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Abstract

How does the mind coordinate local and global features of a
display to allow for adaptive functioning? To answer this
question, we presented adults with a speeded categorization
task in which they had to decide whether two stimuli match in
a local element, in their global pattern, or in neither the local
nor the global feature. The trial series of reaction times were
then subjected to fractal analyses to capture the coordination
that gives rise to performance. The assumption is that long-
range correlations reveal themselves in pink-noise exponents,
ones that are higher than white-noises exponents. To
investigate the stability of fractal exponent, we manipulated
both the local elements (to be either familiar or novel), and
the order of trials (to be either random or blocked). Results
show a significant deviation from white-noise, but only in
familiar-elements condition in which trials were presented

randomly. Implications for local/global research are
discussed.
Keywords: visual processing; categorization; spectral

analysis, detrended fluctuation analysis; pink noise.

Introduction

How does the mind make senses of an ever changing array
of light? This question has a long history, often addressed
under the framework of local and global processing (e.g.,
Kimchi, 1990; Kimchi, Hadad, Behrmann, & Palmer, 2005;
Kdohler, 1969; Quinn, Burke & Rush, 1993). Indeed, a scene
could be loosely divided into local elements and global
patterns. And adaptive functioning needs both: the ability to
integrate local elements into higher-order Gestalts, and the
ability to segregate higher-order Gestalts into their
component parts. In fact, processes of integration most
likely must be coordinated fluidly with processes of
segregation. The current paper is concerned with the
question of this coordination. We first give a brief review of

findings on local/global processing, and then we turn to
describing a method of measuring this coordination.

Local & Global Processing

Traditionally, the emphasis has been on determining how
attention to local aspects competes with the perception of
global aspects, whether the stimuli pertain to faces, arbitrary
items, or entire scenes. Navon’s (1977) well-known task is a
good illustration of this emphasis. Stimuli involved small
letters arranged spatially in such a way that they form a
larger letter. The element letters either matched the Gestalt
letter or not. And the task was to name a letter (either the
element letter or the Gestalt letter) as fast as possible. The
general finding suggests an asymmetry in competition:
Perception of Gestalt features appears to interfere more with
the perception of elemental features than vice versa.
Consistent with the laws of perception outlined by Gestalt
psychology, the organization of whole entities apparently
takes priority over the separation into isolated elements.
While subsequent research has supported the general
finding of unidirectional competition between global and
local processes (Dukette & Stiles, 1996; 2001), the issue
might be more complex. Kimchi and her colleagues, for
example, showed that the priority of global processes
depends on the specific details of the stimuli used. When
items consist of few elements (e.g., four triangles spatially
arranged to form a square), the global preference disappears
(e.g., Kimchi, 1990; Kimchi et al, 2005). It is only when
items consist of many elements (e.g., twelve triangles
spatially arranged to form a square) that global patterns take
precedence. This pattern of findings was demonstrated in
adults as well as children as young as 5 years of age; and it
was replicated in speeded classification tasks, matching
tasks, or visual searching task (Burack, Enns, larocci, &
Randolph, 2000; Enns & Girgus, 1985). Together, these
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findings provide a first indication that local and global
processing are coordinated with the specifics of the task
context.

Further indication for a coordinated interaction between
local and global processes comes from findings with young
infants (Quinn et al, 1993). In a habituation task, infants
were first familiarized with geometrical shapes that
consisted of elements that formed higher-order Gestalts.
While participants dishabituated to changes in the higher-
order Gestalt, they were surprisingly sensitive to relatively
minimal changes in local elements. In fact, perceiving
elements was enhanced in the context of an organized whole
(see Experiment 4 of Quinn et al, 1993). These findings
suggest an intricate interdependence among attention to
local and global features, one in which the perception of
higher-order Gestalts highlights local elements that — in turn
— make up the higher-order Gestalt.

Despite isolated findings on the interplay between local
and global processing, the methods commonly employed in
this domain do not lend themselves to explicitly measuring
coordination. This is because the choice of stimuli is likely
to bias the perceptual system to focus either on local
elements (e.g., when the elements highly salient) or on
global patterns (e.g., when small elements form highly
salient patterns). Such methods are ideal to measure possible
interferences of hierarchical scales, but they might miss the
adaptive coordination that takes place when scales of
hierarchical organizations interact. We therefore turn to a
different method, one that can gauge a possible coordination
among the many nested levels of order.

