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Abstract 

Compared to the gambler’s fallacy in which one makes 
predictions negatively dependent on the past information, in 
the hot hand belief, one makes predictions positively 
dependent on the past information. Both phenomena have 
been attributed to people’s misperception of randomness. The 
present study examines an alternative explanation that the 
positive dependency in the hot hand belief may be due to 
people’s effort to reduce uncertainty by estimating the 
unknown probability (common probability estimation), a 
result known as the Laplace’s rule of succession. We report 
an experiment to demonstrate that the dependency on the 
history can be reversed from negative to positive by 
manipulating the participants’ assumptions about the 
unknown probability. 

Keywords: hot hand belief; gambler’s fallacy; common 
probability estimation; probability matching. 

Introduction 
When faced with a series of events, people often attempt to 
predict what is to occur next based on the history of the 
previous outcomes, even when the underlying process 
governing those events is independent and stationary (or, 
statistically indistinguishable, for example, the same fair or 
biased coin is tossed repeatedly). As the independence and 
stationarity assumptions are usually characteristics of a 
random process, such tendency has often been labeled as 
misperception of randomness (for a recent review see, 
Oskarsson, Van Boven, McClelland, & Hastie, 2009). 
Among those documented, the gambler’s fallacy has the 
longest history, even older than the history of experimental 
psychology (see, Ayton & Fischer, 2004). When a fair coin 
is tossed repeatedly, a person with the gambler’s fallacy will 
predict a tail after a streak of heads. On the other hand, the 
same kind of past information can sometimes invoke an 
opposite prediction. A person with the hot hand belief will 
predict that a basketball player who has just scored several 
shots in a row is more likely to score again. In the actual 
shooting sequences, however, little statistical evidence has 
been found to reject the independence and stationarity 
hypotheses (Gilovich, Vallone, & Tversky, 1985; Tversky 
& Gilovich, 1989). (For a comprehensive review on the hot 
hand studies, see Bar-Eli, Avugos, & Raab, 2006.) 

The contrast between the gambler’s fallacy and the hot 
hand belief has received much attention (Ayton & Fischer, 
2004; Burns & Corpus, 2004; Caruso, Waytz, & Epley, 
2010; Croson & Sundali, 2005; Rabin, 2002; Sundali & 
Croson, 2006). Most notably, the same representativeness 
heuristic has been used to account for both the gambler’s 

fallacy and the hot hand belief (Gilovich, et al., 1985; 
Tversky & Kahneman, 1971). By this account, people’s 
perception of random events are governed by a “law of 
small numbers” such that a local sample should resemble 
the underlying population and chance is perceived as “a 
self-correcting process in which a deviation in one direction 
induces a deviation in the opposite direction to restore the 
equilibrium” (Tversky & Kahneman, 1974, p. 1125). Thus, 
in the gambler’s fallacy, a tail is “due” to reverse a streak of 
heads. In the hot hand belief, a streak of successes would 
make the observer to reject the randomness of the process 
and believe that a “hot hand” will make another shot (see 
also Tversky & Gilovich, 1989).  

Nevertheless, the representativeness account has been 
criticized for its incompleteness. Ayton and Fischer (2004) 
suggest that the gambler’s fallacy arises from the experience 
of negative recency in sequences of natural events such as 
sampling without replacement and the hot hand belief arises 
from the experience of positive recency in serial fluctuations 
in human performance such as in sports. Burns and Corpus 
(2004) show that subjects assume negative recency for 
scenarios they rated as “random” and positive recency for 
forecasting scenarios they rated as “nonrandom.” Moreover, 
it has been proposed that the hot hand belief may arise as an 
inference to the properties of other processes based on the 
outcomes of a random process. For example, people may 
infer the ability of a mutual fund manager from the 
fluctuations of the portfolio performance (Rabin, 2002), or, 
infer a person’s luck from the outcomes of a roulette game 
(Croson & Sundali, 2005; Sundali & Croson, 2006). More 
recently, Caruso, et al. (2010) report that when people 
perceive an intentional mind in the underlying process, they 
are more likely to show the hot hand belief than the 
gambler’s fallacy. 

