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Abstract

Compared to the gambler’s fallacy in which one makes
predictions negatively dependent on the past information, in
the hot hand belief, one makes predictions positively
dependent on the past information. Both phenomena have
been attributed to people’s misperception of randomness. The
present study examines an alternative explanation that the
positive dependency in the hot hand belief may be due to
people’s effort to reduce uncertainty by estimating the
unknown probability (common probability estimation), a
result known as the Laplace’s rule of succession. We report
an experiment to demonstrate that the dependency on the
history can be reversed from negative to positive by
manipulating the participants’ assumptions about the
unknown probability.

Keywords: hot hand belief, gambler’s fallacy; common
probability estimation; probability matching.

Introduction

When faced with a series of events, people often attempt to
predict what is to occur next based on the history of the
previous outcomes, even when the underlying process
governing those events is independent and stationary (or,
statistically indistinguishable, for example, the same fair or
biased coin is tossed repeatedly). As the independence and
stationarity assumptions are usually characteristics of a
random process, such tendency has often been labeled as
misperception of randomness (for a recent review see,
Oskarsson, Van Boven, McClelland, & Hastie, 2009).
Among those documented, the gambler’s fallacy has the
longest history, even older than the history of experimental
psychology (see, Ayton & Fischer, 2004). When a fair coin
is tossed repeatedly, a person with the gambler’s fallacy will
predict a tail after a streak of heads. On the other hand, the
same kind of past information can sometimes invoke an
opposite prediction. A person with the hot hand belief will
predict that a basketball player who has just scored several
shots in a row is more likely to score again. In the actual
shooting sequences, however, little statistical evidence has
been found to reject the independence and stationarity
hypotheses (Gilovich, Vallone, & Tversky, 1985; Tversky
& Gilovich, 1989). (For a comprehensive review on the hot
hand studies, see Bar-Eli, Avugos, & Raab, 2006.)

The contrast between the gambler’s fallacy and the hot
hand belief has received much attention (Ayton & Fischer,
2004; Burns & Corpus, 2004; Caruso, Waytz, & Epley,
2010; Croson & Sundali, 2005; Rabin, 2002; Sundali &
Croson, 2006). Most notably, the same representativeness
heuristic has been used to account for both the gambler’s

fallacy and the hot hand belief (Gilovich, et al., 1985;
Tversky & Kahneman, 1971). By this account, people’s
perception of random events are governed by a “law of
small numbers” such that a local sample should resemble
the underlying population and chance is perceived as “a
self-correcting process in which a deviation in one direction
induces a deviation in the opposite direction to restore the
equilibrium” (Tversky & Kahneman, 1974, p. 1125). Thus,
in the gambler’s fallacy, a tail is “due” to reverse a streak of
heads. In the hot hand belief, a streak of successes would
make the observer to reject the randomness of the process
and believe that a “hot hand” will make another shot (see
also Tversky & Gilovich, 1989).

Nevertheless, the representativeness account has been
criticized for its incompleteness. Ayton and Fischer (2004)
suggest that the gambler’s fallacy arises from the experience
of negative recency in sequences of natural events such as
sampling without replacement and the hot hand belief arises
from the experience of positive recency in serial fluctuations
in human performance such as in sports. Burns and Corpus
(2004) show that subjects assume negative recency for
scenarios they rated as “random” and positive recency for
forecasting scenarios they rated as “nonrandom.” Moreover,
it has been proposed that the hot hand belief may arise as an
inference to the properties of other processes based on the
outcomes of a random process. For example, people may
infer the ability of a mutual fund manager from the
fluctuations of the portfolio performance (Rabin, 2002), or,
infer a person’s luck from the outcomes of a roulette game
(Croson & Sundali, 2005; Sundali & Croson, 2006). More
recently, Caruso, et al. (2010) report that when people
perceive an intentional mind in the underlying process, they
are more likely to show the hot hand belief than the
gambler’s fallacy.