Coordination across Scales

Changes in the mind-body system happen at different rates
or scales. The metabolic activity in a motor cell, for
example, is a process changing on very fast timescales; and
the overt movement of eyes is an example of a process
changing on a slower time scale. For adaptive and flexible
performance to be possible, no single timescale can
dominate coordination. Instead the system has to maintain a
balance between competing and cooperating changes in a
flexible coupling across the body. Similarly, the focus of
attention is likely to change on multiple time scales: For
example, paying attention to local elements of a display
necessarily needs to change on a fast timescale (to track
small changes in shape, texture, or color), while paying
attention to more global patterns of a display needs to
change on slower timescales. Are these different timescales
coordinated?

Coordination of smaller and larger timescales can be
studied by looking at long-term correlational patterns across
many trials, a mathematical constructs named fractals (e.g.,
Van Orden, Holden & Turvey, 2003; for a different view
Hausdorff & Peng, 1996; Peng, Havlin, Stanley, &
Goldberger, 1995). Fractals represent self-similar structures
with functional and topographical features that are
reproduced in miniature on finer and finer scales (e.g.,
Brown & Liebovitch, 2010; Gilden, 2001; Kello, & Van

Orden, 2009; Kloos & Van Orden, 2010). They provide a
potentially useful way of gauging the coordination among
different time scales. The necessary ingredient is a task that
produces a sufficiently long trial series. Figure 1 shows such
a trial series, one that has over 8000 data points (top right).
To determine the fractal exponent, the trial series is then
decomposed into sinusoidal components of different
wavelength. Slow changes in the data series are captured by
low-frequency high-amplitude sine waves (top left of Fig.
1), and fast changes are captured by high-frequency low-
amplitude waves (bottom left of Fig. 1). A power spectrum
is then constructed, with relative amplitude on the vertical
axis, and frequency of change on the horizontal axis (on log-
log scales). The amplitude represents the relative size of
change, also referred to as power. The slope of the
regression line in the spectral plot defines the scaling
relation between amplitude and frequency. The estimated
exponent (o) reflects the degree of long-range correlations
across the different time scales.
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Figure 1: Illustration of the creation of a spectral plot
(bottom right) for a time series (top right) that shows pink-
noise type long-range correlations.

A multitude of tasks have been subjected to fractal
analyses (e.g., Gilden, 2001; Kello & Van Orden, 2009;
Mcllhagga, 2008; Van Orden, Holden & Turvey, 2005),
including motor tasks (e.g., walking, standing, tapping,
tracing, or sensori-motor synchronization), perceptual tasks
(e.g., Necker-cube task; visual search), or cognitive tasks
(e.g., word recognition, speeded categorization, speech
production time estimation; mental rotation). However,
there has been little research on the coordination of attention
to local and global aspects of stimuli.

At the same time, fractal exponents are susceptible to task
manipulations. For example, by introducing changes in the
inter-stimulus-interval in simple reaction tasks, the slope
decreased in magnitude, reflective of added randomness in
the mind-body system (Holden, Choi, Amazeen, & Van
Orden, 2010). In other words, fractal exponents — while
illustrative of the system’s coordination might need to be
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interpreted in the context of a specific task. We therefore
introduced a set of task manipulations to explore changes in
the fractal scaling exponent.

Overview of Current Study

Using insights from fractal analyses, the goal of the
current study was to measure the long-range correlation in a
task that pits local and global features against each other.
Stimuli were created that varied in both local elements and
global structure. However, unlike traditional local/global
stimuli, we used few-elements displays, analogous to a
subset of stimuli used in Kimchi et al (2005). This was done
to avoid large salience discrepancies between local elements
and global patters, and thus to mimic the ecological task of
navigating complex natural scenes that vary on multiple
hierarchical scales.