Whereas the perception of randomness has often been 
implicated in explaining the gambler’s fallacy and the hot 
hand belief, the notion of randomness is highly debated 
even among mathematicians and philosophers. It has been 
suggested that the concept has to be broken down into more 
fundamental properties in order to be of any practical use 
(e.g., Blinder & Oppenheimer, 2008; Lopes & Oden, 1987). 
In particular, the gambler’s fallacy and the hot hand belief 
have been considered as misperceptions of randomness 
since they violate either one or both of the independence 
and the stationarity assumptions (see, Bar-Eli, et al., 2006; 
Gilovich, et al., 1985). In the present paper, we examine an 
alternative factor that may contribute to the contrast 
between the gambler’s fallacy and the hot hand belief, 
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without the need to reject either the independence or the 
stationarity assumption. We argue that in these two 
seemingly opposite dispositions, a crucial distinction lies in 
the assumption about the “common parameter” of the 
underlying process. That is, people manifest the gambler’s 
fallacy when they perceive the underlying process with a 
fixed probability of success, for example, the probability of 
heads is ½ for a fair coin. It has been documented that 
people tend to match the proportion of a certain outcome in 
their predictions to the expected value instead of optimizing 
their predictions by always predicting the outcome with the 
highest probability, and this tendency of “probability 
matching” has been used to account for the gambler’s 
fallacy (e.g, Gaissmaier & Schooler, 2008; Koehler & 
James, 2009; Morrison & Ordeshook, 1975; Shanks, 
Tunney, & McCarthy, 2002; Wolford, Newman, Miller, & 
Wig, 2004). In the extreme situation where the previous 
outcomes consist of only one type of outcomes, e.g., a 
streak of heads when tossing a coin, people would predict a 
tail so that the proportion of tails in the predicted sequence 
will match more closely to the expected value—a 
manifestation of the previously mentioned “law of small 
numbers.”  

On the other hand, in a basketball game (as well as in 
many real world scenarios), it is often the case that the 
probability of success is initially unknown. Then, the history 
of the previous outcomes can provide some information 
about the parameter. As a consequence, the prediction of the 
next success, which depends on an estimate of the 
parameter, will show positive dependency on the number of 
previous successes. Most notably, such prediction does not 
require rejecting either the independence or the stationarity 
assumption of the underlying process. It can still be 
assumed that the probability of success remains stationary 
except that it is initially unknown.  

The positive dependency in such prediction is a result 
known as the Laplace’s rule of succession (Laplace, 1814)1. 
Suppose that r  independent trials, each of which is a 
success with the same probability p , are performed. When 

the probability p is a free parameter chosen uniformly on (0, 
1), given a total of k  successes in the first r  trials, the 

probability that the  1 str  trial will be a success can be 

computed by: 
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1 Interestingly, Laplace (1796/1951) also provided the first 

documented account of the gambler’s fallacy (see, Ayton & 
Fischer, 2004). Zabell (1989) provides a philosophical discussion 
on the rule of succession. Here we only describe the relevant result 
according to Ross (2007, pp. 147-149). 

Thus, the prediction of a success on the  1 str  trial is 

positively dependent on the number of successes in the first 
r trials (k). Note that the calculation above assumes a 
uniform prior for p on (0, 1). In special cases where p can 
only take a limited number of values (e.g., randomly chosen 
from two values 0.50 and 0.75), by Bayes’ Theorem, the 
positive dependency in the predictions still holds. Based on 
this result, it is possible that the positive dependency in the 
predictions by the hot hand belief is a consequence from 
people’s effort of reducing the uncertainty by estimating the 
unknown probability of successes from the past information. 

