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Abstract

Context plays an important role in the recognition of objects,
allowing the general content of a scene to influence identifi-
cation of individual parts. An autonomous learning system is
presented that examines processes involved in the formation
of context between multiple co-occurring objects, under the
task of identifying abstract objects in a scene. Learning is per-
formed using a form of Learning Classifier System, that builds
representations of features autonomously under reinforcement.
The feature identification system is used in combination with
an associative network, used for finding co-occurrence rela-
tionships for establishing context. Experiments show the in-
fluence of the associative network to resolve ambiguous obser-
vations through the use of context. This approach involves the
interaction of a reinforcement system, analogous to dopamin-
ergic processes, with an associative system, based on associa-
tive Hebbian learning processes, and demonstrates the ability
of a recurrent associative network for establishing context re-
lationships.
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Introduction: recognition of scenes

Recognition of objects in a scene requires the interaction of a

number of processes, such as identification of primitive fea-

tures from sensory input, a general idea of the “gist” of the

scene and context of the observation, and influence from the

recognition of previously known objects in the observed en-

vironment (Oliva & Torralba, 2007).

A review by Bar (2004) highlights a number of influen-

tial factors in the role of context in interpreting an observed

object, including the role of co-occurring objects and scenes,

abstract properties of an object, as well as facilitation from vi-

sual interpretation of a scene at different spatial frequencies.

Bar (2007) proposes that multiple possible interpretations of

an object are activated, that a contextual frame is identified

separately, before the combination of information allows the

scene and objects to be recognised. Oliva and Torralba (2007)

have studied the properties of co-occurrence between com-

mon types of objects in a scene, and the manner in which the

presence of an object influences the likely presence of other

objects, and the relative areas theymay occur. There are many

factors involved, including semantic interpretation and visual

and spatial information, as well as other statistical properties

of observation. This may allow informed guesses about the

presence and location of objects in a scene, as well as bias-

ing perceptual interpretation of individual objects (Oliva &

Torralba, 2007).

A study by Auckland, Cave, and Donnelly (2007) exam-

ined the role of the presence of non-target objects in a scene

on recognition of a target object. This showed improved iden-

tification of the target through a form of priming effect, , even

when other objects are not involved in the task.

Developing understanding of the manner in which context

acts is essential for developing effective artificial systems,

and for understanding the manner in which important seman-

tic and visual processes operate.

The manner in which context is formed, and how contex-

tual processes between semantic elements are activated is not

well understood (Bar, 2004). An important aspect for study-

ing this topic is to implement artificial learning processes that

capture the behaviour being studied, allowing examination of

the process in detail and in an objective manner, to capture

properties essential to creating the observed behaviour. Arti-

ficial learning and applied models contribute to the develop-

ment of artificial systems for practical purposes, to take ad-

vantage of aspects of human visual and semantic processes,

which are able to handle large amounts of knowledge in a fast

and effective manner.

Artificial implementations

A range of approaches have been used to study recognition of

objects in scenes. The most successful methods use a series

of processing steps including edge detection filters, transfor-

mations and classifiers, such as (Mutch & Lowe, 2008). This

approach is biologically inspired and makes use of statistical

properties of the training data sets, however does not address

identification of multiple objects or contextual influences be-

tween them.

A number of approaches have addressed the identification

of multiple objects in a scene and composition of objects from

a hierarchical arrangement of parts (Zhu, Lin, Huang, Chen,

& Yuille, 2008; Parikh, Zitnick, & Chen, 2009; Kokkinos &

Yuille, 2009). These address factors such as the unsupervised

formation of hierarchical clusters, and the use of interaction

between bottom-up and top-down processing, to aid identifi-

cation.

Recent deep learning (Bengio, 2009) methods provide a

means of identifying intermediate features in a neural net-

work configuration, which have been used in object recogni-

tion (Ranzato, Huang, Boureau, & LeCun, 2007), competitive

with state of the art image classifiers. This approach high-

lights unsupervised identification of intermediate structures,

however does not allow interaction of context from a number

of objects in a scene comparable with contextual processes in

human cognition.

Hoiem, Efros, and Hebert (2008) address the interaction

between relative positions and sizes of objects in a scene,

and (Oliva & Torralba, 2006) address recognition of the “gist”

of a scene based on global features, for use in aiding identifi-

cation of a scene.

