the test phase.

caused it to activate. The children were allowed to press
the light as well, which illuminated when they pressed it.
(This was achieved using the remote.) The experimenter then
held his hand over the light, and asked: “I’m going to press
on this light again. Will it light up?” If children answered
correctly, saying “yes,” the experimenter moved to the next
part of the experiment. If they answered incorrectly, gave a
nonverbal response, or did not answer, children were given
corrective feedback, and the experimenter pressed the light
again, and asked the question again. If children needed more
than three instances of corrective feedback, their data were
excluded from the experiment for failing the controls. The
experimenter repeated the training phase with the decoy light,
which did not illuminate. In this case, the correct answer was
“no.” Note that at this stage, all children who passed controls
had correctly answered “yes” to one question, and “no” to an-
other. Thus, children using the strategy of answering “yes” to
every question, were excluded.
Test Phase: Deterministic Condition The experimenter
brought out three apparently new lights, and arranged them
as in Figure 1. He said: “Sometimes, when you push on the
little lights, they make the big light go. Let’s see what they
do.” The experimenter first pressed three times on the light to
the child’s right, which apparently caused the effect light to
illuminate each time. He then pressed three times on the left
light, with the same result. Finally, he pressed on the right
light three more times, again causing the effect light to illu-
minate each time. The experimenter then picked up the effect
light, and said “I’m just going to do something to the light.”
He held the light vertically, such that the underside was hid-
den to the child, opened the back cover, and flipped a switch
inside of the battery compartment with an audible click. (The
switch had no real electronic effect or purpose.) He then re-
placed the light on the cardboard, and pressed on the right
light. The right light illuminated, but the effect light did not.
The experimenter then asked, pointing to the right light: “I’m
going to push on this one again. What do you think: If I push
on this one again, will it make the big light go?” He then
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Figure 2: Experimental results. Four-year-olds were more
likely to say “yes” in the probabilistic than in the determinis-
tic condition.

repeated the question, referring to the left light. Children’s
answers were recorded. The experimenter then repeated the
whole test phase with an apparently new set of three lights,
starting with the light on the child’s left. This yielded a total
of four yes/no questions from each child. The color of the
lights were randomly counterbalanced, as was the starting lo-
cation of the light referred to here for simplicity as the “right”
light. That is, about half the children saw the experimenter
start with the light on their left, and about half the children
saw the experimenter start with the light on their right.

Test Phase: Probabilistic Condition Children in the prob-
abilistic condition were given the same procedure, except that
the effect light sometimes failed to illuminate when the cause
lights were pressed, even before the experimenter flipped the
switch. (The cause lights always illuminated when pressed.)
We can see the deterministic condition as a series of nine suc-
cesses, followed by an intervention, followed by a failure, fol-
lowed by a trial on which a prediction was requested. We will
represent this as: [1 1 1 1 1 1 1 1 1 — 0 ?]. The probabilistic
condition always followed the pattern [1 0 1 1 1 0 0 1 1 —0
?]. That is, the right light succeeded, failed, then succeeded,
the left light succeeded, then succeeded, then failed, and fi-
nally the right light failed, then succeeded, then succeeded.
This sequence was constructed to appear random, containing
an appropriate number of alternations, but it also terminated
with two successes before the intervention. Note also that
the total proportion of successes was the same for each light
(2/3).

Experimental Results
We began by assigning each child a score, which was the
total number of times that the child answered “yes” to the
test questions (range: 0 to 4). Means are shown in Figure
2. Preliminary analyses revealed no effects of gender, or
counterbalanced factors such as the side of the first demon-
strated light. We subjected the data to a two-way (age ×
condition) ANOVA. This revealed a main effect of condition,

(F(1,60) = 5.71, p = 0.020), no main effect of age group
(F(1,60) = 2.83, p = 0.098), and a significant interaction be-
tween age group and condition (F(1,60) = 4.148, p = 0.046).
Because of the interaction, we investigated simple effects of
condition within each age group. There was a significant ef-
fect of condition for 4-year-olds, (t(30) = 3.30, p = 0.002),
but not for 3-year-olds (t(30) = 0.239, p = 0.81). This dif-
ference occurred because 4-year-olds were more likely to say
“yes” in the probabilistic, than in the deterministic condition.