In the following, we test this hypothesis empirically. 
Specifically, we predict that when people are provided with 
a fixed probability of success for the underlying process, 
they tend to manifest the gambler’s fallacy or the behavior 
of probability matching so that their predictions would be 
negatively dependent on the past information. In contrast, 
when the probability of success is not explicitly provided, 
people would have to guess it in order to make a prediction. 
As a consequence, their predictions would tend be positively 
dependent on the past information. 

 
 

 

Figure 1. Three clocks in the experiment. The “50%-
50%” clock is divided by blue and red colors equally 
along the 45 degree angle. The “25%-75%” clock has 
the top 25% in blue and the bottom 75% in red. The 
“Unknown” clock is all white. In each trial, a needle 
was spun seven times to generate a sequence of seven 
dots in corresponding colors, then, participants were 
instructed to predict the outcome of the eighth spin. 
 

Method 

Participants 
Eleven college students and graduate students in the 
Houston medical center area were paid to participate in the 
experiment. 

Procedure 
The experiment was programmed in E-Prime and conducted 
on a computer with a 20 inch LCD monitor. Participants 
were instructed that they were about to observe one of 3 
different clocks (see Figure 1). The circumference of a 
“50%-50%” clock was divided by blue and red in equal 
proportions; a “25%-75%” clock was 25% in blue and 75% 
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in red; and an “Unknown” clock was divided by blue and 
red with an unknown ratio and was covered in white. Within 
each clock, a spinning needle will generate a sequence of 
blue and red dots and the color of each dot is determined by 
whether the needle stopped at the blue or red portion of the 
clock after each spin. Participants’ task was to predict the 
color of the 8th spin after observing the outcomes of 7 spins 
for a given clock. 

Three conditions were compared in 3 blocks of trials and 
each block used a different clock (within-subjects). The 
order of 3 blocks was randomized across participants. Each 
block consisted of 128 trials, and the binary sequence of 7 
dots displayed in each trial was predetermined by randomly 
sampling once without replacement from all possible 128 
combinations. Thus, all 3 blocks used the same 128 binary 
sequences so that participants would experience the same 
probability distribution under each condition. Once a binary 
sequence was sampled for a trial, the stopping position of 
the spinning needle after each spin was determined but 
randomly varied within the arc of the corresponding color. 
For example, in the “50%-50%” condition, if the program 
sampled a “red” outcome, the needle would randomly stop 
at one of the six positions of the red arc (2, 3, 4, 5, 6, and 7 
o’clock). The stopping position in the “Unknown” condition 
always pointed to the 12 o’clock position. 

At the beginning of each trial, a clock was presented in 
the center of the computer screen and the needle initially 
pointed up (12 o’clock position). Then, the needle was spun 
seven times and there was an approximately 1 second pause 
after each spin. After each spin, either a blue or a red dot 
was shown beneath the clock depending on whether the 
needle ended pointing to the blue or red portion of the clock. 
After seven spins, seven dots would line up beneath the 
clock and a question mark was shown at the eighth position. 
Participants used mouse buttons to predict the eighth spin 
(left button for blue and right button for red). At the end of 
each trial, an instruction screen was displayed to prompt 
participants to “proceed to the next clock” by clicking a 
mouse button. 

Results 
We first examined how participants’ predictions were 
influenced by the percentage information in the history. 
Table 1 shows the total number of predictions on blue and 
red outcomes depending on the number of the blue 
outcomes in the previous 7 spins (aggregated across all 
participants). It appears that participants’ predictions 
followed different trends under different conditions. For 
example, when there were 4 blue outcomes in the previous 7 
spins, participants predicted blue in 6 trials and red in 379 
trials under the “25%-75%” condition, and predicted blue in 
92 trials and red in 293 trials under the “50%-50%” 
condition. Both conditions showed biases towards the red 
outcomes (more biased in the 25%-75% condition). In 
contrast, when the underlying color ratio was unknown, the 
bias was reversed: participants predicted blue in 200 trials 
and red in 185 trials. 

