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Abstract 

How does the mind coordinate local and global features of a 
display to allow for adaptive functioning? To answer this 
question, we presented adults with a speeded categorization 
task in which they had to decide whether two stimuli match in 
a local element, in their global pattern, or in neither the local 
nor the global feature. The trial series of reaction times were 
then subjected to fractal analyses to capture the coordination 
that gives rise to performance. The assumption is that long-
range correlations reveal themselves in pink-noise exponents, 
ones that are higher than white-noises exponents. To 
investigate the stability of fractal exponent, we manipulated 
both the local elements (to be either familiar or novel), and 
the order of trials (to be either random or blocked). Results 
show a significant deviation from white-noise, but only in 
familiar-elements condition in which trials were presented 
randomly. Implications for local/global research are 
discussed.  

Keywords: visual processing; categorization; spectral 
analysis, detrended fluctuation analysis; pink noise. 

Introduction 

How does the mind make senses of an ever changing array 

of light? This question has a long history, often addressed 

under the framework of local and global processing (e.g., 

Kimchi, 1990; Kimchi, Hadad, Behrmann, & Palmer, 2005; 

Köhler, 1969; Quinn, Burke & Rush, 1993). Indeed, a scene 

could be loosely divided into local elements and global 

patterns. And adaptive functioning needs both: the ability to 

integrate local elements into higher-order Gestalts, and the 

ability to segregate higher-order Gestalts into their 

component parts. In fact, processes of integration most 

likely must be coordinated fluidly with processes of 

segregation. The current paper is concerned with the 

question of this coordination. We first give a brief review of 

findings on local/global processing, and then we turn to 

describing a method of measuring this coordination.  

Local & Global Processing 

Traditionally, the emphasis has been on determining how 

attention to local aspects competes with the perception of 

global aspects, whether the stimuli pertain to faces, arbitrary 

items, or entire scenes. Navon’s (1977) well-known task is a 

good illustration of this emphasis. Stimuli involved small 

letters arranged spatially in such a way that they form a 

larger letter. The element letters either matched the Gestalt 

letter or not. And the task was to name a letter (either the 

element letter or the Gestalt letter) as fast as possible. The 

general finding suggests an asymmetry in competition: 

Perception of Gestalt features appears to interfere more with 

the perception of elemental features than vice versa. 

Consistent with the laws of perception outlined by Gestalt 

psychology, the organization of whole entities apparently 

takes priority over the separation into isolated elements.  

While subsequent research has supported the general 

finding of unidirectional competition between global and 

local processes (Dukette & Stiles, 1996; 2001), the issue 

might be more complex. Kimchi and her colleagues, for 

example, showed that the priority of global processes 

depends on the specific details of the stimuli used. When 

items consist of few elements (e.g., four triangles spatially 

arranged to form a square), the global preference disappears 

(e.g., Kimchi, 1990; Kimchi et al, 2005). It is only when 

items consist of many elements (e.g., twelve triangles 

spatially arranged to form a square) that global patterns take 

precedence. This pattern of findings was demonstrated in 

adults as well as children as young as 5 years of age; and it 

was replicated in speeded classification tasks, matching 

tasks, or visual searching task (Burack, Enns, Iarocci, & 

Randolph, 2000; Enns & Girgus, 1985). Together, these 
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findings provide a first indication that local and global 

processing are coordinated with the specifics of the task 

context. 

Further indication for a coordinated interaction between 

local and global processes comes from findings with young 

infants (Quinn et al, 1993). In a habituation task, infants 

were first familiarized with geometrical shapes that 

consisted of elements that formed higher-order Gestalts. 

While participants dishabituated to changes in the higher-

order Gestalt, they were surprisingly sensitive to relatively 

minimal changes in local elements. In fact, perceiving 

elements was enhanced in the context of an organized whole 

(see Experiment 4 of Quinn et al, 1993). These findings 

suggest an intricate interdependence among attention to 

local and global features, one in which the perception of 

higher-order Gestalts highlights local elements that – in turn 

– make up the higher-order Gestalt. 

Despite isolated findings on the interplay between local 

and global processing, the methods commonly employed in 

this domain do not lend themselves to explicitly measuring 

coordination. This is because the choice of stimuli is likely 

to bias the perceptual system to focus either on local 

elements (e.g., when the elements highly salient) or on 

global patterns (e.g., when small elements form highly 

salient patterns). Such methods are ideal to measure possible 

interferences of hierarchical scales, but they might miss the 

adaptive coordination that takes place when scales of 

hierarchical organizations interact. We therefore turn to a 

different method, one that can gauge a possible coordination 

among the many nested levels of order.  