These address a number of factors involved in the role of

context in object recognition, however processes underlying
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the development of features and development of contextual

properties of learned features, such as contextual interactions

between learned objects, requires further study.

Ambiguous objects

An important topic in visual processing is the resolution of

ambiguous low-level observations, which require the interac-

tion of high-level interpretations of the scene in order to be re-

solved effectively. Yuille and Kersten (2006) discuss the use

of Bayesian inference to resolve ambiguous lower features,

by using potential high-level objects identified to verify low

level features in a top-down manner.

Implementation of an artificial learning system that cap-

tures the development of contextual information from obser-

vations, and is able to use such context to bias the interpreta-

tion of features, offers insight into practical considerations of

such processes.

Learning Classifier Systems

Learning Classifier Systems (LCS) (Bull & Kovacs, 2005) are

machine learning systems related to Reinforcement Learning

(RL) (Sutton & Barto, 1998), which learn to recognise fea-

tures of the task autonomously, guided by external reinforce-

ment. The key difference between LCS systems and RL is

that the representations used for learning incorporate a de-

gree of generalisation, such that rules, or classifiers, devel-

oped by the system may be applicable for a wider range of

states (Drugowitsch, 2008). The reinforcement process used

by reinforcement systems is related to dopaminergic pro-

cesses in the brain, and provides a robust and flexible method

of learning (Samson, Frank, & Fellous, 2010).

The representations used in LCS tend to capture abstract

concepts and symbols, related to perceptual observations, and

as such provides a higher level of abstraction than artificial

neural networks, which model physical properties of individ-

ual neurons. This allows a broader perspective of the pro-

cesses being studied, and address properties that may require

a larger scale than that which can be captured in a model

based on representation of individual neurons. LCS acts au-

tonomously, and is able to extract features relevant to the task

simply based on reinforcement received.

General design of Learning Classifier Systems

Learning Classifier Systems are composed of a population of

rules or classifiers, where each can be compared with the cur-

rently observed environment, and propose an action that the

system can perform, or an interpretation of the observation.

The system is presented with an observation from the envi-

ronment, and each of the rules is tested to see which match

and are relevant at the current time. From the set of matching

rules an action or classification is chosen, according to the

relative weight of each rule.

When external reinforcement is received by the system, the

rules which have recently acted receive a reward, which influ-

ences the measure of expected reward for using the rule, and

also the likelihood that the rule will be maintained in the pop-

ulation.

New rules are regularly created, either as copies of obser-

vations, or as modifications of existing rules. Most LCS sys-

tems follow a genetic paradigm and use a genetic algorithm

to create new rules, based on combinations of pairs of other

rules. The population is maintained at a fixed or maximum

size, so when new rules are added, the weakest rules are re-

moved from the population.

There are a number of different implementations of LCS

systems, which handle the rule selection process, reinforce-

ment and population selection processes in different ways.

XCS (Wilson, 1995) is currently the most establishedmethod,

and maintains rules according to the accuracy of predicting

future rewards received by a rule.

Activation-Reinforcement based Classifier System

ARCS (Knittel, 2010) is a form of Learning Classifier Sys-

tem designed to maintain links with cognitive processes. Two

properties are maintained for each rule, a measure of acces-

sibility, based on the degree of reinforcement of the rule, and

quality, representing the expected reward when a rule is used.

The accessibility property is based on an analogy with mem-

ory traces, which are strengthened through use (A. D. Bad-

deley, 1997), and decline either with time or as a result of

competition with newer traces (A. Baddeley, Eysenck, & An-

derson, 2009). The method of reinforcement is comparable

to that used in ACT (Anderson, 1996). This approach has

shown to be effective at balancing generalised and specialised

rules (Knittel, Bossomaier, & Snyder, 2007), and provides

closer comparison with cognitive processes than other LCS

systems.

Effects of context can be incorporated by maintaining asso-

ciative relationships between objects observed, allowing the

context of observations to influence the weight of rules used

in the system.

Associative relationships

There are a number of factors influencing context, however

one common factor is based on the associative relationships

between objects, resulting from co-occurrence relationships.

This provides a priming effect, where the activation of an

object or concept promotes the activation of associated ele-

ments (Auckland et al., 2007).