 
Table 1. Participants’ predictions on the 8th spin based 
on the number of blue outcomes in the sequence of 
previous 7 spins. For example, in the “Unknown” 
condition, when there were 3 blue outcomes (fewer 
blue than red), participants predicted blue in 122 trials 
and red in 263 trials (385 trials in total); when there 
were 4 blue outcomes (more blue than red), participants 
predicted blue in 200 trials and red in 185 trials. 
 

 

 
 
Figure 2:  Logistic regression of the probability of 
predicting blue on the percentage of blue outcomes in 
the history. Regression coefficients are listed in the 
parentheses in the legend. 

 
To confirm our observation in Table 1, we conducted a 

logistic regression to find the line of best fit for the trend 
under each condition, namely, to examine how the 
probability of predicting blue was determined by the 
percentage of blue outcomes in the history. The regression 
results are shown in Figure 2. All three regression 
coefficients were statistically significant (p < .001).  Most 
notably, the negative trends in the 50%-50% and 25%-75% 
conditions were reversed to positive in the Unknown 
condition. This result confirmed our hypothesis that the 
unknown common probability would have an effect on 
participants’ predictions: they were negatively dependent on 
the past information when the blue-to-red ratio was 
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provided, but positively dependent on the past information 
when participants had to guess the underlying probability. 

However, Table 1 and Figure 2 also show that 
participants’ tendency of choosing blue in the Unknown 
condition was not as strong as indicated by the rule of 
succession (Equation 1). For example, when all previous 7 
spins were blue, Equation 1 would predict the probability of 
blue at the eighth spin as 8/9 ≈ 88.9%, whereas only 5 out of 
11 predictions (45.5%) were made on blue. Besides the 
small sample size, one possible explanation would be that 
Equation 1 is based on a uniform distribution of the blue-to-
red ratio from 0 to 1, and participants might have not 
considered all possible values of the ratio in the Unknown 
condition since they have only encountered two other types 
of clocks with a 50%-50% and a 25%-75% ratio. Another 
possibility was that besides the percentage information, 
there were other patterns (such as streaks) influencing the 
predictions. To test the effect of streak information on 
predictions, we conducted a second round of logistic 
regressions of the probability of predicting blue on the 
length of the last run (“LLR”). The values of LLR were 
counted as the number of blue or red outcomes in the last 
run of the sequence (positive values for blue and negative 
values for red). For example, LLR = 3 in the sequence (B, 
R, R, R, B, B, B), and LLR = – 2 in the sequence (B, B, R, 
B, B, R, R). (This example also shows that the same 
percentage of blue outcomes in the history can have 
different values of LLR).  

 
Figure 3. Logistic regression of the probability of 
predicting blue on the length of the last run (LLR). 
Positive values represent the lengths of the blue streaks 
and negative values represent the lengths of the red 
streaks. Regression coefficients are listed in the 
parentheses in the legend. 

 
 
Figure 3 shows that the regression coefficients were 

significantly different from zero only in the “50%-50%” and 
“25%-75%” conditions (both p < .001) but was not 

significant in the “unknown” condition (p ≈ .07). In all three 
conditions, participants’ predictions were negatively 
dependent on the length of the last run. That is, participants 
showed a tendency to avoid long streaks at the end of the 
sequence in all three conditions. Compared with the 
predictions based on the percentage (Figure 2), such 
tendency was not surprising in the 50%-50% and 25%-75% 
conditions, but seemed to contradict the positive 
dependency in the Unknown condition. We can speculate on 
three possibilities to this tendency and they are not 
necessarily exclusive of each other. First, compared to the 
percentage, LLR only contained partial information of the 
past. Second, it was a manifestation of the probability 
matching behavior to reverse the last run. Since the 
sequences were drawn without replacement from all 
possible combinations, probability matching was actually a 
valid strategy for predictions. Third, participants have only 
experienced three kinds of clocks through the entire 
experiment. It was possible that in the Unknown condition, 
participants were guessing the underlying ratio as either 
50%-50% or 25%-75%, and in some of the trials they were 
matching their predictions to the corresponding ratios.  