Coordination across Scales 

Changes in the mind-body system happen at different rates 

or scales. The metabolic activity in a motor cell, for 

example, is a process changing on very fast timescales; and 

the overt movement of eyes is an example of a process 

changing on a slower time scale. For adaptive and flexible 

performance to be possible, no single timescale can 

dominate coordination. Instead the system has to maintain a 

balance between competing and cooperating changes in a 

flexible coupling across the body. Similarly, the focus of 

attention is likely to change on multiple time scales: For 

example, paying attention to local elements of a display 

necessarily needs to change on a fast timescale (to track 

small changes in shape, texture, or color), while paying 

attention to more global patterns of a display needs to 

change on slower timescales. Are these different timescales 

coordinated?  

Coordination of smaller and larger timescales can be 

studied by looking at long-term correlational patterns across 

many trials, a mathematical constructs named fractals (e.g., 

Van Orden, Holden & Turvey, 2003; for a different view 

Hausdorff & Peng, 1996; Peng, Havlin, Stanley, & 

Goldberger, 1995). Fractals represent self-similar structures 

with functional and topographical features that are 

reproduced in miniature on finer and finer scales (e.g., 

Brown & Liebovitch, 2010; Gilden, 2001; Kello, & Van 

Orden, 2009; Kloos & Van Orden, 2010). They provide a 

potentially useful way of gauging the coordination among 

different time scales. The necessary ingredient is a task that 

produces a sufficiently long trial series. Figure 1 shows such 

a trial series, one that has over 8000 data points (top right). 

To determine the fractal exponent, the trial series is then 

decomposed into sinusoidal components of different 

wavelength. Slow changes in the data series are captured by 

low-frequency high-amplitude sine waves (top left of Fig. 

1), and fast changes are captured by high-frequency low-

amplitude waves (bottom left of Fig. 1). A power spectrum 

is then constructed, with relative amplitude on the vertical 

axis, and frequency of change on the horizontal axis (on log-

log scales). The amplitude represents the relative size of 

change, also referred to as power. The slope of the 

regression line in the spectral plot defines the scaling 

relation between amplitude and frequency. The estimated 

exponent () reflects the degree of long-range correlations 

across the different time scales. 

 

 
Figure 1: Illustration of the creation of a spectral plot 

(bottom right) for a time series (top right) that shows pink-

noise type long-range correlations. 

 

A multitude of tasks have been subjected to fractal 

analyses (e.g., Gilden, 2001; Kello & Van Orden, 2009; 

McIlhagga, 2008; Van Orden, Holden & Turvey, 2005), 

including motor tasks (e.g., walking, standing, tapping, 

tracing, or sensori-motor synchronization), perceptual tasks 

(e.g., Necker-cube task; visual search), or cognitive tasks 

(e.g., word recognition, speeded categorization, speech 

production time estimation; mental rotation). However, 

there has been little research on the coordination of attention 

to local and global aspects of stimuli.  

At the same time, fractal exponents are susceptible to task 

manipulations. For example, by introducing changes in the 

inter-stimulus-interval in simple reaction tasks, the slope 

decreased in magnitude, reflective of added randomness in 

the mind-body system (Holden, Choi, Amazeen, & Van 

Orden, 2010). In other words, fractal exponents – while 

illustrative of the system’s coordination might need to be 
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interpreted in the context of a specific task. We therefore 

introduced a set of task manipulations to explore changes in 

the fractal scaling exponent. 

Overview of Current Study 

Using insights from fractal analyses, the goal of the 

current study was to measure the long-range correlation in a 

task that pits local and global features against each other. 

Stimuli were created that varied in both local elements and 

global structure. However, unlike traditional local/global 

stimuli, we used few-elements displays, analogous to a 

subset of stimuli used in Kimchi et al (2005). This was done 

to avoid large salience discrepancies between local elements 

and global patters, and thus to mimic the ecological task of 

navigating complex natural scenes that vary on multiple 

hierarchical scales.  