Whereas the perception of randomness has often been
implicated in explaining the gambler’s fallacy and the hot
hand belief, the notion of randomness is highly debated
even among mathematicians and philosophers. It has been
suggested that the concept has to be broken down into more
fundamental properties in order to be of any practical use
(e.g., Blinder & Oppenheimer, 2008; Lopes & Oden, 1987).
In particular, the gambler’s fallacy and the hot hand belief
have been considered as misperceptions of randomness
since they violate either one or both of the independence
and the stationarity assumptions (see, Bar-Eli, et al., 2006;
Gilovich, et al., 1985). In the present paper, we examine an
alternative factor that may contribute to the contrast
between the gambler’s fallacy and the hot hand belief,
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without the need to reject either the independence or the
stationarity assumption. We argue that in these two
seemingly opposite dispositions, a crucial distinction lies in
the assumption about the “common parameter” of the
underlying process. That is, people manifest the gambler’s
fallacy when they perceive the underlying process with a
fixed probability of success, for example, the probability of
heads is 2 for a fair coin. It has been documented that
people tend to match the proportion of a certain outcome in
their predictions to the expected value instead of optimizing
their predictions by always predicting the outcome with the
highest probability, and this tendency of “probability
matching” has been used to account for the gambler’s
fallacy (e.g, Gaissmaier & Schooler, 2008; Koehler &
James, 2009; Morrison & Ordeshook, 1975; Shanks,
Tunney, & McCarthy, 2002; Wolford, Newman, Miller, &
Wig, 2004). In the extreme situation where the previous
outcomes consist of only one type of outcomes, e.g., a
streak of heads when tossing a coin, people would predict a
tail so that the proportion of tails in the predicted sequence
will match more closely to the expected value—a
manifestation of the previously mentioned “law of small
numbers.”

On the other hand, in a basketball game (as well as in
many real world scenarios), it is often the case that the
probability of success is initially unknown. Then, the history
of the previous outcomes can provide some information
about the parameter. As a consequence, the prediction of the
next success, which depends on an estimate of the
parameter, will show positive dependency on the number of
previous successes. Most notably, such prediction does not
require rejecting either the independence or the stationarity
assumption of the underlying process. It can still be
assumed that the probability of success remains stationary
except that it is initially unknown.

The positive dependency in such prediction is a result
known as the Laplace’s rule of succession (Laplace, 1814)".
Suppose that I' independent trials, each of which is a
success with the same probability P , are performed. When

the probability p is a free parameter chosen uniformly on (0,
1), given a total of K successes in the first I trials, the
probability that the (r + l)st trial will be a success can be

computed by:
P {( r+ 1) st trial is a success | K successes in first I’}

‘(f+1)fol(|:jpk“(1— p) “dp )

_k+1

r+2

' Interestingly, Laplace (1796/1951) also provided the first
documented account of the gambler’s fallacy (see, Ayton &
Fischer, 2004). Zabell (1989) provides a philosophical discussion
on the rule of succession. Here we only describe the relevant result
according to Ross (2007, pp. 147-149).

Thus, the prediction of a success on the (r + l)st trial is

positively dependent on the number of successes in the first
r trials (k). Note that the calculation above assumes a
uniform prior for p on (0, 1). In special cases where p can
only take a limited number of values (e.g., randomly chosen
from two values 0.50 and 0.75), by Bayes’ Theorem, the
positive dependency in the predictions still holds. Based on
this result, it is possible that the positive dependency in the
predictions by the hot hand belief is a consequence from
people’s effort of reducing the uncertainty by estimating the
unknown probability of successes from the past information.

In the following, we test this hypothesis empirically.
Specifically, we predict that when people are provided with
a fixed probability of success for the underlying process,
they tend to manifest the gambler’s fallacy or the behavior
of probability matching so that their predictions would be
negatively dependent on the past information. In contrast,
when the probability of success is not explicitly provided,
people would have to guess it in order to make a prediction.
As a consequence, their predictions would tend be positively
dependent on the past information.
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Figure 1. Three clocks in the experiment. The “50%-
50%” clock is divided by blue and red colors equally
along the 45 degree angle. The “25%-75%" clock has
the top 25% in blue and the bottom 75% in red. The
“Unknown” clock is all white. In each trial, a needle
was spun seven times to generate a sequence of seven
dots in corresponding colors, then, participants were
instructed to predict the outcome of the eighth spin.

Method

Participants

Eleven college students and graduate students in the
Houston medical center area were paid to participate in the
experiment.

Procedure

The experiment was programmed in E-Prime and conducted
on a computer with a 20 inch LCD monitor. Participants
were instructed that they were about to observe one of 3
different clocks (see Figure 1). The circumference of a
“50%-50%" clock was divided by blue and red in equal
proportions; a “25%-75%" clock was 25% in blue and 75%
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in red; and an “Unknown” clock was divided by blue and
red with an unknown ratio and was covered in white. Within
each clock, a spinning needle will generate a sequence of
blue and red dots and the color of each dot is determined by
whether the needle stopped at the blue or red portion of the
clock after each spin. Participants’ task was to predict the
color of the 8™ spin after observing the outcomes of 7 spins
for a given clock.