 
Table 2. Three different strategies compared with 
participants’ actual predictions. For example, under the 
50%-50% condition, 76.8% of the predictions were 
consistent with the “Match to 50%-50%” strategy, and 
23.2% of the predictions were consistent with the “Hot 
Hand” strategy. 
 

  Strategy  

Condition 
Match 

50%-50% 
Match 

25%-75% 
Hot Hand 

50%-50% 76.8% 57.6% 23.2% 
25%-75% 54.2% 91.8% 45.8% 
Unknown 41.1% 59.2% 58.9% 

 
 
To test the hypothesis of probability matching, we 

considered three possible strategies that might have been 
utilized by participants, two strategies of probability 
matching (“match to 50%-50%” and “match to 25%-75%”) 
and one strategy by the hot hand belief (“hot hand”). The 
strategies of “match to 50%-50%” and “match to 25%-75%” 
would predict the color to make the final sequence more 
closely matched to the corresponding color ratio, 50%-50% 
or, 25%-75%, respectively. The strategy of “hot hand” 
would predict the color that appeared most frequently in the 
previous 7 spins. Note that “match to 50%-50%” and “hot 
hand” are completely opposite of each other, and both 
partially overlap with “match to 25%-75%.” We then 
compared these three strategies with participants’ actual 
predictions. Table 2 shows the percentages in which each 
strategy was consistent with the actual predictions in each 
condition. It appears that the “match to 50%-50%” strategy 
was the most dominant in the 50%-50% condition (with a 
76.8% consistency), and the “match to 25%-75%” strategy 
was the most dominant in the 25%-75% condition (91.8% 
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consistency). However, in the Unknown condition, all three 
strategies were about equally dominant but the “match to 
50%-50%” strategy had the lowest accuracy level in 
describing the actual predictions (41.1%). 

We made two particular observations in Table 2. First, 
there was a strategy shift across three conditions. 
Probability matching was a dominant strategy when the 
color ratio of the clock was given at either 50%-50% or 
25%-75%, but its dominance was greatly reduced when the 
color ratio was unknown. By contrast, predictions by the 
“hot hand” strategy were at minimum when the color ratio 
was given but became substantial when the color ratio was 
unknown. The strategy shift observed in Table 2 was 
consistent with dependence reversal shown in Figure 2. 
Second, both probability matching (50%-50% and 25%-
75%) and “hot hand” strategies were present in the 
Unknown condition. This observation appears to be 
consistent with our speculation that in the Unknown 
condition participants were mainly guessing between the 
50%-50% and 25%-75% clocks. Moreover, it also indicated 
that probability matching was a strong tendency that could 
be reduced but hard to eliminate (e.g., Koehler & James, 
2009). 

Discussion 
Compared with previous studies on the hot hand belief, the 
present study did not directly examine participants’ 
perception of the underlying process regarding its 
randomness (i.e., the independence and stationarity 
assumptions), the intentionality of the process, or, whether it 
is about human performance or a natural process (e.g., 
Ayton & Fischer, 2004; Burns & Corpus, 2004; Caruso, et 
al., 2010; Croson & Sundali, 2005; Sundali & Croson, 
2006). Instead, we presented participants with the same 
clock-and-needle mechanism, under the same underlying 
probability distributions, across all conditions. The only 
factor we manipulated was the perceived common 
probability: either explicitly provided (50%-50% and 25%-
75% conditions) or not (Unknown condition). That is, 
participants did not have to reject either the independence or 
the stationarity assumption of randomness in order to make 
predictions. Yet, compared to the 50%-50% and 25%-75% 
conditions, the overall dependency of the predictions on the 
past percentage information (entire history) in the Unknown 
condition was reversed from negative to positive. 