A number of models are available that study the forma-

tion and activation of associative relationships. Anderson’s

ACT(*/R) models are based on abstract concepts, where

properties of interaction between concepts is identified from

behavioural studies (Anderson, 1996; Anderson et al., 2004).

In this model a network is created with links between associ-

ated concepts, and when a concept is activated, the activation

is passed along weighted links, following a “leaky capacitor”

model.

Another model that is used to capture associations is Heb-

bian learning, which is based on physiological properties of
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the strengthening or weakening of synaptic connections be-

tween neurons (Haykin, 1998). Connections between a pair

of neurons are strengthened if they fire in a correlated manner,

and weakened otherwise.

Hebbian learning has been recognised as resulting in

weights based on the conditional probability of firing between

neurons (O’Reilly, 2001), such as with the CPCA learning

rule (O’Reilly & Munakata, 2000):

∆wi j(t+1) = ηy j(t)(xi(t)−wi j(t)) (1)

Conditional probability and Bayesian statistics play an

important role in studies of the recognition of objects in

context (Torralba, 2003), as well as in general models of

the composition of conceptual objects from related fea-

tures (Tenenbaum, Griffiths, & Kemp, 2006).

Formation of context

Existing learning models have addressed the role of context

in a number of ways. Hoiem et al. (2008) use the relative po-

sitions of objects in a 3D interpretation of the scene to bias

recognition of objects, for example objects in appropriate po-

sition and scale relative to other objects in the scene. Other

methods include training recognition of pre-defined contex-

tual categories, which are then used to bias interpretation of

individual objects (Torralba, 2003; Torralba, Murphy, Free-

man, & Rubin, 2003). Rabinovich, Vedaldi, Galleguillos,

Wiewiora, and Belongie (2007) use a method where an image

is segmented, and each segment is biased to select a segment

label that is consistent with other labels in the scene, trained

using labelled image datasets.

Context can be loosely defined as a set of consistently co-

occurring features or objects. As such, recognition of asso-

ciations between these features will form a kind of clique,

where consistent features of a context will be more strongly

interconnected with each other than with other features. This

property can be captured in a recurrent network of associ-

ations, where the activation of a number of features will

strengthen other features in the same context. Assessment

of the likelihood of co-occurrence of objects is typically ad-

dressed using Bayesian statistics, and an associative network

should reflect this property.

There are limitations with the use of a strictly Bayesian ap-

proach. For example to evaluate the likelihood of the pres-

ence of object ’x’ based on the presence of other objects,

measurement of the conditional dependency of pairs such

as P(x|a) and P(x|b) is not sufficient to accurately resolve

P(x|abc), rather the joint distribution must be recorded in-

dependently. As the number of objects involved grows, the

quantity of statistical measurements required becomes in-

tractable, and approximate methods are needed, which allow

assumptions of the environment to simplify the task.

A recurrent network based on co-occurrence pairs provides

a means of approximation, and allows an assessment of the

activation of element ’x’ based on the activations of a number

of other elements in the network. Spreading activation net-

works act in this manner, however connections with Bayesian

statistics are not clear.

Hebbian learning allows the formation of a network related

to Bayesian statistics. The use of a Hebbian network pro-

vides a heuristic for evaluating the presence of ’x’ based on

a range of other activations. It would be informative to ex-

amine further the similarities and differences between activa-

tions provided by such a network and known errors of human

judgement, such as those described by (Kahneman, Slovic, &

Tversky, 1982).

Design of associative network

Hebbian learning modeled on physiological behaviour can be

detailed, such as the BCM learning rule (Cooper, 2004), how-

ever a number of simplified rules exist, such as the CPCA

rule, given in Equation 1.