The task was to decide as quickly as possible whether two
stimuli matched in a local element, in the global pattern or
in none of the two. Trials differed in whether there was a
local match, a global match, or neither. Furthermore, we
varied the nature of elements to be either familiar or novel
to gauge possible changes in the fractal exponent. Familiar
elements were letters, and novel elements were tetragons
with various details in their lines. The global pattern was the
same in both cases and pertained to the overall shape
formed by the elements. We predicted a higher fractal
organization in the case of familiar elements, based on
findings that expertise increased the likelihood of long-
range correlations (e.g., Wijnants, Bosman, Hasselman,
Cox, & Van Orden, 2009). Finally, we varied the order of
trials to be either random or blocked to investigate changes
in fractal parameters as a function of an external
interference. Previous research had shown that fractal values
had been very close pink noise if items were self-paced
without any interference or noise (Holden, Choi, Amazeen,
& Van Orden, 2010). The resulting four conditions
(Random Letter, Random Tetragon; Blocked Letter; and
Blocked Tetragon) were varied between participants.

Method

Participants

Seventy undergraduate students served as participants to
fulfill a course requirement. They ranged in age from 18 to
47 years (M = 21.4, SD = 6.1), and participated in one of the
four conditions (Ns = 26, 25, 8, and 11 in Random-Letter,
Blocked-Letter, Random-Tetragon, and Blocked-Tetragon
condition respectively'). An additional group of 14
participants was tested and dropped from the final sample
because of technical errors (3), or because their overall
accuracy was below 75%, suggesting that they did not
perform according to task instructions (11).

! Due to the unequal N between letter conditions and tetragon
conditions, comparisons on this factor are interpreted with caution.

Materials

Stimuli were strings of three elements. Elements were either
letters or tetragons, arranged horizontally. Figure 2 shows
some examples of those strings. Letters were 12 lower-case
consonants printed on a red background. Four letters (c, s, X,
z) had the contour of a square, another four letters (p, g, g,
y) had the contour of a low-reaching rectangle, and another
four letters (b, h, f, I) had the contour of a high-reaching
rectangle. Similarly, four of the tetragons were squares,
another four tetragons were low-reaching rectangles, and
another four tetragons were high-reaching rectangles. Each
of the resulting 12 tetragons was unique on the basis of their
sides (thickness, patterns, etc.).

Strings were combined into pairs, such that the two
strings matched in an element (element-match trial) or in
their overall shape across the three elements of a string
(shape-match trial). Filler items were pairs of strings that
matched neither in an element nor in the overall shape (no-
match trials).
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Figure 2: Examples of trials depicting pairs of strings.
Elements in a string were letters (Panels A-C)
or tetragons (Panels D-F). And strings matched in
a single element (Panels A and D), in their
global shape (Panels B and E), or be a filler item
with no-match (Panels C and F).

Implementing an iterative process, we created 400 unique
shape-match trials, 400 unique element-match trials, and
200 no-match trials. Care was taken to ensure that an
element appeared equally often in the left and right string of
a pair.

Procedure

Participants were tested individually, using Superlab®
software (Version 2.0) on a Dell Computer (Intel Core Duo
processor of 2.40 GHz; 1.58 GHz; 2.96 GB RAM memory).
The instruction was to decide as quickly and as accurately
as possible whether two strings matched in overall shape, in
a single element (either letter or tetragon, depending on
condition), or in neither. The experiment started
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immediately after instruction phase and a training phase. For
each slide, reaction time and response was recorded.

In the two random-order conditions (one for letters and
one for tetragons), the three types of trials (element-match
shape-match, or no-match) were presented randomly, with
the following constraints: The first 400 trials had 160
element-match trials, 160 shape-match trials and 80 no-
match trials. The next set of 400 trials had the same
distribution of trial types. And the last 200 trials had 80
element-match trials, 80 shape-match trials, and 40 no-
match trials. Participants were allowed to take a break after
the first 400 trials, and then again after the next 400 trials.

For the two blocked-order conditions, the order of trials
was pre-determined according to a sequential pattern, while
keeping the same frequency distribution of trials before and
after the two breaks. In particular, there were three
sequences of trials that were repeated in a set way. The first
sequence consisted of one no-match trial, two shape-match
trials, and two element-match trials. In short, this sequence
can be abbreviated as N-S-S-E-E. The second sequence had
the form N-N-S-S-S-S-E-E-E-E, and the third sequence had
the form N-N-N-S-S-S-S-S-S-E-E-E-E-E-E. Each sequence
was repeated five or six times (depending on block), after
with the next sequence started. After the third sequence, the
first one started again, and so on.