Three conditions were compared in 3 blocks of trials and
each block used a different clock (within-subjects). The
order of 3 blocks was randomized across participants. Each
block consisted of 128 trials, and the binary sequence of 7
dots displayed in each trial was predetermined by randomly
sampling once without replacement from all possible 128
combinations. Thus, all 3 blocks used the same 128 binary
sequences so that participants would experience the same
probability distribution under each condition. Once a binary
sequence was sampled for a trial, the stopping position of
the spinning needle after each spin was determined but
randomly varied within the arc of the corresponding color.
For example, in the “50%-50%" condition, if the program
sampled a “red” outcome, the needle would randomly stop
at one of the six positions of the red arc (2, 3, 4, 5, 6, and 7
o’clock). The stopping position in the “Unknown” condition
always pointed to the 12 o’clock position.

At the beginning of each trial, a clock was presented in
the center of the computer screen and the needle initially
pointed up (12 o’clock position). Then, the needle was spun
seven times and there was an approximately 1 second pause
after each spin. After each spin, either a blue or a red dot
was shown beneath the clock depending on whether the
needle ended pointing to the blue or red portion of the clock.
After seven spins, seven dots would line up beneath the
clock and a question mark was shown at the eighth position.
Participants used mouse buttons to predict the eighth spin
(left button for blue and right button for red). At the end of
each trial, an instruction screen was displayed to prompt
participants to “proceed to the next clock” by clicking a
mouse button.

Results

We first examined how participants’ predictions were
influenced by the percentage information in the history.
Table 1 shows the total number of predictions on blue and
red outcomes depending on the number of the blue
outcomes in the previous 7 spins (aggregated across all
participants). It appears that participants’ predictions
followed different trends under different conditions. For
example, when there were 4 blue outcomes in the previous 7
spins, participants predicted blue in 6 trials and red in 379
trials under the “25%-75%" condition, and predicted blue in
92 trials and red in 293 trials under the “50%-50%"
condition. Both conditions showed biases towards the red
outcomes (more biased in the 25%-75% condition). In
contrast, when the underlying color ratio was unknown, the
bias was reversed: participants predicted blue in 200 trials
and red in 185 trials.

Table 1. Participants’ predictions on the 8" spin based
on the number of blue outcomes in the sequence of
previous 7 spins. For example, in the “Unknown”
condition, when there were 3 blue outcomes (fewer
blue than red), participants predicted blue in 122 trials
and red in 263 trials (385 trials in total); when there
were 4 blue outcomes (more blue than red), participants
predicted blue in 200 trials and red in 185 trials.

Number of Blue 0 1 2 3 4 5 6 7
outcomes

Number of Trials 1 77 231 385 385 231 77 1

"25.75" Blue 9 54 34 9 6 25 14 2

Red 2 23 197 376 379 206 63 )

"50-50" Blue 9 65 175 268 92 38 8 2
Red 2 12 56 117 293 193 69 9

Unknown Blue 5 92 589 122 200 130 28 ]
Red 6 25 172 263 185 101 49 ]
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Figure 2: Logistic regression of the probability of

predicting blue on the percentage of blue outcomes in
the history. Regression coefficients are listed in the
parentheses in the legend.

To confirm our observation in Table 1, we conducted a
logistic regression to find the line of best fit for the trend
under each condition, namely, to examine how the
probability of predicting blue was determined by the
percentage of blue outcomes in the history. The regression
results are shown in Figure 2. All three regression
coefficients were statistically significant (p < .001). Most
notably, the negative trends in the 50%-50% and 25%-75%
conditions were reversed to positive in the Unknown
condition. This result confirmed our hypothesis that the
unknown common probability would have an effect on
participants’ predictions: they were negatively dependent on
the past information when the blue-to-red ratio was
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provided, but positively dependent on the past information
when participants had to guess the underlying probability.

However, Table 1 and Figure 2 also show that
participants’ tendency of choosing blue in the Unknown
condition was not as strong as indicated by the rule of
succession (Equation 1). For example, when all previous 7
spins were blue, Equation 1 would predict the probability of
blue at the eighth spin as 8/9 = 88.9%, whereas only 5 out of
11 predictions (45.5%) were made on blue. Besides the
small sample size, one possible explanation would be that
Equation 1 is based on a uniform distribution of the blue-to-
red ratio from O to 1, and participants might have not
considered all possible values of the ratio in the Unknown
condition since they have only encountered two other types
of clocks with a 50%-50% and a 25%-75% ratio. Another
possibility was that besides the percentage information,
there were other patterns (such as streaks) influencing the
predictions. To test the effect of streak information on
predictions, we conducted a second round of logistic
regressions of the probability of predicting blue on the
length of the last run (“LLR”). The values of LLR were
counted as the number of blue or red outcomes in the last
run of the sequence (positive values for blue and negative
values for red). For example, LLR = 3 in the sequence (B,
R, R, R, B, B, B), and LLR = - 2 in the sequence (B, B, R,
B, B, R, R). (This example also shows that the same
percentage of blue outcomes in the history can have
different values of LLR).