Subsequent analyses verified these patterns by looking at
individual questions. Children were asked four questions:
about the light they had seen fail after the intervention on the
first trial (“demo-1”), the light whose efficacy they had not
seen after the intervention (“other-1”) and the corresponding
lights on the second trial (“demo-2” and “other-2”). Within
each age group, we subjected the pattern of yes/no responding
on each question between conditions, to a two-sided Fisher’s
exact test. Three-year-olds showed no significantly differ-
ent pattern of responding, on any of the four test questions
(all p-values greater than 0.05). Four-year-olds, however,
showed significantly more “yes” answers in the probabilistic
than the deterministic condition, on three out of the four ques-
tions: demo-1 (p = 0.02), demo-2 (p = 0.015), and other-2
(p = 0.011). They did not show a significant difference on
other-1 (p = 1.00). This may be because some children felt
the need to balance their initial “no” response, with a “yes”
response. Importantly, this did not seem to happen on the
second trial (when presumably it became obvious that most
answers were “no”). Most importantly, note that 4-year-old
children showed a significant difference on the first question
asked.

Chance analyses were in accord with these results. Chance
was defined as a 50 percent probability of saying “yes”. Bi-
nomial tests on the pattern of responding on each question,
within each age group and condition, did not reveal any ques-
tions on which 3-year-olds responded significantly differently
from chance. The same was true of 4-year-olds in the prob-
abilistic condition. In the deterministic condition 4-year-olds
were significantly more likely to answer “no” than chance
would predict, on demo-1 (p = 0.001), demo-2 (p = 0.001),
and other-2 (p = 0.021), but not on other-1 (p = 0.21).

Overall, 4-year-olds showed a clear tendency to respond
“yes” more often in the probabilistic condition, than in the
deterministic condition. Three-year-olds did not show this
tendency – they were not significantly different from chance
in either condition.

Model Description and Results
In this section, we will describe the predictions made by the
two classes of models. The prediction we will extract from
each class of models is on which condition, if any, children
should be most likely to say “yes” to the test question. To
preview, each class of model will make internally unanimous
predictions, but the predictions will be different between pro-
portional and inhibitor-based models.
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Figure 3: Model predictions. Only the hidden inhibitor model
is consistent with the 4-year-old data.

Some assumptions will be common to both models. The
first assumption is that the probability of the effect in the ab-
sence of the cause is zero. This is natural given that children
never see the effect light illuminate in the absence of pressing
the cause lights. Second, both models will assume for sim-
plicity that children should answer “yes” to the test question
if the probability of the effect occurring is greater than some
threshold. Preschoolers like to say “yes,” (Heather Fritzley
& Lee, 2003), so it is plausible that this threshold is lower
than 50 per cent. We will assume that higher probabilities
generally correspond to more frequent “yes” responses. Be-
cause other factors (such as guessing) may go into children’s
responses, we will not treat chance-like responding as incon-
sistent with any model. For instance, adding noise to any
model can produce chance-like responding.

We begin with the class of proportional models, by first
considering the simplest possible proportional model: the
probability of success is the proportion of successes so far. In
the deterministic condition, children see nine successes, and
one failure, meaning that the probability of success on the
11th trial is 0.9. In the probabilistic condition, children see
six successes, and four failures, meaning that the probability
of success is 0.6. The proportion is lower in the probabilis-
tic condition. Therefore, a basic proportional model is com-
mitted to the prediction that children should be more likely
to say “yes” in the deterministic than probabilistic condition.
Predictions are shown in Figure 3.

These predictions are the opposite of the experimental re-
sults from 4-year-olds. Can we find a proportional model that
fits the 4-year-old data? One approach would be to throw out
all data from before the intervention, and learn only from the
one post-intervention trial. This could be reasonable if chil-
dren believe that the intervention changed the system. Be-
cause the post-intervention trial was identical between con-
ditions, this commits the new proportional model to the pre-
diction that the number of “yes” responses between condi-
tions should be the same. While it is possible that 3-year-olds
are reasoning in accord with this model, they could also be

guessing. The 4-year-old data were inconsistent with these
predictions.

Another approach might be to give recent trials more
weight than trials earlier in the sequence. This could be rea-
sonable both psychologically (fading memory) and rationally
(recent trials are more relevant). We can use a function to
assign a different weight to each trial, presumably with more
weight assigned to recent trials.2 The predicted proportion
is the total weight of the successful trials, divided by the to-
tal weight of all the trials. There were some trials on which
there was a failure in the probabilistic condition, but not in
the deterministic condition. Therefore, in order to fit the data,
the recency function would have to discount these failures
through the weight function. It would also have to assign a
high weight to at least one trial in which there was a success
in the probabilistic condition, but a failure in the determin-
istic condition. However, no such trial exists: every failure
in the deterministic condition is also a failure in the proba-
bilistic condition. Put another way, the experimental effect
shows that adding failures to a sequence, while holding suc-
cesses constant, can increase probability judgments. Propor-
tional models cannot capture this effect, because adding fail-
ures should decrease judgments, if they have any effect.