Data Preparation and Analyses

For each participant, we eliminated reaction times greater
than 10 seconds and smaller than 300 milliseconds. We then
submitted the time series to a process of eliminating linear
trends (Holden, 2005; Holden, Choi, Amazeen, & Van
Orden, 2010). Between 2% and 9% of the trials were
eliminated with this procedure per participant. In all cases
the prepared data were analyzed by Detrended Fluctuation
Analysis and Spectral Analysis.

Detrended Fluctuation Analysis (DFA) provides an index
of self-similarity of time series with itself over time and
information equivalent to the correlation dimension. This
index is called Hurst’s exponent [H], and it is estimated by
dividing the logarithm of the range of amplitudes
normalized by the logarithm of the intervals. H = 0.50
indicates randomness of the signal of white noise; whereas
H > 0.50 are indicative of long-range correlations of pink
noise (Eke, Hermén, Kocsis & Kozak, 2002; Peng et al.,
1995).

Spectral Analysis (SA) provides a description of the
correlational structure of fluctuations in a time series of
response. The result is a set of coefficients that characterize
the relative amplitudes of all the wave forms, ordered from
lowest to highest frequency, named the power spectrum of
the signal. Using this power spectrum it is possible to
determine the value of the slope of the regression line.
Response time series yield negatively accelerated slopes
indicative of pink noise, or slopes that are statistically
equivalent to zero, which suggests white noise (Holden,
2005). Following custom procedures, the spectral-analysis
exponent was estimated for the data across 25% of the

spectrum. Once estimated the slope for each participant, the
obtained value is multiplied by [-1], in order to transform it
into a positive alpha exponent.

Results

Accuracy and Reaction Times Analyses

Table 1 shows mean accuracy and mean reaction time for
each trial type, separated by order of trials (random vs.
blocked) and element type (familiar letter vs. novel
tetragon). Two mixed-design 2 x 2 x 3 ANOVAs were
conducted, one for accuracy and one for reaction time, with
order and element type as between-group factors, and trial
type as within-group factor. Even thought there was very
high overall accuracy, there was a significant triple-
interaction effect, F (1, 66) = 6.62, p = .01, npz =.09. Post-
hoc analyses show that mean accuracy was lowest for
element-match trials, compared to shape-match and no-
match trials (ps < .001). Order of trials affected accuracy
only in the tetragon conditions, where accuracy was
significantly lower in the random vs. the blocked order (p <
.01).

Table 1: Mean proportion of correct answers (in %) and
reaction time (in ms) for each experimental condition, with
standard errors in parenthesis.

Order of Trials
Random Blocked
Familiar Element (Letter)
Trial Type
Element Match 92% (0.9) 91% (1.4)
2318 ms (87) 1850 ms (72)
Shape Match 96% (0.7) 96%

2473 ms(195) 1316 ms (104)

No Match 96% (0.5) 95% (0.6)
3886 ms (185) 2932 ms (124)
Novel Element (Tetragon)
Element Match 84% (5.2) 90% (1.2)
2646 ms (100) 2210 ms (165)
Shape Match 95% (0.7) 95% (1.3)

2615 ms (185) 1809 ms (236)

No Match 96% (1.3)

3906 ms (214)

96% (2.5)
3603 ms (226)

For reaction time, we found a significant order x trial type
interaction, F (1, 66) = 11.62, p = .001, npz = .15. Post-hoc
analyses indicated the participants were faster in the blocked
order than the random order (p < .001). And they took
longer on no-match trials than on shape-match or element-
match trials (ps < .001). Reaction times were similar
between shape-match and element-match trials, but more so
when the trials were administered randomly. When they
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were administered in blocked form, performance on shape-
match trials was faster than on element-match trials (p <
.01).

Fractal Analyses

Figure 3 shows the mean Hurst’s coefficients estimated by
DFA, separated by trial order and type of elements.
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Figure 3: Mean Hurst’s Coefficient for each condition,
obtained through a Detrended Fluctuation Analysis. Error
bars display standard errors, and the vertical line illustrates
the exponent for ideal white noise.