This rule has been shown to converge on the conditional

probability of activation of the pre-synaptic neuron, given

activation of the post-synaptic neuron P(x|y), as no modifi-

cation takes place to the weight when firing is uncorrelated

and the post-synaptic neuron is inactive. When construct-

ing an associative network to reflect conditional probability,

it is desirable to capture the reverse property, P(y|x). Hebbian
learning theory indicates that the emphasis on post-synaptic

activation in the CPCA rule is not an essential property of

Hebbian learning. When describing the BCM theory, Cooper

(2004) states that “plasticity will occur only in synapses that

are stimulated presynaptically”. This suggests that an alter-

native form emphasising the role of the presynaptic neuron

on synaptic weight changes is appropriate:

∆wi j(t+1) = ηxi(t)(y j(t)−wi j(t)) (2)

As a corollary to the conditional dependency measure

reached through training of the CPCA rule (O’Reilly & Mu-

nakata, 2000), this training rule converges on the conditional

probability P(y j|xi).
Nodes in the network represent objects in the environment.

Training of the network is performed by setting the nodes ac-

tive representing objects present, and using the above rule to

train connections. Weights are adjusted such that the sum of

weights output from each node sums to one.

Evaluation of contextual bias results from activating ob-

served elements, and running a number of activation steps

until the network stabilises. Activation is based on a linear

neuron model, using an additional inhibitory connection to

promote stability. Incorporating external activations, this pro-

duces an update rule as follows:

y j = a j +∑
i

xiwi j− εy j (3)

Training an associative clique

To demonstrate the behaviour of the associative network for

identifying context, training is performed on a network of 15

elements using a generative model of co-occurrence between

the elements, based on a model of co-location. Each of the

3066



elements is specified to occur in each of 3 locations with a

given prior probability, and instances are created by selecting

a location and evaluating which elements occur according to

the specified probabilities.

With training, the weights of the network are shown to con-

verge on the conditional probability values between elements,

roughly indicated by the weight of lines shown in Figure 1.

The presence of associative cliques can be seen between ele-

ments A-E and F-J.

Figure 1: Arrangement of associative network after training.

Behaviour of the network is tested by simulating activation

of an ambiguous observation, represented as partial activation

of two elements that are possible interpretations, along with a

number of co-occurring elements. This is done by applying a

value of 0.6 to elements E and H, members of the two domi-

nant cliques. Results of activation for an ambiguous pair with

zero, one, two and three co-occurring elements are shown in

Figure 2. Without contextual activations the ambiguous inter-

pretations are not distinguished. With one or more parallel ac-

tivations the elements of the co-occurrence clique are clearly

identified, providing a preference for one of the ambiguous

interpretations.

Implementation

Object identification

The task used for evaluation is an abstract form of object

recognition using a generative model, where objects are rep-

resented as collections of features arranged in a two dimen-

sional space. This allows statistical properties of the environ-

ment presented to be controlled.

Objects are constructed as a random arrangement of feature

symbols in a grid. Co-occurrence relationships are created

by defining a number of locations, as described previously.

Scenes are produced by selecting a location, determining the

objects present according to occurrence statistics, and render-

ing the chosen objects onto a fixed size grid representing the

scene. Objects may be obscured by other objects rendered

over top.

The task used to perform training, is to identify the object

at a specified location. Object boundaries are not given.

To evaluate the use of context effects, ambiguous objects

are created, and the task is to identify which object the am-

biguous element represents, based on the co-occurring ob-

jects in the scene. To construct an ambiguous representation,

first an object is created and assigned to a specific location

Figure 2: Stable activation level of associative network. All

include partial activation of elements E and H. 1. no other

activation, 2. single active (B) 3. two active (B,C) 4. three

active, members of the other grouping (F,I,J).

and context. A second object is then created as a copy of

the first, with a random collection of symbols altered, such

that 20% of the representation is varied. The second object

is attached to a different location, such that it co-occurs with

a different set of objects. A third ambiguous object is con-

structed by changing each of the modified symbols in the sec-

ond object to a third symbol, such that the ambiguous object

is equally dissimilar to the first and second.

When the ambiguous object is presented as a replacement

to the first or second object, it is necessary for the system to

identify each of the other objects in the scene independently,

and to use the presence of the objects identified to bias inter-

pretation of the ambiguous target object.

Context effects with ARCS

Context effects can be incorporated with the ARCS classifier

system, by training the associative network in parallel with

the existing reinforcement process.

Rules are constructed as a two dimensional grid of sym-

bols. Each rule is associated with a label indicating the object

classification for the rule. When a state is presented, each

rule is compared against the state, and a match value estab-

lished by comparing the rule with each corresponding region

of the state. To evaluate the match value for each rule for the

assigned target position, the best match value covering the

target position is used.