We propose an inhibitor-based model that makes different
predictions. It takes a generative approach, describing a set of
rules for randomly creating a sequence of successes and fail-
ures. The probability of a set of sequences given a condition,
is equal to the number of times we expect to generate that set
of sequences, divided by the number of times we expect to
generate all the sequences that meet the condition.

The inhibitor-based model accounts for variability in the
causal relation, by positing the existence of a hidden inhibitor
whose state changes over time. We begin by considering only
one inhibitor for simplicity; we will consider multiple in-
hibitors below. The inhibitor can be either ON or OFF; when
it is ON the causal relation does not hold. The basic model
has two parameters: 0 < a < 1, which describes the over-
all proportion of time that the inhibitor is active and v > 0,
which describes the volatility of the system: how likely the
inhibitor is to change state. The model starts setting the in-
hibitor to ON on the first trial with probability a. At each
time step, change the inhibitor from ON to OFF with proba-
bility (1− a)(1− e−v), or from OFF to ON with probability
a(1− e−v). This model can generate a sequence of successes
and failures of arbitrary length: successes occur if and only if
the inhibitor is OFF.

Some properties of the model are worth noting. First, note
that in the long run, the steady state of the Markov chain de-
fined by the two transition probabilities, is [a,(1−a) ]. This
achieves the desired property that the inhibitor is ON a pro-
portion of time defined by a. Second, note that for any finite
value of v, there exists a statistical dependence between the
value of the inhibitor at each time step: it is more likely to be

2Note that the argument in this paragraph applies to all possible
weight functions, not just ones that decrease monotonically.
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on at time t + 1 if it is on at time t. As v approaches infin-
ity, the correlation between time steps approaches zero. Note
that v is not allowed to equal zero because the inhibitor would
never change state. However, as v is reduced toward zero, the
dependence between time steps becomes stronger. The model
is derived from considering a continuous underlying Poisson
process in which change events arrive at rate v. At each event,
we re-sample the value of the inhibitor from a. Because of
this underlying process, we can discretize time differently by
using different values of v. For instance, to model time steps
that are twice as long, we can double v.

To generate model predictions, we ran a sampler that fol-
lowed the algorithm described above, with a set to 0.5, and v
randomly sampled each time from an exponential distribution
with mean 1. At each step, the sampler generated a sequence
of 11 successes and failures. We kept only those samples in
which the first ten trials exactly matched the pattern of ac-
tivation for the given condition. The estimated probability
judgment is the proportion of these samples in which success
occurred on the 11th trial. For instance, in the probabilistic
condition, the predicted probability judgment is the number
of times [1 0 1 1 1 0 0 1 1 0 1] occurred, divided by the num-
ber of times that [1 0 1 1 1 0 0 1 1 0 1] and [1 0 1 1 1 0 0 1
1 0 0] occurred combined. The sampler ran until it generated
at least 10000 samples that matched the pattern of activation.

Results are shown in Figure 3. Note that the model predicts
a higher probability judgment in the probabilistic condition
than in the deterministic condition. Unlike the proportional
model, the inhibitor-based model is consistent with the pat-
tern of data observed in 4-year-olds.

We can interpret these results as follows: cases such as the
probabilistic condition, in which a highly variable sequence
is generated, tend to have high volatility. This means that a
failure is moderately likely given a failure. However, cases
like the deterministic condition, where a highly consistent se-
quence is generated, tend to have low volatility: a failure is
highly likely given a failure, since a success was highly likely
given a success. In other words, children should infer the con-
sistency of failures from the consistency of successes. This
should be true even in cases (such at the deterministic condi-
tion) when they have never seen a sequence of failures.

The model just presented is only the simplest version of the
hidden inhibitor model. We replicated the qualitative predic-
tions of this model in several more sophisticated versions of
the hidden inhibitor model. One included a model in which
a was re-sampled from a uniform distribution at each sam-
ple. In another case the sampler generated multiple inhibitors
(a number of inhibitors chosen randomly from Poisson(1) at
each sample) and success occurred only if every inhibitor was
off on a given trial. We also constructed a model that ex-
plicitly incorporated the intervention: one of the inhibitors
was randomly changed between the 9th and 10th trial (cor-
responding to the time we made the intervention in the ex-
periment). In each case, the prediction held: children should
be more likely to say “yes” in the probabilistic than in the

deterministic condition.
Readers familiar with the literature on randomness per-

ception (e.g. Oskarsson, Van Boven, McClelland, & Hastie,
2009) will notice parallels between the hidden inhibitor
model presented here, and models of randomness perception.
There is clearly overlap between the two fields: participants
in randomness perception experiments often perceive random
sequences as causal. While hidden Markov models are used
in randomness perception, we do not intend this inhibitor-
based model as a model of random sequence generation. The
inhibitor-based model is intended specifically as a model of
causal, not all random, events.