A 2 by 2 between-subject ANOVA revealed a marginally
significant main effect of order, which a higher average
exponent in the random order than the blocked order, F (1,
66) = 3.41, p = 0.069. Using a series of t-tests, we compared
the H values of each experimental condition with the
reference value of H = .50 (white noise). The only condition
that had an exponent significantly different from white noise
was the random-letter condition, t (25) = 6.41; p < .001,;
whereas the others conditions were not different from white
noise, ts < 2; ps > .009.
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Figure 4: Mean scaling exponent alpha, estimated with a
spectral analysis (SA) at 25% of the spectrum, separated by
experimental condition. Error bars display standard errors.
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Figure 4 shows alpha values from a spectral analysis that
was estimated with a 25% spectrum. A 2 by 2 ANOVA
revealed a main effect of order, F (1, 66) = 12.69, p = .001,
rypz = .16, with random-presentation conditions yielding a
higher alpha coefficients than the blocked-presentation
conditions. There was no effect of trial type, nor a
significant interaction, p > .58. As was done with DFA, we
compared the mean exponent of each condition against the
reference value of white noise [a = 0]. Only the random-
letter condition had an exponent that was significantly
higher than white noise, t (25) = 5.03; p < .001; whereas the
others conditions were not different, ts < 1.953; ps > .10
In concordance with previous analysis, the random-letter
condition is the only one that had an alpha exponent
different from a random pattern.

Discussion

Our research was aimed at obtaining a measure of
coordination between what were traditionally considered
two separate processes: the process of segregating
information into local details, and the process of integrating
information into larger patterns of Gestalt. Our general
assumption was that attention fluctuates on various scales,
the fastest scale being attention to the most local elements,
and a slower scale being attention to larger patterns. These
scales need to be coordinated for adaptive functioning to
take place, such that the perceiver can quickly adjust to
miniscule changes as needed (cf., Kloos & Van Orden,
2010). Using methods of fractal analysis, we tested this
hypothesis in a task in which participants has to determine
whether two stimuli matched in local element, global
Gestalt, or neither of the two.

Findings confirm our hypothesis in the case in which
when elements were sufficiently familiar to the perceivers
and trials were presented with as little outside interference
as possible. More specifically, we applied two time-series
analyses, the detrended fluctuation analysis and the spectral
analysis, to a time series of reaction times that resulted from
the speeded-categorization task. Results of the two analyses
converge in that the fractal exponent significantly departed
from random white noise when the task involved familiar
elements (letters) and trials were presented in random order.
In this case, the fractal exponent pointed in the direction of
pink noise, which reflects a kind of coordination that is
neither too regular nor too random. It is the exponent that
indicates long-range correlations across the various scales of
change and as such it demonstrates an ideal coordination
(Van Orden, Holden & Turvey, 2005).

When local elements of our experimental display were
novel to the perceiver (i.e., unfamiliar shapes that differed in
the details of their lines), level of coordination dropped. The

2 When the spectral analysis was conducted across 100% of the
spectrum, the blocked-order condition had far higher exponents
than the random-order condition. However, upon inspecting the
power spectrum more closely, its distribution was not typical of a
pink-noise distribution. The 25% spectrum therefore yields a more
reliable measure of long-range correlations.
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novelty of the elements most likely decreased their salience,
and therefore increasing the salience of the higher-order
Gestalts. This discrepancy in salience might have interfered
with an attempt to coordinate the local and global processes.
Similarly, when the trials were presented in a blocked order
— thus providing some outside support for task performance,
levels of coordination dropped. In each case, the obtained
fractal exponent approached that of random white noise.
These findings suggest that the local-global coordination is
intertwined with the details of the task, showing ideal long-
range correlation only when local and global patterns have
similar salience, which outside interference is kept minimal.

Taken together, we were able to provide evidence of long-
range correlations in a speeded categorization task in which
local and global processes were pitted against each other. To
our knowledge, this is the first of such attempts, with an
important implication. Rather than treating local and global
processes as separable and interfering forces, our results
show an inherent coordination among these levels of
attention — a coordination that is affected by task
constraints. When experimental stimuli are such that one
scale is much more salient than the others, this adaptive
coordination would remain hidden from the eye of the
researcher.
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