1.0

—h—  50%-50% (-0.353)
25%-75% (~0.369)
Unknown (-0.040)

A -.-
A -

0.4 0.8
-
®

Probability of Choosing Blue

0.2

0.0

Length of the Last Run in Blue

Figure 3. Logistic regression of the probability of
predicting blue on the length of the last run (LLR).
Positive values represent the lengths of the blue streaks
and negative values represent the lengths of the red
streaks. Regression coefficients are listed in the
parentheses in the legend.

Figure 3 shows that the regression coefficients were
significantly different from zero only in the “50%-50%" and
“25%-75%" conditions (both p < .001) but was not

significant in the “unknown” condition (p = .07). In all three
conditions, participants’ predictions were negatively
dependent on the length of the last run. That is, participants
showed a tendency to avoid long streaks at the end of the
sequence in all three conditions. Compared with the
predictions based on the percentage (Figure 2), such
tendency was not surprising in the 50%-50% and 25%-75%
conditions, but seemed to contradict the positive
dependency in the Unknown condition. We can speculate on
three possibilities to this tendency and they are not
necessarily exclusive of each other. First, compared to the
percentage, LLR only contained partial information of the
past. Second, it was a manifestation of the probability
matching behavior to reverse the last run. Since the
sequences were drawn without replacement from all
possible combinations, probability matching was actually a
valid strategy for predictions. Third, participants have only
experienced three kinds of clocks through the entire
experiment. It was possible that in the Unknown condition,
participants were guessing the underlying ratio as either
50%-50% or 25%-75%, and in some of the trials they were
matching their predictions to the corresponding ratios.

Table 2. Three different strategies compared with
participants’ actual predictions. For example, under the
50%-50% condition, 76.8% of the predictions were
consistent with the “Match to 50%-50%" strategy, and
23.2% of the predictions were consistent with the “Hot
Hand” strategy.

Strategy
.. Match Match
Condition 50%-50% 25%-75% Hot Hand
50%-50% 76.8% 57.6% 23.2%
25%-75% 54.2% 91.8% 45.8%
Unknown 41.1% 59.2% 58.9%

To test the hypothesis of probability matching, we
considered three possible strategies that might have been
utilized by participants, two strategies of probability
matching (“match to 50%-50%" and “match to 25%-75%")
and one strategy by the hot hand belief (“hot hand”). The
strategies of “match to 50%-50%" and “match to 25%-75%"
would predict the color to make the final sequence more
closely matched to the corresponding color ratio, 50%-50%
or, 25%-75%, respectively. The strategy of “hot hand”
would predict the color that appeared most frequently in the
previous 7 spins. Note that “match to 50%-50%" and “hot
hand” are completely opposite of each other, and both
partially overlap with “match to 25%-75%.” We then
compared these three strategies with participants’ actual
predictions. Table 2 shows the percentages in which each
strategy was consistent with the actual predictions in each
condition. It appears that the “match to 50%-50%" strategy
was the most dominant in the 50%-50% condition (with a
76.8% consistency), and the “match to 25%-75%" strategy
was the most dominant in the 25%-75% condition (91.8%

3061



consistency). However, in the Unknown condition, all three
strategies were about equally dominant but the “match to
50%-50%" strategy had the lowest accuracy level in
describing the actual predictions (41.1%).

We made two particular observations in Table 2. First,
there was a strategy shift across three conditions.
Probability matching was a dominant strategy when the
color ratio of the clock was given at either 50%-50% or
25%-75%, but its dominance was greatly reduced when the
color ratio was unknown. By contrast, predictions by the
“hot hand” strategy were at minimum when the color ratio
was given but became substantial when the color ratio was
unknown. The strategy shift observed in Table 2 was
consistent with dependence reversal shown in Figure 2.
Second, both probability matching (50%-50% and 25%-
75%) and “hot hand” strategies were present in the
Unknown condition. This observation appears to be
consistent with our speculation that in the Unknown
condition participants were mainly guessing between the
50%-50% and 25%-75% clocks. Moreover, it also indicated
that probability matching was a strong tendency that could
be reduced but hard to eliminate (e.g., Koehler & James,
2009).