The task was to decide as quickly as possible whether two 

stimuli matched in a local element, in the global pattern or 

in none of the two. Trials differed in whether there was a 

local match, a global match, or neither. Furthermore, we 

varied the nature of elements to be either familiar or novel 

to gauge possible changes in the fractal exponent. Familiar 

elements were letters, and novel elements were tetragons 

with various details in their lines. The global pattern was the 

same in both cases and pertained to the overall shape 

formed by the elements. We predicted a higher fractal 

organization in the case of familiar elements, based on 

findings that expertise increased the likelihood of long-

range correlations (e.g., Wijnants, Bosman, Hasselman, 

Cox, & Van Orden, 2009). Finally, we varied the order of 

trials to be either random or blocked to investigate changes 

in fractal parameters as a function of an external 

interference. Previous research had shown that fractal values 

had been very close pink noise if items were self-paced 

without any interference or noise (Holden, Choi, Amazeen, 

& Van Orden, 2010). The resulting four conditions 

(Random Letter, Random Tetragon; Blocked Letter; and 

Blocked Tetragon) were varied between participants. 

Method 

Participants 

Seventy undergraduate students served as participants to 

fulfill a course requirement. They ranged in age from 18 to 

47 years (M = 21.4, SD = 6.1), and participated in one of the 

four conditions (Ns = 26, 25, 8, and 11 in Random-Letter, 

Blocked-Letter, Random-Tetragon, and Blocked-Tetragon 

condition respectively
1
). An additional group of 14 

participants was tested and dropped from the final sample 

because of technical errors (3), or because their overall 

accuracy was below 75%, suggesting that they did not 

perform according to task instructions (11).  

                                                           
1 Due to the unequal N between letter conditions and tetragon 

conditions, comparisons on this factor are interpreted with caution.  

Materials 

Stimuli were strings of three elements. Elements were either 

letters or tetragons, arranged horizontally. Figure 2 shows 

some examples of those strings. Letters were 12 lower-case 

consonants printed on a red background. Four letters (c, s, x, 

z) had the contour of a square, another four letters (p, q, g, 

y) had the contour of a low-reaching rectangle, and another 

four letters (b, h, f, l) had the contour of a high-reaching 

rectangle. Similarly, four of the tetragons were squares, 

another four tetragons were low-reaching rectangles, and 

another four tetragons were high-reaching rectangles. Each 

of the resulting 12 tetragons was unique on the basis of their 

sides (thickness, patterns, etc.).  

Strings were combined into pairs, such that the two 

strings matched in an element (element-match trial) or in 

their overall shape across the three elements of a string 

(shape-match trial). Filler items were pairs of strings that 

matched neither in an element nor in the overall shape (no-

match trials).  

 
 

Figure 2: Examples of trials depicting pairs of strings. 

Elements in a string were letters (Panels A-C)  

or tetragons (Panels D-F). And strings matched in  

a single element (Panels A and D), in their  

global shape (Panels B and E), or be a filler item  

with no-match (Panels C and F).  

 

Implementing an iterative process, we created 400 unique 

shape-match trials, 400 unique element-match trials, and 

200 no-match trials. Care was taken to ensure that an 

element appeared equally often in the left and right string of 

a pair.  

Procedure  

Participants were tested individually, using Superlab® 

software (Version 2.0) on a Dell Computer (Intel Core Duo 

processor of 2.40 GHz; 1.58 GHz; 2.96 GB RAM memory). 

The instruction was to decide as quickly and as accurately 

as possible whether two strings matched in overall shape, in 

a single element (either letter or tetragon, depending on 

condition), or in neither. The experiment started 

A

D E F

B C
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immediately after instruction phase and a training phase. For 

each slide, reaction time and response was recorded.  

In the two random-order conditions (one for letters and 

one for tetragons), the three types of trials (element-match 

shape-match, or no-match) were presented randomly, with 

the following constraints: The first 400 trials had 160 

element-match trials, 160 shape-match trials and 80 no-

match trials. The next set of 400 trials had the same 

distribution of trial types. And the last 200 trials had 80 

element-match trials, 80 shape-match trials, and 40 no-

match trials. Participants were allowed to take a break after 

the first 400 trials, and then again after the next 400 trials. 

For the two blocked-order conditions, the order of trials 

was pre-determined according to a sequential pattern, while 

keeping the same frequency distribution of trials before and 

after the two breaks. In particular, there were three 

sequences of trials that were repeated in a set way. The first 

sequence consisted of one no-match trial, two shape-match 

trials, and two element-match trials. In short, this sequence 

can be abbreviated as N-S-S-E-E. The second sequence had 

the form N-N-S-S-S-S-E-E-E-E, and the third sequence had 

the form N-N-N-S-S-S-S-S-S-E-E-E-E-E-E. Each sequence 

was repeated five or six times (depending on block), after 

with the next sequence started. After the third sequence, the 

first one started again, and so on. 