Overall, both classes of models are robustly and unani-
mously committed to a difference between the two condi-
tions, but in opposite directions. The class of proportional
models is committed to judgments that are at least as high
(and in most cases, higher) in the deterministic than in the
probabilistic condition. Conversely, the class of hidden in-
hibitor models is committed to judgments that are higher in
the probabilistic condition.

Discussion
Experimental results showed that 4-year-olds were more
likely to predict a failure given a consistent series of successes
followed by a failure, than in an otherwise identical condi-
tion in which some of the successes were replaced by failures.
Three-year-olds were not significantly different from chance
in either condition. Data from 3-year-olds were inconclusive,
because they could be consistent with weak and/or noisy ver-
sions of either model. Data from 4-year olds contradict the
predictions of proportional models, but are consistent with
hidden inhibitor models.

One possible objection to these conclusions is that we have
considered multiple causes of the same effect. That is, the
left and right lights are treated as the same cause for model-
ing purposes. To be sure that this did not bias our results and
predictions, we repeated the analysis using just the data from
the right light. We considered only the six trials on which
the right light was the cause, and ignored the three trials on
which the left light was used. Model predictions were qual-
itatively the same. Note that the experimental results are the
same as well – 4-year-old’s overall pattern of responding was
consistent with their responses to the first test question, which
referred to the right light.

An alternative explanation for these data uses a simpler
model than the one presented here: Children expect causal
relations to always hold, unless a human being intervenes on
an inhibitor. Children may have guessed in the probabilis-
tic condition, because they were baffled when the relation
failed without apparent intervention. While this explanation
is simpler, and explains the data, we believe that it is at odds
with other considerations about children’s causal reasoning.
For instance, children are exposed to toys that fail sometimes
without human intervention: batteries run out, weather con-
ditions affect television reception, etc. For this reason, we
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endorse a more sophisticated model that involves volatility,
like the one presented here.

The developmental difference was unexpected, but inter-
esting. Why do 3-year-olds respond differently from 4-
year-olds? Because 3-year-olds did not show significantly
more “yes” responses than chance would predict, we can-
not use a yes-bias to explain the data. Furthermore, three-
year-olds were able to readily overcome any yes-bias when
this paradigm was used in other experiments. For instance,
Buchanan and Sobel (2010) observed a significant number of
“no” answers from 3-year-olds using the same set of three
lights, in the same arrangement, in a different experiment.

One possibility is that differences in memory and process-
ing capacity are responsible for the developmental difference.
For instance, 3-year-olds may have lost track of the pattern
of successes and failures, and simply guessed. Further work
could test this explanation, by presenting children with a vi-
sual representation of the pattern of successes and failures, or
by using a shorter sequence. At present, there is insufficient
data to rule out this explanation.

Finally, it could be that 4-year-olds are more likely to rep-
resent hidden inhibitors than 3-year-olds. This is broadly
consistent with a number of studies that suggest develop-
mental differences exist between 3- and 4-year-olds in their
understanding of causal mechanisms (Buchanan & Sobel, in
press; Bullock, Gelman, & Baillargeon, 1982) and the rela-
tion of causal properties to hidden internal properties (Sobel,
Yoachim, Gopnik, Meltzoff, & Blumenthal, 2007). As far as
we know, the present experiment is the first to show a de-
velopmental difference in positing the presence of hidden in-
hibitors. Further experiments are needed before we can spec-
ulate about the exact cause and nature of the developmental
difference.

Even outside of developmental considerations, these data
and model present a challenge for theories of how human be-
ings represent causal relations. Partly because of their sim-
plicity, proportional approaches to causal strength have per-
sisted through several generations of models. They are used
in most associative, causal power, and some Bayesian models
of causal representation. The present data suggest that even
young children may use a more complex representation of
causality, at least in some cases. If these results can be repli-
cated and extended, then they may form the basis of improved
models. Elsewhere (Buchanan, Tenenbaum, & Sobel, 2010)
we present one way of incorporating hidden inhibitors into a
Bayesian framework. We expect that inhibitor-based models
could be incorporated into multiple modeling paradigms.

If inhibitor-based models are necessary when modeling
causal relations, this may have theoretical implications for
causal reasoning in general. For instance, people may be mo-
tivated to represent inhibitors because of an implicit deter-
minism (Schulz & Sommerville, 2006): causal relations are
never intrinsically random, so variability must be the result
of hidden causes. Furthermore, if people represent hidden in-
hibitors, they may represent causal mechanisms – the events

that happen between cause and effect – in more detail than
some theories currently acknowledge (for a discussion, see
Ahn, Kalish, Medin, & Gelman, 1995). Further work will
explore theoretical connections to these questions.
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