Discussion

Compared with previous studies on the hot hand belief, the
present study did not directly examine participants’
perception of the wunderlying process regarding its
randomness (i.e., the independence and stationarity
assumptions), the intentionality of the process, or, whether it
is about human performance or a natural process (e.g.,
Ayton & Fischer, 2004; Burns & Corpus, 2004; Caruso, et
al., 2010; Croson & Sundali, 2005; Sundali & Croson,
2006). Instead, we presented participants with the same
clock-and-needle mechanism, under the same underlying
probability distributions, across all conditions. The only
factor we manipulated was the perceived common
probability: either explicitly provided (50%-50% and 25%-
75% conditions) or not (Unknown condition). That is,
participants did not have to reject either the independence or
the stationarity assumption of randomness in order to make
predictions. Yet, compared to the 50%-50% and 25%-75%
conditions, the overall dependency of the predictions on the
past percentage information (entire history) in the Unknown
condition was reversed from negative to positive.

It is possible that participants would actually reject
randomness in some of the trials. However, rejecting
randomness may not be responsible for the difference we
found across conditions, especially the positive dependency
in the Unknown condition. As we mentioned before,
perception of randomness may not be a concept as a whole
that influences people’s behavior (e.g., Blinder &
Oppenheimer, 2008; Lopes & Oden, 1987). Regarding the
independence and stationarity assumptions, all three
conditions in our experiment were presented in the same
way except the color ratio, and in each trial, participants
were always presented with the same clock. Furthermore,

rejections of randomness, if they did have any effect, would
be more pronounced in presence of a given color ratio
where the discrepancy between the given ratio and the
displayed binary outcomes would be more obvious. For
example, when the color ratio was 50%-50% but the
displayed 7 outcomes were all blue, participants might have
suspected something was wrong then would tend to
conclude that the underlying process was not what has been
presented (namely, to reject the hypothesis of randomness).
On the other hand, such suspicion would be less likely to
arise in the Unknown condition as there was no clear
contrast between the displayed outcomes and an unknown
probability.

The findings that participants’ prediction was positively
dependent on the percentage (entire history) but negatively
dependent on the length of the last run (partial history)
indicates that there were at least two mental processes
involved. On one hand, when the underlying probability was
initially unknown, participants used the past information to
estimate the probability. As a consequence, their predictions
were positively dependent on the past percentage
information (Figure 2). On the other hand, the negative
dependency on the length of the last run (Figure 3) indicated
that probability matching was a strong tendency that could
be reduced but hard to eliminate (e.g., Koehler & James,
2009). Nevertheless, the tendency of probability matching
was greatly reduced when the underlying probability
initially was unknown and had to be estimated (Table 2).
This result was consistent with the findings in some of the
studies that associate probability matching with pattern
search (e.g., streaks in our experiment). For example,
Wolford, et al. (2004) report that distracting people with a
secondary verbal working memory task prevents the pattern
search and results in less probability matching behavior
(also see, Gaissmaier & Schooler, 2008; Wolford, Miller, &
Gazzaniga, 2000). Koehler and James (2009) suggest that
probability matching is an intuition that can be overridden
by deliberate consideration of alternative choice strategies.

It should be noted that the focus of the present study is to
demonstrate the common probability estimation as a factor
that may contribute to the opposite predictions by the
gambler’s fallacy and the hot hand belief. We found the
reversal of the dependency when the independent variable
was the percentage of one outcome in the entire history but
not the length of the most recent streaks. Although a
prediction positively dependent on the percentage
information is more likely to prolong the most recent streak,
our experiment did not exactly capture the “streakiness” in
the hot hand belief. It is reasonable to conclude that
common probability estimation alone may not be able to
account for the hot hand belief, and it must be combined
with other factors, such as the humanness or intentionality
of the process (e.g., Ayton & Fischer, 2004; Caruso, et al.,
2010). In addition, a limitation in our experiment is that
participants have experienced only three types of clocks and
the Unknown condition might have been affected by the
other two conditions. A between-subject design, or, adding
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more levels to the provided color ratio, might be able to
make participants estimate the unknown parameter in a
wider range thus the positive dependency might be more
pronounced. Moreover, the positive dependency observed in
our experiment was based on the percentage information (or
proportion), and there are usually more than one ways to
construct a pattern in a binary sequence, such as alternation
or symmetry (e.g., Rapoport & Budescu, 1997) or sequential
dependency (e.g., West & Lebiere, 2001). One possibility to
extend our experiment would be to vary the length of the
presented binary sequences so that the effects of other
patterns could be dissociated from the effect of percentage
information. Another possible extension would be that the
sequences serving as the history are actually generated
based on various probability distributions instead of being
drawn from a pre-determined sample pool without
replacement. In this way, participants’ actual experience
would be more consistent with the provided color ratio or
their estimation. We will leave these possibilities to future
studies.
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