Data Preparation and Analyses  

For each participant, we eliminated reaction times greater 

than 10 seconds and smaller than 300 milliseconds. We then 

submitted the time series to a process of eliminating linear 

trends (Holden, 2005; Holden, Choi, Amazeen, & Van 

Orden, 2010). Between 2% and 9% of the trials were 

eliminated with this procedure per participant. In all cases 

the prepared data were analyzed by Detrended Fluctuation 

Analysis and Spectral Analysis. 

Detrended Fluctuation Analysis (DFA) provides an index 

of self-similarity of time series with itself over time and 

information equivalent to the correlation dimension. This 

index is called Hurst’s exponent [H], and it is estimated by 

dividing the logarithm of the range of amplitudes 

normalized by the logarithm of the intervals. H = 0.50 

indicates randomness of the signal of white noise; whereas 

H > 0.50 are indicative of long-range correlations of pink 

noise (Eke, Hermán, Kocsis & Kozak, 2002; Peng et al., 

1995). 

Spectral Analysis (SA) provides a description of the 

correlational structure of fluctuations in a time series of 

response. The result is a set of coefficients that characterize 

the relative amplitudes of all the wave forms, ordered from 

lowest to highest frequency, named the power spectrum of 

the signal. Using this power spectrum it is possible to 

determine the value of the slope of the regression line. 

Response time series yield negatively accelerated slopes 

indicative of pink noise, or slopes that are statistically 

equivalent to zero, which suggests white noise (Holden, 

2005). Following custom procedures, the spectral-analysis 

exponent was estimated for the data across 25% of the 

spectrum. Once estimated the slope for each participant, the 

obtained value is multiplied by [-1], in order to transform it 

into a positive alpha exponent.  

Results 

Accuracy and Reaction Times Analyses 

Table 1 shows mean accuracy and mean reaction time for 

each trial type, separated by order of trials (random vs. 

blocked) and element type (familiar letter vs. novel 

tetragon). Two mixed-design 2 x 2 x 3 ANOVAs were 

conducted, one for accuracy and one for reaction time, with 

order and element type as between-group factors, and trial 

type as within-group factor. Even thought there was very 

high overall accuracy, there was a significant triple-

interaction effect, F (1, 66) = 6.62, p = .01, p
2
 = .09. Post-

hoc analyses show that mean accuracy was lowest for 

element-match trials, compared to shape-match and no-

match trials (ps < .001). Order of trials affected accuracy 

only in the tetragon conditions, where accuracy was 

significantly lower in the random vs. the blocked order (p < 

.01). 

 

Table 1: Mean proportion of correct answers (in %) and 

reaction time (in ms) for each experimental condition, with 

standard errors in parenthesis.  

 

   Order of Trials 

   Random Blocked 

 Familiar Element (Letter) 

Trial Type 

 Element Match 92% (0.9) 

2318 ms (87) 

91% (1.4) 

1850 ms (72) 

 Shape Match 96% (0.7) 

2473 ms(195) 

96% 

1316 ms (104) 

 No Match 96% (0.5) 

3886 ms (185) 

95% (0.6) 

2932 ms (124) 

 Novel Element (Tetragon) 

 Element Match 84% (5.2) 

2646 ms (100) 

90% (1.2) 

2210 ms (165) 

 Shape Match 95% (0.7) 

2615 ms (185) 

95% (1.3) 

1809 ms (236) 

 No Match 96% (1.3) 

3906 ms (214) 

96% (2.5) 

3603 ms (226) 

 

For reaction time, we found a significant order x trial type 

interaction, F (1, 66) = 11.62, p = .001, p
2
 = .15. Post-hoc 

analyses indicated the participants were faster in the blocked 

order than the random order (p < .001). And they took 

longer on no-match trials than on shape-match or element-

match trials (ps < .001). Reaction times were similar 

between shape-match and element-match trials, but more so 

when the trials were administered randomly. When they 
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were administered in blocked form, performance on shape-

match trials was faster than on element-match trials (p < 

.01). 

Fractal Analyses 

Figure 3 shows the mean Hurst’s coefficients estimated by 

DFA, separated by trial order and type of elements.  

 
Figure 3: Mean Hurst’s Coefficient for each condition, 

obtained through a Detrended Fluctuation Analysis. Error 

bars display standard errors, and the vertical line illustrates 

the exponent for ideal white noise. 