It is possible that participants would actually reject 
randomness in some of the trials. However, rejecting 
randomness may not be responsible for the difference we 
found across conditions, especially the positive dependency 
in the Unknown condition. As we mentioned before, 
perception of randomness may not be a concept as a whole 
that influences people’s behavior (e.g., Blinder & 
Oppenheimer, 2008; Lopes & Oden, 1987). Regarding the 
independence and stationarity assumptions, all three 
conditions in our experiment were presented in the same 
way except the color ratio, and in each trial, participants 
were always presented with the same clock. Furthermore, 

rejections of randomness, if they did have any effect, would 
be more pronounced in presence of a given color ratio 
where the discrepancy between the given ratio and the 
displayed binary outcomes would be more obvious. For 
example, when the color ratio was 50%-50% but the 
displayed 7 outcomes were all blue, participants might have 
suspected something was wrong then would tend to 
conclude that the underlying process was not what has been 
presented (namely, to reject the hypothesis of randomness). 
On the other hand, such suspicion would be less likely to 
arise in the Unknown condition as there was no clear 
contrast between the displayed outcomes and an unknown 
probability. 

The findings that participants’ prediction was positively 
dependent on the percentage (entire history) but negatively 
dependent on the length of the last run (partial history) 
indicates that there were at least two mental processes 
involved. On one hand, when the underlying probability was 
initially unknown, participants used the past information to 
estimate the probability. As a consequence, their predictions 
were positively dependent on the past percentage 
information (Figure 2). On the other hand, the negative 
dependency on the length of the last run (Figure 3) indicated 
that probability matching was a strong tendency that could 
be reduced but hard to eliminate (e.g., Koehler & James, 
2009). Nevertheless, the tendency of probability matching 
was greatly reduced when the underlying probability 
initially was unknown and had to be estimated (Table 2).  
This result was consistent with the findings in some of the 
studies that associate probability matching with pattern 
search (e.g., streaks in our experiment). For example, 
Wolford, et al. (2004) report that distracting people with a 
secondary verbal working memory task prevents the pattern 
search and results in less probability matching behavior 
(also see, Gaissmaier & Schooler, 2008; Wolford, Miller, & 
Gazzaniga, 2000). Koehler and James (2009) suggest that 
probability matching is an intuition that can be overridden 
by deliberate consideration of alternative choice strategies. 

It should be noted that the focus of the present study is to 
demonstrate the common probability estimation as a factor 
that may contribute to the opposite predictions by the 
gambler’s fallacy and the hot hand belief. We found the 
reversal of the dependency when the independent variable 
was the percentage of one outcome in the entire history but 
not the length of the most recent streaks. Although a 
prediction positively dependent on the percentage 
information is more likely to prolong the most recent streak, 
our experiment did not exactly capture the “streakiness” in 
the hot hand belief. It is reasonable to conclude that 
common probability estimation alone may not be able to 
account for the hot hand belief, and it must be combined 
with other factors, such as the humanness or intentionality 
of the process (e.g., Ayton & Fischer, 2004; Caruso, et al., 
2010). In addition, a limitation in our experiment is that 
participants have experienced only three types of clocks and 
the Unknown condition might have been affected by the 
other two conditions. A between-subject design, or, adding 
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more levels to the provided color ratio, might be able to 
make participants estimate the unknown parameter in a 
wider range thus the positive dependency might be more 
pronounced. Moreover, the positive dependency observed in 
our experiment was based on the percentage information (or 
proportion), and there are usually more than one ways to 
construct a pattern in a binary sequence, such as alternation 
or symmetry (e.g., Rapoport & Budescu, 1997) or sequential 
dependency (e.g., West & Lebiere, 2001). One possibility to 
extend our experiment would be to vary the length of the 
presented binary sequences so that the effects of other 
patterns could be dissociated from the effect of percentage 
information. Another possible extension would be that the 
sequences serving as the history are actually generated 
based on various probability distributions instead of being 
drawn from a pre-determined sample pool without 
replacement. In this way, participants’ actual experience 
would be more consistent with the provided color ratio or 
their estimation. We will leave these possibilities to future 
studies. 
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