To select the rule to act, the product of the match value

with the expected reward of the rule is used. Without using

an associative bias, the rule to act is selected according to a

Boltzmann distribution:
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Pn =
eβqnmn

∑J
j=1 e

βq jm j
(4)

where Pn is the probability of choosing rule n, J represents

the set of matching rules, qn is the expected reward and mn

the match level for rule n.

To introduce contextual bias, a fixed size associative net-

work is used according to the number of object classes

present. Training of the network is conducted after each clas-

sification step. When training with class labels provided, the

activation level of each class present is set to 1, and those

not present set to 0. A single step of the learning process

described in Equation 2 is conducted.

Once the initial activation values for each class are estab-

lished, the activation process proceeds according to the up-

date rule given in 3. The resulting activation levels for each

class are normalised, providing a relative value for each class.

This is used to modify the selection value for each rule as fol-

lows:

Pn =
eβqnmnbx

∑J
j=1 e

βq jm jby
(5)

where bx is the associative bias for object x, where the

given rule is linked with object x.

It would be possible to capture context using a rule-based

system, for example using a rule specifying that if object A

is present at the same time as object B, a particular classifica-

tion would be preferred; such an implementation would allow

suitable classification, however involves a design that implies

the solution, and is based on a discrete definition of context,

requiring each combination of contextual features to be de-

fined at the rule level. In contrast, the associative method

allows contextual effects between a range of elements to be

captured in the network, using a soft definition of context aris-

ing from activation properties of the network.

Results

Training is first conducted with object labels available for

each position, before evaluation is performed on observations

without labels. A number of training stages are used to sim-

plify the learning process. First training is conducted on in-

dividual objects, where a single object is presented for each

step. After 200,000 training steps, classification is performed

with 100% accuracy on individually presented objects. The

second training stage involves classification with multiple ob-

jects present, and introduces training of the associative net-

work.

Observations are presented using a 30 x 30 grid of features,

each object is constructed using on average 34 symbols, in-

cluding white space. 4 locations are used to generate the en-

vironment, with 25 objects, as well as 2 ambiguous represen-

tations.

Evaluation is performed by presentation of multiple objects

in a scene, including ambiguous objects, which require the

use of context for identification.

Figure 3: Result of the use of associative bias. 1. bias in

match condition towards rule consistent with context, 2. per-

formance improvement for rule set consistent with object rep-

resentation, 3. performance improvement for rule set with

assymetric preference to one interpretation

Results of the degree of bias and improved classification

rates on ambiguous elements are shown in Figure 3. The de-

gree of bias variation provided to classifications consistent

with the associative context is +0.5, for example a bias value

of 0.7 vs 0.2, providing significant discrimination. The re-

sult of classification of ambiguous elements without the use

of associative bias is at chance level, at 0.47%, for a rule

set consistent with the features present in the environment.

With introduction of associative bias, allowing context to in-

fluence identification, identification accuracy was increased

to 0.94%, an improvement of 0.47. With a rule set that has

developed in a manner that is preferential to one interpreta-

tion of an ambiguous element, the improvement is 0.25.

These figures show clear discrimination between interpre-

tations of ambiguous elements, as a result of bias introduced

through association, with lesser improvement when assym-

metric preference is given to one interpretation.

Discussion and Conclusions

This system provides an autonomous method for studying

processes involved in formation of concepts relevant to a

task, guided by reinforcement from behaviour, in tandemwith

the recognition of context through co-occurrence relation-

ships captured in an associative network. The development

of features autonomously according to reinforcement, acting

alongside formation of contextual associative links, provides

a novel means of studying formation of context, and the man-

ner in which it can be used to influence a task.

The interaction of the two types of systems allows the

use of a simplified associative implementation, acting in tan-

dem with the reinforcement based learning process, to allow

context identified between multiple elements to influence the

recognition of objects being observed.

The reinforcement based system provides a useful platform

for examining practical considerations of such processes in an

objective, autonomous manner. Representation of context is
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captured in attractor basins produced from associative links

in a recurrent network. The advantages provided for the in-

terpretation of objects, and the ability to identify context in

an autonomous manner, highlight the applicability of a recur-

rent associative network for addressing how context can be

formed and utilised.
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