 

A 2 by 2 between-subject ANOVA revealed a marginally 

significant main effect of order, which a higher average 

exponent in the random order than the blocked order, F (1, 

66) = 3.41, p = 0.069. Using a series of t-tests, we compared 

the H values of each experimental condition with the 

reference value of H = .50 (white noise). The only condition 

that had an exponent significantly different from white noise 

was the random-letter condition, t (25) = 6.41; p < .001; 

whereas the others conditions were not different from white 

noise, ts < 2; ps > .09.  

 

 
 

Figure 4: Mean scaling exponent alpha, estimated with a 

spectral analysis (SA) at 25% of the spectrum, separated by 

experimental condition. Error bars display standard errors. 

 

Figure 4 shows alpha values from a spectral analysis that 

was estimated with a 25% spectrum. A 2 by 2 ANOVA 

revealed a main effect of order, F (1, 66) = 12.69, p = .001, 

p
2
 = .16, with random-presentation conditions yielding a 

higher alpha coefficients than the blocked-presentation 

conditions. There was no effect of trial type, nor a 

significant interaction, p > .58. As was done with DFA, we 

compared the mean exponent of each condition against the 

reference value of white noise [α = 0]. Only the random-

letter condition had an exponent that was significantly 

higher than white noise, t (25) = 5.03; p < .001; whereas the 

others conditions were not different, ts < 1.953; ps > .10
2
. 

In concordance with previous analysis, the random-letter 

condition is the only one that had an alpha exponent 

different from a random pattern.  

Discussion 

Our research was aimed at obtaining a measure of 

coordination between what were traditionally considered 

two separate processes: the process of segregating 

information into local details, and the process of integrating 

information into larger patterns of Gestalt. Our general 

assumption was that attention fluctuates on various scales, 

the fastest scale being attention to the most local elements, 

and a slower scale being attention to larger patterns. These 

scales need to be coordinated for adaptive functioning to 

take place, such that the perceiver can quickly adjust to 

miniscule changes as needed (cf., Kloos & Van Orden, 

2010). Using methods of fractal analysis, we tested this 

hypothesis in a task in which participants has to determine 

whether two stimuli matched in local element, global 

Gestalt, or neither of the two.  

Findings confirm our hypothesis in the case in which 

when elements were sufficiently familiar to the perceivers 

and trials were presented with as little outside interference 

as possible. More specifically, we applied two time-series 

analyses, the detrended fluctuation analysis and the spectral 

analysis, to a time series of reaction times that resulted from 

the speeded-categorization task. Results of the two analyses 

converge in that the fractal exponent significantly departed 

from random white noise when the task involved familiar 

elements (letters) and trials were presented in random order. 

In this case, the fractal exponent pointed in the direction of 

pink noise, which reflects a kind of coordination that is 

neither too regular nor too random. It is the exponent that 

indicates long-range correlations across the various scales of 

change and as such it demonstrates an ideal coordination 

(Van Orden, Holden & Turvey, 2005). 

When local elements of our experimental display were 

novel to the perceiver (i.e., unfamiliar shapes that differed in 

the details of their lines), level of coordination dropped. The 

                                                           
2 When the spectral analysis was conducted across 100% of the 

spectrum, the blocked-order condition had far higher exponents 

than the random-order condition. However, upon inspecting the 

power spectrum more closely, its distribution was not typical of a 

pink-noise distribution. The 25% spectrum therefore yields a more 

reliable measure of long-range correlations.  
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novelty of the elements most likely decreased their salience, 

and therefore increasing the salience of the higher-order 

Gestalts. This discrepancy in salience might have interfered 

with an attempt to coordinate the local and global processes. 

Similarly, when the trials were presented in a blocked order 

– thus providing some outside support for task performance, 

levels of coordination dropped. In each case, the obtained 

fractal exponent approached that of random white noise. 

These findings suggest that the local-global coordination is 

intertwined with the details of the task, showing ideal long-

range correlation only when local and global patterns have 

similar salience, which outside interference is kept minimal.  

Taken together, we were able to provide evidence of long-

range correlations in a speeded categorization task in which 

local and global processes were pitted against each other. To 

our knowledge, this is the first of such attempts, with an 

important implication. Rather than treating local and global 

processes as separable and interfering forces, our results 

show an inherent coordination among these levels of 

attention – a coordination that is affected by task 

constraints. When experimental stimuli are such that one 

scale is much more salient than the others, this adaptive 

coordination would remain hidden from the eye of the 

researcher.  
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